高二数学 数列公式
- 格式:ppt
- 大小:287.50 KB
- 文档页数:16
高二数学数列公式高二数学的数列这部分,那公式可真是不少,也挺重要。
就拿等差数列和等比数列来说,这里面的公式就像是一把把解题的钥匙。
咱们先来说说等差数列。
等差数列的通项公式是$a_n = a_1 + (n -1)d$,其中$a_1$是首项,$d$是公差,$n$是项数。
这个公式就像是一个神奇的密码,能让我们通过已知的首项、公差和项数,算出任意一项的值。
比如说,有一个等差数列,首项是 2,公差是 3,要算第 10 项,那就是$a_{10} = 2 + (10 - 1)×3 = 2 + 27 = 29$,是不是很简单?还有等差数列的前$n$项和公式$S_n = \frac{n(a_1 + a_n)}{2}$,这也是个很实用的宝贝。
我记得有一次给学生讲这个公式的时候,有个学生一脸懵,怎么都理解不了。
我就给他举了个例子,说假如你每天存 1 块钱,第一天存 1 块,第二天存 2 块,第三天存 3 块,一直存到第 10 天,那你一共存了多少钱?我们就可以用这个公式来算,首项$a_1$是 1,第 10 项$a_{10}$是 10,项数$n$是 10,那一共存的钱就是$S_{10} = \frac{10×(1 + 10)}{2} = 55$块。
这孩子一下子就明白了,眼睛都亮了起来。
等比数列也有它的通项公式$a_n = a_1q^{n - 1}$,其中$a_1$是首项,$q$是公比。
比如一个等比数列,首项是 3,公比是 2,要算第 5 项,那就是$a_{5} = 3×2^{5 - 1} = 3×2^4 = 48$。
等比数列的前$n$项和公式就稍微复杂点,当$q≠1$时,$S_n =\frac{a_1(1 - q^n)}{1 - q}$。
这个公式的理解和运用,对于一些同学来说可能有点难度。
但只要多做几道题,多琢磨琢磨,也能掌握。
在做题的时候,经常会遇到需要判断一个数列是等差数列还是等比数列的情况。
高二数学知识点公式总结1. 代数与函数a) 二次函数公式:- 标准型:f(x) = ax² + bx + c,其中a≠0。
- 顶点式: f(x) = a(x - h)² + k,其中(h, k)为顶点坐标。
- 因式分解: f(x) = a(x - x₁)(x - x₂),其中x₁, x₂为根。
b) 判别式:- 二次方程 ax² + bx + c = 0 的判别式:Δ = b² - 4ac。
c) 等差数列公式:- 第n项:an = a₁ + (n - 1)d,其中a₁为首项,d为公差。
- 前n项和:Sn = (a₁ + an)n/2 或 Sn = (2a₁ + (n - 1)d)n/2。
2. 平面几何a) 直角三角形公式:- 勾股定理:c² = a² + b²,其中c为斜边,a、b为直角边。
- 正弦定理:a/sinA = b/sinB = c/sinC。
- 余弦定理:c² = a² + b² - 2ab*cosC。
b) 圆的相关公式:- 圆周长:C = 2πr,其中r为半径。
- 圆面积:S = πr²。
c) 向量公式:- 向量的模:|A| = √(x² + y² + z²),其中(x, y, z)为向量坐标。
- 向量点乘:A·B = ax·bx + ay·by + az·bz,其中(Ax, Ay, Az)为向量A的坐标,(Bx, By, Bz)为向量B的坐标。
- 向量叉乘:A×B = (AyBz - AzBy, AzBx - AxBz, AxBy - AyBx)。
3. 解析几何a) 二次曲线方程:- 椭圆方程:(x²/a²) + (y²/b²) = 1,其中a为x轴半轴长,b为y 轴半轴长。
高二数学公式总结高二数学公式总结一、函数与方程1. 一次函数:y = kx + b,其中k为斜率,b为截距。
2. 二次函数:y = ax^2 + bx + c,其中a为二次项系数,b为一次项系数,c为常数项。
3. 反函数:若y = f(x),则x = f^(-1)(y)。
4. 三角函数:正弦函数sin(x),余弦函数cos(x),正切函数tan(x),余切函数cot(x)。
5. 幂函数:y = x^a,其中a为常数。
6. 对数函数:y = loga(x),其中a为底数。
7. 指数函数:y = a^x,其中a为底数。
二、数列与数学归纳法1. 等差数列通项公式:an = a1 + (n-1)d,其中a1为首项,d为公差。
2. 等比数列通项公式:an = a1 * q^(n-1),其中a1为首项,q为公比。
3. 等差数列前n项和公式:Sn = n/2 * (a1 + an),其中n为项数,a1为首项,an为第n项。
4. 等比数列前n项和公式:Sn = a1 * (1 - q^n) / (1 - q),其中n为项数,a1为首项,q为公比。
5. 数学归纳法:若能证明当n=k时命题成立,且当n=k+1时,命题成立,则对于所有自然数n,命题均成立。
三、几何1. 相似三角形:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。
2. 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角度。
3. 余弦定理:c^2 = a^2 + b^2 - 2ab*cosC,其中a、b、c为三角形的边长,C为夹角。
4. 钝角余弦定理:c^2 > a^2 + b^2 - 2ab*cosC。
5. 射影定理:在直角三角形中,斜边上的垂直射影等于斜边与直角边的乘积。
6. 平行四边形性质:对角线互相平分,对角线互相交于中点,对角线长度平方和等于边长平方和的两倍。
7. 三角形面积公式:S = 1/2 * a * b * sinC,其中a、b为两边长,C为夹角。
数列通项公式求法集锦一、累加法(叠加法、迭加法)1、d a a n n +=+1(d 为常数):等差数列为代表2、)(1n f a a n n +=+则)1(.....)2()1(......)1()2()1(121-++++==-+-+=-+=--n f f f a n f n f a n f a a n n n )(n f 为关于n 的函数,一般有以下形式:(1) 裂项消项法:)11()(2k n n k A kn n A n f +-=+= 、)11()(2nk n k A kn n A n f --=-= )())(()(n k n k A n k n n k n n k n A k n n A n f -+=-+++-+=++=例:1111)(2+-=+=n n n n n f ; 裂项方法:令11)(2+-=+=n B n A n n n f ,则n n A n B A n n Bn n A n B n A n n ++-=+-+=+-=+222)()1(11,对比n n +21与n n A n B A ++-2)(可以得到等式⎩⎨⎧==-10A B A ,则⎩⎨⎧-==11B A ,所以1111)(2+-=+=n n n n n f 。
(2)常用数列:b kn n f +=)((等差数列) n q k n f ⋅=)((等比数列)累加时为求等差或等比数列的前n 项和。
(3)特殊数列:2)(n n f = 3)(n n f =6)12)(1(......3212222++=++++n n n n 22223333).....321()2)1((4)1(......321n n n n n n ++++=+=+=++++ 二、累乘法(叠乘法、迭乘法)1、n n qa a =+1(q 为非零常数):等比数列为代表:11-⋅=n n q a a ;2、n n a n f a •=+)(1,则)1(.....)2()1(......)1()2()1(121-••==-•-•=-•=--n f f f a n f n f a n f a a n n n)(n f 为关于n 的函数,一般有如下形式(1)kn k n n f +++=1)(, )1(.....)2()1(......)1()2()1(121-••==-•-•=-•=--n f f f a n f n f a n f a a n n n =111.....231211+++•=+++••++•++k k n a k n k n k k k k a (2)1)(-•=n q k n f)1(.....)2()1(......)1()2()1(121-••==-•-•=-•=--n f f f a n f n f a n f a a n n n =1)(.....)()(121-•=⋅••⋅•⋅••-n S n n q k q k q k q k k a (S n-1 为q 的指数(等差数列)的前n-1项和)三、q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
高二数学无穷递降等比数列求和公式_公式总结
除了课堂上的学习外,平时的积累与练习也是学生提高成绩的重要途径,本文为大家提供了高二数学无穷递降等比数列求和公式,祝大家阅读愉快。
无穷递减等比数列
a,aq,aq^2aq^n
其中,n趋近于正无穷,q1
注意:
(1)我们把|q|1无穷等比数列称为无穷递缩等比数列,它的前n项和的极限才存在,当|q|1无穷等比数列它的前n项和的极限是不存在的。
(2)S是表示无穷等比数列的所有项的和,这种无限个项的和与有限个项的和从意义上来说是不一样的,S是前n项和Sn当n的极限,即S=
S=a/(1-q)
算法
想了解无穷递减等比数列求和的算法,需要先介绍一下等比数列求和公式
设一个等比数列的首项是a1,公比是q,数列前n项和是Sn,当公比不为1时
Sn=a1+a1q+a1q^2+...+a1q^(n-1)
将这个式子两边同时乘以公比q,得
qSn=a1q+a1q^2+...+a1q^(n-1)+a1q^n
两式相减,得
(1-q)Sn=a1-a1q^n
所以,当公比不为1时,等比数列的求和公式为Sn=[a1(1-q^n)]/(1-q)
对于一个无穷递减数列,数列的公比小于1,当上式得n趋向于正无穷大时,分子括号中的值趋近于1,取极限即得无穷递减数列求和公式
S=a/(1-q)
小编为大家整理的高二数学无穷递降等比数列求和公式就到这里了,希望同学们认真阅读,祝大家学业有成。