七年级数学上册第1章走进数学世界1.1数学伴我们成长教学设计(无答案)(新版)华东师大版
- 格式:doc
- 大小:16.00 KB
- 文档页数:3
1.1数学伴我们成长一、基本目标【知识与技能】1、帮助学生梳理小学的数学知识和数学方法.2、向学生介绍现实生活中的数学现象来引导学生感受数学,了解数学来源于生活,服务于生活.【过程与方法】1、让学生先自主阅读和学习课本(2页).2、组织小组合作学习,完成《学案》——教师观察指导学困者.【情感态度与价值观】在做数学的过程中激发学生兴趣,培养自信心与参与感.二、重难点目标【教学重点】加强学生的数学意识.【教学难点】对学生数学能力的培养.一、合作学习。
课堂完成下列任务。
1.程坚同学正在看一本画册,刘新过来问道:“这儿画的恐龙生活在多少年以前呀?”程坚翻了翻书回答:“六十二万零三年以前.”刘新惊讶地问:“这么准确吗?”程坚解释说:“这本书是2019年出版的,说这恐龙生活在六十二万年之前,现在是2019年了呀!”你认为程坚的看法正确吗?为什么?二、探究学习。
课内完成下列任务。
2.如图表示一块形状为长方体的蛋糕,打算把它切为大小相同的两块,送给托儿所的两位小宝宝.怎样切显得块大些呢?3.图形选择题:(1)某工厂的生产流水线每小时可生产产品100件,这一天开始生产前没有产品积压.生产3小时后,工厂派来装卸工装箱,每小时装产品150件,未装箱的产品数量与时间之间的关系大致如下面()图表示的那样.要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
1.1数学伴我们成长【基本目标】1. 使学生初步认识到数学与现实世界的亲密联系,懂得数学的价值,形成运用数学知识的意识;2. 使学生初步体验到学习数学是一个充满着察看、实验、概括、类比和猜想的研究过程.【教课要点】增强数学意识.【教课难点】数学能力的培育.一、情境导入,激发兴趣1.此刻让我们进入时空的地道,回想我们的成长历程:出生——学前——小学,我们每天都在接触数学其实不停学习它,相信吗?大家不如从不一样阶段来举出一些我们身旁或亲自经历的例子,试一试.2.进入小学,我们正式开始学习数学,回想一下,在小学阶段我们学习的主要数学知识有哪些?【教课说明】学生很简单能说出数学与生活的联系,感觉数学与生活有着亲密的联系,激发学生学习数学的兴趣 .二、合作研究,研究新知人到达世界上的第一天就碰到数学,数学将陪伴着你的成长. 从一系列人生活动中,我们会渐渐意识到这全部的全部都和数、数的运算、数的比较、图形的大小、图形的形状、图形的地点有关 . 数学知识宽阔了我们的视线,改变了我们的思想方式,使我们变得更聪慧.【教课说明】使学生明确数学陪伴我们成长,数学与我们的生活亲密有关.某商场平常推行打折销售,现推出以下“有奖销售”活动:一、有奖销售活动起讫日:2011 年 10 月 1 日起,奖券10000 张发完为止 .二、凡累计花费额满 400 元,发奖券壹张 .三、开奖日期: 2011 年 10月15日.四、本活动由天山公证处公证,并请顾客代表参加当日的开奖仪式.五、奖品建立:特等奖 2 名,各 2000 元(奖品);一等奖10 名,各 800 元(奖品);二等奖20 名,各 200 元(奖品);三等奖50 名,各 100 元(奖品);四等奖200 名,各 50 元(奖品);五等奖 1000 名,各 20 元(奖品);中奖率高达12.82%.请你计算奖金的总金额是多少,占10000 张奖券的最低销售总数的百分比是多少.奖品的总金额是:2000×2+800×10+200 ×20+100× 50+50× 200+20× 1000=51000它占 10000 张奖券对应的最低销售总数400×10000=4000000 的 1.257%.【教课说明】学生经过计算,发现奖品总金额占10000 张奖券的最低销售总数的比率很低,说明数学在生活中是实用的.三、练习反应,稳固提高数学知识的学习,不单宽阔了我们的视线,并且改变了我们的思想方式,使我们变得更为聪了然 . 发挥一下我们的聪慧才华,试试解决下边的两个问题:1.(1) 计算并察看以下三组算式:88,55,64257963;46;2412121113(2)已知 25× 25=625,则 24× 26=_______.(3)你能举出一个近似的例子吗?(4)更一般地,若 a× a=m,则 (a+1)(a-1)= _______.2.今有一块正方形土地,要在其上修建两条笔挺的道路,使道路把这片土地分红形状相同且面积相等的4 部分,若道路的宽度忽视不计,请你设计三种不一样的修建方案.(只要画简图)【教课说明】学生经过练习,发展思想能力,培育必定的数学研究能力和合作意识.【答案】 1. ( 1) 144143( 2) 624( 3) 13× 13=169,12 × 14=168( 4)m-1四、师生互动,讲堂小结1. 数学伴我们成长.2. 经过本节课的学习,你有哪些收获?还有哪些疑惑?请与老师或同学进行沟通.【教课说明】学生回首本节课所学内容,进一步提高学生学习数学的兴趣.达成本课时对应的练习.新课注明确告诉我们,教课已不再是教师的专利了,应把学习的主动权还给学生. 只有让学生在和睦的学习气氛中相互怀疑、相互赏识、相互帮助才能把学生吸引住. 经过察看、思虑、计算、论证等一系列活动,使学生明确数学与我们的生活密切相连,增强学生学习数学的兴趣 .。
教学计划一、教材分析:本册书体现学生主动学习的过程,以学生发展为本,让学生亲身参与活动,进行探索与发现,以自己体验获取知识与技能。
二、教学内容:走进数学世界:让学生对数学有一个良好的认知感,初步体验到什么是“做数学”;有理数:理解有理数、数轴、乘方的意义,掌握有理数加、减、乘、除、乘方及简单的混合运算。
认识科学记数法,了解近似数的意义。
会用有理数的运算解决简单的问题。
整式的加减:了解代数式、单项式、多项式的概念,掌握单项式系数与次数及多项式的次数、项与项数的区别,并能按某个字母的升、降序排列;掌握合并同类项的法则,能进行简单的整式加减法运算。
图形的初步认识:认识并会画立体图形以及其展开图,了解几何体、平面、直线、点等几何概念,理解两点间距离的意义,认识角并能比较角的大小,会计算角的和、差,掌握余角、互为补角、同角(等角)及之间的关系。
学会用圆规和直尺准确的画出线段和角。
相交线与平行线:了解对顶角、同位角、内错角、内错角、同旁内角,会识别;会作平行线,并且学会平行线的判定和性质。
第一课时一、课题§1.1 数学伴我们成长二、教学目标1. 知识与技能:结合具体例子,体会数学与我们的成长密切相关。
2. 过程与方法:通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。
3. 情感态度与价值观:通过对小学数学知识的归纳,感受到数学学习促进了我们的成长;尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。
三、教学重点和难点重点:1. 结合具体例子,体会数学与我们的成长密切相关。
2. 通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
难点:结合具体例子,体会数学与我们的成长密切相关。
四、教学手段交互一体机、剪刀、长方形纸片。
五、教学方法启发式教学六、教学过程设计一、导入人来到世界上的第一天就遇到数学,数学将哺育着你的成长。
数学知识开阔了你的视野,改变了你的思维方式,使你变得更聪明了。
1.1数学伴我们成长教学目标1.让学生通过生活实例感受数学与现实世界的密切联系、数学价值和应用意识;2.让学生通过对比初步体验到数学是一门充满着观察、实验、归纳、类比和猜测、探索过程的学科;3.在学习的过程中养成独立思考与合作交流的习惯.教学重难点【教学重点】让学生感受数学与现实世界是密不可分的.【教学难点】培养学生独立思考与合作交流的习惯.课前准备无教学过程一、课时导入在我们的周围,宇宙之大,粒子之微,火箭之速,化工之巧,生物之谜,日用之繁……,大千世界,天上人间,无处不有数学的贡献,让我们一起走进数学世界,去领略一下数学的风采.二、感悟新知知识点:数学伴我们成长1. 感知数学:从你呱呱落地降临人世的第一天起就离不开数学,如医生检测身体各项指标是否正常,称你的体重、测量你的身高.随着年龄的增长,你开始在父母的指导下学习数学,如最初的数数、拼图案、折纸飞机等等.通过参与这些活动你将逐步体会到我们的生活中处处渗透着数学.2. 学校中学习数学:进入学校,正式开始学习数学这门学科,逐步学会简单的数学语言,知道什么是整数、分数;学会了加、减、乘、除运算;认识了各种各样的几何图形.3. 将来步入社会,你还会用你所学的知识去创造科技与财富.使整个人类在不断进步与发展.【例1】某人的身份证(第二代)号码为422129************,此人今年(2015年)的周岁是( )A.35 B.36 C.37 D.38答案:D分析:身份证号码的第7位至第14位是指这个人的出生年、月、日,此人1977年5月20日出生,所以他今年38岁.【总结】身份证(第二代)号码位数的含义:(1)第1、2位数字表示所在的省份代码;(2)第3、4位数字表示所在城市的代码;(3)第5、6位数字表示所在区县的代码;(4)第7至14位数字表示出生的年月日;(5)第15、16位数字表示所在地派出所的代码;(6)第17位数字表示性别,奇数表示男性,偶数表示女性;(7)第18位数字是校检码,也可以说是个人信息码,用来验证身份证的正确性.校检码可以是0至9的数字,有时也用x表示,一般由计算机随机产生.三、巩固练习1.身份证号码告诉我们很多信息,某人的身份证号码是130503************,其中13、05、03是此人所属的省(市、自治区)、市、县(市、区)的编码,1967、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是321084************的人的生日是( )A.8月10日 B.10月12日C.1月20日 D.12月8日答案:C2.小明是七年级的一名学生,他的身高可能是( )A.165 mm B.165 cmC.165 dm D.165 m答案:B3.在下列数据中,你的步长可能为( )A.50毫米 B.50厘米C.50分米 D.50米答案:B4.把长方形的木桌面锯掉一个角,剩余角的个数是( )A.3 B.4C.5 D.3或4或5答案:B四、课堂小结学习数学的意义:数学是当今世界上一门重要的学科,它伴随着我们成长,并对我们的生活产生了极为重要的影响,生活中无一能离开数学,它的应用无处不在,可以毫不夸张地说:“数学是书写宇宙的文学”,对数学的重要性的理解要注意以下两点:(1)注意数学和现实世界的密切联系,关注身边的数学问题.(2)思考数学问题中各种量之间的关系,体会数学的价值.数学思想的形成过程:生活中感知数学→学校中学习数学→实践中应用数学.五、知识拓展范例:计算并观察下面的几组算式:(1)1+3=__4__=(__2__)2;(2)1+3+5=__9__=(__3__)2;(3)1+3+5+7=__16__=(__4__)2;……(4)你能举一个类似的例子吗?1+3+5+7+9+11+13+15+17+19=__100__=(__10__)2;(5)一般地:1+3+5+7+……+(2n-1)=(__n__)2.六、课后作业课后写一篇关于“数学伴我们成长”的短文.1.2 人类离不开数学教学目标【知识与能力】了解数学家背后的故事,通过数学家的故事,对学生自身今后的数学学习有所启迪.【过程与方法】学生提前收集数学家的相关的数学小故事,并做简单的记录.【情感态度价值观】体验老一辈数学家学习数学的思想精神,感受这种精神的同时,激发学生今后学习数学的热情.教学重难点【教学重点】结合数学家学习数学的精神,通过对各个小故事的总结,感受数学家给予后辈的精神指导.【教学难点】收集古今中外各个数学家的故事,以及数学家著名的解决问题,体会其中的精神,并且和同学分享.课前准备无教学过程一、课时导入从古代结绳记事,到今天发达的信息社会,伴随着数学一系列的变化,而这些的变化离不开数学家的功劳,那么,在小学的时候,我们或多或少的听说过一些数学家的故事,但是也只是做一些浅表的了解,例如你只是知道我国古代数学家祖冲之,研究圆周率的,以及华罗庚等一些人物,下面老师将带领同学们一起来了解更多数学家背后的小故事,以及他们背后的一些数学典型习题.二、提出问题昨天老师留了课后作业,让同学们搜集历史上的数学家的故事,现在开始同桌之间互相讨论,然后一会找同学一起尽可能多的分享一下大家知道哪位数学家背后的故事,看哪位同学能知道的多?三、新知学习同学们昨天搜集的都很好,说了很多历史上的杰出的数学家,那么老师也来和大家和分享几个老师比较欣赏的数学家.阿基米德,公元前287年-公元前212年,希腊的数学家、天文学家,研究最著名的领域是几何问题,他的墓碑上上就刻着这样一个圆柱形的图案,来纪念他的伟大的贡献,他最著名的故事是阿基米德的死,当时罗马士兵闯入他的住宅,看见他画几何图形,士兵命令他离开,他不肯,结果被杀死.阿基米德最著名的话:给我一个杠杆我能撬动地球.华罗庚:中国科学院院士,数学家,中国复变函数的创始人和开拓者,“华氏定理”就是以其名字命名的,1925年初中毕业后,因拿不出学费而辍学在家帮助父亲料理杂货铺,因此只有初中学历,但是其酷爱数学用五年的时间自学高中课程,后因疾病腿部残疾,1929年,自学之后,开始在《科学》等杂志上发表论文,后因论文《苏家驹之代数的五次方程式解法不能成立之理由》轰动数学界,打破常规被清华录取.欧拉:莱昂哈德·欧拉瑞士数学家,13岁读巴塞尔大学,15岁大学毕业,16岁获得硕士学位,主要贡献在于将整个数学推至物理领域,一生写下886本书和论文,研究领域非常广泛,包括天文学、弹道学、航海学、建筑学等.很多学者认为,没有欧拉的众多发现,我们将过着不一样的生活,大学中学习最著名定理有欧拉定理.高斯:近代数学的奠基者,被认为是数学历史上最重要的数学家,和阿基米德、牛顿并成为世界三大数学家.后人称他为“数学王子”.(展示高斯求和公式)祖冲之:南北朝时期数学家,最主要的研究贡献在刘徽开创的探索圆周率的精确方法的基础之上,首次将圆周率精算到小数点后第七位,他的一生都在漂泊,但是在走走停停的过程中却做出了杰出的贡献.哥德巴赫:德国数学家,牛津大学毕业,1742年提出了著名的哥德巴赫猜想,成为了数学界的一场革命,在和欧拉长达35年通信的讨论中未果,至今未能解决.(哥德巴赫猜想:任何一个大于2的偶数可以表示成2个素数之和的证明)陈景润:曾厦门大学的校长,由于华罗庚教授的赏识,被调到中国科学数学研究院,并针对于研究哥德巴赫猜想,被公认为是对哥德巴赫猜想研究的重要人员,成为哥德巴赫猜想研究上的里程碑,他的成果被国际数学界称为“陈氏定理”.四、课堂练习1、计算:1–2+3–4+5–6+…–100+101=.答案:–502、计算:1+2+3+…+2003+2004+2003+…+3+2+1=..答案:40160163、今有一块正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请你设计三种不同的修筑方案.(只需画简图)答案:4.下面有一张某地区的公路分布图,请你找出从A至D的一条最短路线(图中所标最短路线为里程)答案:A→B1→C2→D五、课堂小结同学们通过这节课了解了很多数学家背后的小故事,但是同学们注意,我们更应该学习的是数学家们在求学路上那些背后的故事后面所折射出来的精神,同学们应该让这些精神变成学习的榜样,应该在数学家身上学习到,我们每个人都能学好数学,同学们都是潜力股. 六、课后作业写一篇关于你最欣赏的数学家的文章,写出你最欣赏他哪里,你要向他学习什么精神?七、板书设计§1.2 人类离不开数学一、教师讲述生活中的数学案例二、学生概括生活中的数学案例---------------- ---------------1.3 人人都能学会数学教学目标1.让学生体会数学与我们的生活密切相关;2.让学生从现实生活中抽象出点、线、面、体等图形,培养学生的观察能力、分析能力,感受学习数学的乐趣;3.在学习的过程中养成独立思考与合作交流的习惯.教学重难点【教学重点】让学生感受数学伴随着我们的成长,我们的成长离不开数学.【教学难点】让学生树立学习数学的信心.课前准备无教学过程一、教学环节指导行为提示:创设问题,情境导入,结合生活中的实际例子,充分调动学生的积极性,激发学生求知欲望.行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,率先做完的小组内互查,大部分学生完成后,进行小组交流.知识链接:1.数与式:认识、计算、解方程、解应用题;2.图形:图形的认识、图形的画法、图形的有关计算.二、情景导入,生成问题1.数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学.学好数学,要对数学有兴趣,要有刻苦钻研的精神,善于发现和提出问题,善于独立思考 . 2.思考并解决下列问题:(1)某地出租车收费标准为:起步价5元,3km后每千米1.2元,某人乘坐出租车5km,应付款__7.4__元.(2)如图,阴影部分的面积相等的是( D )A.①与④B.①与③C.②与③ D.①与②、③三、自学互研生成能力知识模块人人都能学会数学阅读教材P5~P7,完成下面的内容.1.点动成__线__,线动成__面__,面动成__体__;面与面相交得到__线__,线与线相交得到__点__.2.三棱柱有__6__个顶点,__9__条棱,__5__个面,它的侧面的形状都是__长方形__,它的底面是__两个形状相同的三角形__.3.如图,是6级台阶侧面的示意图,如果要在台阶上铺地毯,那么至少要买适合台阶宽度的地毯多少m?分析:要在台阶上铺地毯,实际上并不需要测出每一级台阶的长度,可以把图想象为由一根绳子围成的图形,将它拉成为一个长和宽分别为3.1m和2m的长方形,所以台阶的总长就是:3.1+2=5.1(m).解:3.1+2=5.1(m).∴至少要买适合台阶宽度的地毯5.1m.归纳:(1)发展进一步获得的数学基础知识和基本技能;(2)体会数学知识间的联系,培养逻辑思维方式;(3)感受数学的价值,养成独立思考的学习习惯.做这一类题的技巧是:1.从已知中寻找突破口,发现变化的规律;2.一般采用“从一般到特殊”的思维方式;3.掌握用“加、减、乘、除”的基本形式表达发现的规律.学法指导:解决寻找规律问题的方法是:观察第2个数(或图形)与前一个数(或图形)有什么联系、变化,类推下一个,由一般到特殊.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评分.展示目标:知识模块展示重点在于通过解决数学问题,让学生知道数学并不是那么难,只有通过自身的努力才能学好数学.【范例】:如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成4个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形剪成4个小正方形,共得到10个小正方形,称为第三次操作;……根据以上操作,若要得到2017个小正方形,则需要操作的次数是__672__.分析:本题是规律类型的数学题,通过观察,我们容易发现,当操作第n(n 为正整数)次时,共得到(3n +1)个小正方形,从而我们可以列一个关于n(以n 为未知数)的方程,解出n 的值即可.解:设操作n 次可以得到2017个小正方形,根据题意得:3n +1=2017,解得:n =672.答:需要操作的次数是672.仿例:根据前面几个数的规律填空:(1)5,8,13,21,34,____;55(2)12,23,35,58,813,____.1322分析:(1)规律:第1个数加上第2个数得到第3个数,第2个数加上第3个数得到第4个数,第3个数加上第4个数得到第5个数,第4个数加上第5个数得到第6个数…;(2)规律:前一个分数的分母是下一个分数的分子,前一个数的分子与分母的和是后一个分数的分母.变例:在学校体育课上,老师准备了一些橘子给同学们,小明非常勤快,帮老师数橘子,他7个7个地数,还余4个,5个5个地数,还余3个,3个3个地数,正好数完,则老师至少为同学们准备了__18__个橘子.四、交流展示,生成新知1.各小组共同探讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行展示.五、课后反思查漏补缺收获:________________________________________________________________________2.1 有理数第1课时教学目标1、在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
_________________ 第1一走进敢学世办课题数学伴我们成长人类离不开数学【学习目标】1.让学生通过生活实例感受数学与现实世界的密切联系、数学价值和应用意识;2.让学生通过对比初步体验到数学是一门充满着观察、实验、归纳、类比和猜测、探索过程的学科;3.在学习的过程中养成独立思考与合作交流的习惯.【学习重点】让学生感受数学与现实世界是密不可分的.【学习难点】培养学生独立思考与合作交流的习惯.救学环节指导行为堤岳:创设问题,情境导入,结合生活中的实际例子,充分调动学生的积极性,激发学生求知欲望.行为提示:让学生阅读教材,尝试完成''自学互研”的所有内容,并适时给学生提供帮助,率先做完的小组内互查,大部分学生完成后,进行小组交流.知识链接:小学学过的数学知识:1.整数、小数、分数的四则运算;2.初步认识元角分、年月日、长度单位、重量单位;3. 了解简单的几何图形;4.初步了解统计、概率的简单知识.5.初步了解方程及其简单的解法.做这一类我的技巧是:1.从已知中寻找突破口,发现变化的规律;2. 一般采用“从一般到特殊”的思维方式;3.掌握用“加、减、乘、除”的基本形式表达发现的规律.椅景导人生成问我在我们的周围,宇宙之大,粒子之微,火箭之速,化工之巧,生物之谜,日用之繁……,大千世界,天上人间,无处不有数学的贡献,让我们一起走进数学世界,去领略一下数学的风采.自学互研生成能力知识模块一数学伴我们成长阅读教材P2,完成下面的内容.从出生到步入七年级,我们都在不断地学习数学,回忆一下,我们在小学阶段学习的数学知识主要有哪些?归纳:(1)数与式:认识、计算、方程、解应用题;(2)图形:图形的认识、图形的画法、图形的计算:⑶统计知识:条形统计图、扇形统计图、折线统计图及从图中获取相应的信息.范例:计算并观察下面的几组算式:(1)1+3=_4_=(_2_)2:(2)1 +3+5=9=(3)2;(3)1 +3+5+7=J6=(4)2:(4)你能举一个类似的例子吗?1+3+5+7+9+11 + 13+15+17+19=」0Q =( @ P(5)一般地:1+3+5+7 + ……+(2〃-1)=(K仿例:如图1,线段A3,当在线段A8上加上1个点(该点不与点A、5重合)时,共有3条线段:当在线段A8上加上2个点(这2个点不与点A、8重合)时,如图2,共有6条线段:当在线段AB上加上3个点(这3个点不与点A、B重合)时,如图3,共有10条线段.................A B,图1) A11_1,困2)A_~~F,图3) /i ' ' '_i 图4)⑴当在线段AB上加上5个点(这5个点不与点A、8重合)时,如图4,共有2L条线段:行为提示:感受数学的魅力,人类离不开数学.发现数学的奥秘,是人类智慧的结晶.知识链接:同一种形状或不同形状的地砖,铺在地面上无空隙即可称为密铺.学生指导:两个不同形状的地砖的角(或多个角)铺成一个周角.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评分.展示目标:知识模块一展示重点在于让学生理解数学与我们的生活密不可分;知识模块二展示重点在于让学生知道我们的生产、生活、科学实验与研究等都离不开数学. (2)猜测:当在线段AB上加上〃个点(这〃个点不与点A、8重合)时,共有_ + _条线段.变例:观察下而一列数:2, 5, 10, x, 26, 37, 50, 65,…,根据规律,其中x所表示的数是1Z.分析:第二个数比第一个数大3,第三个数比第二个数大5,第六个数比第五个数大11,由此可知:x比10 大7, 26比x 大9,所以x必为(10+7)或(26—9).知识模块二人类离不开数学阅读教材P?〜P4,完成下面的内容.大千世界,无奇不有!大至宇宙,小至微粒,无不蕴涵着丰富的数学奥秘!如蜜蜂营造的蜂房,公园中用不同形状的图形铺设的绚丽多彩的地面……,数学奇妙吧?下面就让我们一起研究一些数学问题吧!范例:哪些形状的砖可以密铺地而?下图分别是用同样大小的正方形和正六边形的地砖铺成的,它们可以铺成平整、无空隙的地面.那么除了这两种形状的地砖外,还有哪些形状的地砖能够像上图那样铺满地面呢?解:三角形、长方形、平行四边形、菱形等.仿例:用同一种形状的地砖密铺地而,下列形状的地砖不能采用的是(C )A.正三角形B.正方形C.正五边形D.正六边形变例:用两种不同形状的地砖密铺地而,这样的两种地砖的形状可以是正三角形和正六边形(任举一例).交流展岳生成新知阈现捌剧1.各小组共同探讨''自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行展示.知识模块一数学伴我们成长知识模块二人类离不开数学检测反馈达成目标【当堂检测】见所赠光盘和学生用书:【课后检测】见学生用书.课后反思杳漏补缺1.收获:___________________________________________________________________________2.存在困惑:___________________________________________________________________________课题人人都能学会数学【学习目标】1.让学生体会数学与我们的生活密切相关;2.让学生从现实生活中抽象出点、线、面、体等图形,培养学生的观察能力、分析能力,感受学习数学的乐趣;3.在学习的过程中养成独立思考与合作交流的习惯.【学习重点】让学生感受数学伴随着我们的成长,我们的成长离不开数学.【学习难点】让学生树立学习数学的信心.教学环节指导行为堤岳:创设问题,情境导入,结合生活中的实际例子,充分调动学生的积极性,激发学生求知欲望.行为提示:让学生阅读教材,尝试完成'‘自学互研”的所有内容,并适时给学生提供帮助,率先做完的小组内互查,大部分学生完成后,进行小组交流.知识链接:1.数与式:认识、计算、解方程、解应用题;2.图形:图形的认识、图形的画法、图形的有关计算.椅景导人生成问我1.数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学.学好数学,要对数学有兴趣,要有刻苦钻研的精神,善于发现和提出问题,善于独立思考.2.思考并解决下列问题:(1)某地出租车收费标准为:起步价5元,3km后每千米1.2元,某人乘坐出租车5km,应付款7.4 元.(2)如图,阴影部分的面积相等的是(D )① ② ③ ④A.①与④B.①与③C.②与③D.①与②、③11学互研生成能力知识模块人人都能学会数学阅读教材巴〜P7,完成下面的内容.1.点动成—线线动成—面_,而动成—性_:而与面相交得到一线_,线与线相交得到—息2.三棱柱有—红个顶点,2条棱,一个而,它的侧面的形状都是—长方点它的底而是—两个形状相同的三角形3.如图,是6级台阶侧面的示意图,如果要在台阶上铺地毯,那么至少要买适合台阶宽度的地毯多少m?分析:要在台阶上铺地毯,实际上并不需要测出每一级台阶的长度,可以把图想象为由一根绳子围成的图形,将它拉成为一个长和宽分别为3.ln]和2m的长方形,所以台阶的总长就是:3.1+2=5.1(m).解:3.1+2=5.1(01).・••至少要买适合台阶宽度的地毯5.1m.归纳:(1)发展进一步获得的数学基础知识和基本技能:(2)体会数学知识间的联系,培养逻辑思维方式;(3)感受数学的价值,养成独立思考的学习习惯.做这一类题的技巧是:1.从已知中寻找突破口,发现变化的规律;2. 一般采用“从一般到特殊”的思维方式;3.掌握用“加、减、乘、除”的基本形式表达发现的规律.学生指导:解决寻找规律问题的方法是:观察第2个数(或图形)与前一个数(或图形)有什么联系、变化,类推下一个,由一般到特殊.学法指导:这些橘子的个数一定是3的倍数.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评分.展示目标:知识模块展示重点在于通过解决数学问题,让学生知道数学并不是那么难,只有通过自身的努力才能学好数学.范例:如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作:然后,将其中的一个正方形再剪成4个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形剪成4个小正方形,共得到10个小正方形,称为第三次操作:……根据以上操作,若要得到2017个小正方形,则需要操作的次数是§72,.分析:本题是规律类型的数学题,通过观察,我们容易发现,当操作第n(n为正整数)次时,共得到(3n+l)个小正方形,从而我们可以列一个关于n(以n为未知数)的方程,解出n的值即可.解:设操作n次可以得到2017个小正方形,根据题意得:3n+1=2017,解得:n=672.答:需要操作的次数是672.仿例:根据前而几个数的规律填空:(1)5, 8, 13, 21, 34, .55.;J 2 3 5 8 B (2),亨亍 * 1T _五_.分析:(1)规律:第1个数加上第2个数得到第3个数,第2个数加上第3个数得到第4个数,第3个数加上第4个数得到第5个数,第4个数加上第5个数得到第6个数…;(2)规律:前一个分数的分母是下一个分数的分子,前一个数的分子与分母的和是后一个分数的分母.变例:在学校体育课上,老师准备了一些橘子给同学们,小明非常勤快,帮老师数橘子,他7个7个地数,还余4个,5个5个地数,还余3个,3个3个地数,正好数完,则老师至少为同学们准备了四个橘子.交流展示生成新知1.各小组共同探讨''自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行展示.尿圉攫团知识模块人人都能学会数学检测反馈达成目标【当堂检测】见所赠光盘和学生用书:【课后检测】见学生用书.课后反思杳漏补缺1.收获: ___________________________________________________________________________2.存在困惑:___________________________________________________________________________。
数学伴我们成长人类离不开数学1教学目标知识与技能:初步认识到数学与现实世界的密切联系,懂得数学的价值,初步形成应用数学的意识.过程与方法:通过一系列数学在我们身边的图片和人类离不开数学的实例的相关图片,扩展学生的知识面和见解.情感态度与价值观:1.体会与他人合作,养成独立思考与合作交流的习惯.2.体会从古至今数学始终伴随着人类的进步与发展,增强学习数学的兴趣.教学重难点重点:体会数学伴随着人类的进步与发展,人类离不开数学.难点:如何有效地激发学生的学习兴趣和学习信心.教学过程一、情境导入让学生看课本图片,教师诵读文字部分:宇宙之大,粒子之微……大千世界,天上人间,无处不有数学的贡献.让我们走进数学世界,去领略一下数学的风采.(板书课题)二、学生自主学习1.数学伴我们成长出生—学前—小学,我们每天都在接触数学并不断学习它,相信吗?大家不妨举出一些我们身边用到数学的例子,看谁说的例子多.鼓励学生大胆交流,发表自己的见解,注意与同伴合作.在学生回忆、交流、讨论的基础上,归纳数学内容:数与代数、空间与图形、统计与概率.2.人类离不开数学教师展示蜂房图、食糖销售统计、上海东方明珠电视塔等图片,用录音解说(解说语参见课本,从第2页下面至第3页文字部分)让学生体验数学的应用,增强他们的求知欲.三、合作探究:数学应用举例一个数减去4,再除以2,然后加上3,再乘以2,最后得8,问这个数是多少?(学生自主完成,然后合作小组进行交流、互补)可用算术法或代数法解,答案是6.(可以使用多媒体课件)有人去甬江大桥下搞赌博游戏,几个围观者跃跃欲试.主持人给大家看,公文包里有5个乒乓球,其中两个球上写有大红“福”字,他吆喝着人们去摸“福”,如是一下子同时摸中这两只就能获奖.旁边贴有“海报”,上面写着:有奖摸球,摸一次2元,若同时摸中两个“福”字,奖金10元.摸中一个或都摸不中不得奖.同学们,你认为这场游戏公平吗?遇到这种场合,你会怎样处理?(给学生充分的思考时间,可以同桌交流,也可以小组交流讨论,让学生充分感受用自己的数学知识解决身边的数学应用)通过分析,发现摸球者获奖的可能性仅有10%,赢率微乎其微,接着老师拿出教具,请几位同学试验手气,果然均难以一下子摸到“双福”.所以在这一场不公平的游戏中,摸彩者摸到的不是福气,而是晦气.赌博有害,我们不仅不要参与,而且要用数学的眼光,来揭穿它骗人的本质.关于课本第3页的“密铺问题”.思考:①哪些基本图形可以密铺?②为什么正五边形不可以密铺?(通过观察思考,交流,得出较完整的答案.让学生充分发表自己的观点,认识和总结各种能铺满地面的地砖的形状及其特点,教学中可以让学生提出更多的实例.培养学生观察、表达、思考的能力和合作意识)四、课堂小结让学生谈一下本节课的收获是什么?(可让学生的参与度高一些,多提问几个学生)五、课后作业1.学校气象小组测得一周的气温并登记在下表:周平均气星期日一二三四五六温气温22 ℃22 ℃24 ℃25 ℃23 ℃?℃26 ℃24 ℃记录表中,星期五的气温是多少度?【解析】由平均数=总数÷个数,在平均气温已知的情况下,可求出这一周的气温总和,从而求出未知的气温.【答案】24×7-(22+22+24+25+23+26)=26 (℃).答:星期五的气温是26 ℃.2.你够精明吗?生活中有很多的时候需要你做出明智的选择.你能用数学知识来帮助你吗?比如某个同学要到商店里买一个茶壶和五个茶杯.现在有两个商店标价都是茶壶20元一个,茶杯4元一个.甲商店打出“8折优惠”,乙商店则打出“买一赠一”,即买一个茶壶送一个茶杯.聪明的你会选择哪一家呢( )A.甲B.乙C.甲、乙都一样D.无法判断【解析】我们先算到甲商店应付的钱:(20+4×5)×80%=40×0.8=32(元);再算出到乙商店应付的钱:20+4×4=20+16=36(元),答案很明显,到甲商店买合算.【答案】A板书设计一、情境导入二、学生自主学习三、合作探究:数学应用举例例1、例2、例3四、课堂小结五、课后作业。
数学伴我们成长
教学目标
知识与能力:结合具体例子,体会数学与我们的成长密切相关。
过程与方法:1.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
2.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。
通过对数学问题的自主探索,进一步体会数学学习促进了我们成长。
情感态度、价值观:激发学生学习数学的兴趣和积极性,发展了我们的思维。
重、难点解析
课时安排:1课时
教学过程
二、板书课题。
(板书:§1.1与数学交朋友 1.数学伴我们成长)
板书设计:
三、导学(合作交流,解决疑惑)
教学反思:本节课以学生的生长为线索,让学生按照生长足迹作为初中数学学习的第一节课,让学生感受到数学与自己生长紧密联系在一起,同时也让学生体会到学习的乐趣。
应注意开拓学生视野,发散思维。
本节教学不要给出过多的习题,要让学生发言对数学学习的看法,要面向全体学生,让不同程度的学生都能在学习过程中寻求乐趣,从而树立他们学好数学的自信心。
2。
七年级数学上册第1章走进数学世界1.1数学伴我们成长教学设计(无答案)(新版)华东师大版
【学习目标和重点、难点】
学习目标:
1、实地考察生活中应用数学的例子,体会数学与生活的密切联系
2、回顾小学数学知识,感受到数学学习促进了我们的成长
重点:掌握生活中的打折问题
难点: 幻方问题
【学习内容和学习过程】
一、自主导学:翻开课本预习第 2至4页,哪些例子能说明数学就在我们身边
_______
说一说你在小学都学到了哪些有用的数学知识呢?
二、合作探究:
(1)观察第2页的蜜蜂蜂房的图片,思考下列问题
①蜂房表面是由什么数学图形构成的?
②你所知道的能在平面上衔接紧密的平面图形还有哪些?
③蜜蜂选择形建巢的理由是什么呢?
(2)阅读课本第3页,认真观察图1.1
①它们分别是用同样大小的形和形铺成的。
②铺成后的地面有什么特征?
③你还能发现什么形状的地砖也能像这样铺满地面?
(3)分组讨论:阅读课本第4页“有奖销售”活动
①如果原价是100元,打九五折后的售价是元,若打X折后的售价是元
②在这次有奖销售中,顾客的中奖率如何计算?
③你会参加这次有奖销售活动吗,为什么?
三、拓展提升:翻开课本第8页,仔细阅读材料---幻方
(1)三阶幻方是指把1至9这9个数学分别填入一个3×3的正方形方格中,使
的,的,的3个数相加,其和都等于
(2)分组讨论:有哪些填法
四、课堂小结:谈谈你的收获和困惑
五、作业设计
1、一个长方形木框,在太阳照射下,影子不可能是()
A B C D
2、数学规律题
(1)4,16,36,64,,144 (2)1,1,2,3,5,8,,21
3、一商店把某种彩电按标价的八折出售,仍可获得20﹪利润,若该彩电每台进价为2010元,则每台彩电标价为多少元
4、小红的爸爸存入银行12000元,年利率是3.3﹪,则两年后可得利息多少元
4、某服装店出售甲、乙两件衣服,售价均为120元,其中甲种衣服盈利20﹪,乙种衣服亏本20﹪,问这两次买卖总体上是赚了还赔了,赚了或赔了多少钱?。