a+b=9,ab=20,
求
2 3
(-15a+3ab)+
1 5
(2ab-
10a)-4(ab+3b)的值.
解:原式=-10a+2ab+25ab-2a-4ab-12b =-12a-85ab-12b =-12(a+b)-85ab. 当a+b=9,ab=20时, 原式=-12×9-85×20=-108-32=-140.
原式去括号合并得到最简结果,然后把条件整体代入计算即 可求值.
变式训练 (1)已知a2+a=1,则2a2+2a+2020= 2022 . (2)已知a-b=-3,求5(a-b)-7a+7b+11的值.
解:因为a-b=-3, 所以原式=5(a-b)-7(a-b)+11 =-2(a-b)+11=-2×(-3)+11=17.
4. 先 化 简 , 再 求 值 :(x2-2x+1)-(-x2+4)-(x2+4x+3), 其 中 x2-6x2025=0.
解:原式=x2-2x+1+x2-4-x2-4x-3=x2-6x-6. 因为x2-6x-2025=0,所以x2-6x=2025, 所以当x2-6x=2025时,原式=2025-6=2019.
化简后,直接代入求值 例1 先化简,再求值:3x2y-[ 2xy2-2 (xy-32x2y) +xy] +3xy2, 其中x=-13,y=3.
解:原式=3x2y-(2xy2-2xy+3x2y+xy)+3xy2 =3x2y-2xy2+2xy-3x2y-xy+3xy2 =xy2+xy. 当x=-13,y=3时, 原式=-13×9-13×3=-3-1=-4.