流体流动阻力测定
- 格式:doc
- 大小:113.50 KB
- 文档页数:6
流体流动阻力的测定一、实验目的(1)熟悉测定流体流经直管的阻力损失的实验组织法及测定摩擦系数的工程意义。
(2)观察摩擦系数λ与雷诺数Re 之间的关系,学习双对数坐标纸的用法 (3)掌握流体流经管件时的局部阻力,并求出该管件的局部阻力。
二、实验原理流体在管内流动时,由于流体具有黏性,在流动时必须克服内摩擦力,因此,流体必须做功。
当流体呈湍流流动时,流体内部充满了大小漩涡,流体质点运动速度和方向都发生改变,质点间不断相互碰撞,引起流体质点动量交换,使其产生了湍动阻力,结果也会消耗流体能量,所以流体的黏性和流体的漩涡产生了流体流动的阻力。
流体在管内流动的阻力的计算公式表示为22u d l h fλ=或2212u d l p p p ρλ=-=∆式中:h 为流体通过直管的阻力(J/kg );△p 为流体通过直管的压力降(N/m 2);p 1,p 2为直管上下游界面流动的压力(N/m 2);l 为管道长(m );d 为管道直径(内径)(m );ρ为流体密度(kg/m 3);u 为流体平均流速(m/s );λ为摩擦系数,无因次。
摩擦系数λ是一个受多种因素影响的变量,其规律与流体流动类型密切相关。
当流体在管内作层流流动时,根据力学基本原理,流体流动的推动力(由于压力产生)等于流体内部摩擦力(由于黏度产生),从理论上可以推得λ的计算式为Re64=λ 当流体在管内作湍流流动时,由于流动情况比层流复杂得多,湍流时的λ还不能完全由理论分析建立摩擦系数关系式。
湍流的摩擦系数计算式是在研究分析阻力产生的各种因素的基础上,借助因次分析方法,将诸多因素的影响归并为准数关系,最后得出如下结论⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=d d du k tεϕεμρλRe,2 由此可见,λ为Re 数和管壁相对粗糙度ε/d 的函数,其函数的具体关系通过实验确定。
局部阻力通常有两种表达方式,即当量长度法和阻力系数法。
当量长度法:流体流过某管件时因局部阻力造成的能量损失相当于流体流过与其相同管径的若干米长度的直管阻力损失,用符号l e 来表示,则22u d l l h e f+=∑λ阻力系数法:流体通过某一管件的阻力损失用流体在管路中的动能系数来表示22u h pf ζρ==∆三、实验装置本实验装置如下图,由直管、管件、控制阀、涡轮流量计、供水泵和水箱构成。
流体流动阻力的测定实验一、实验内容1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ, 并确定λ和Re 之间的关系。
2.测定流体通过阀门时的局部阻力系数。
二、实验目的1. 解测定流体流动阻力摩擦系数的工程定义, 掌握测定流体阻力的实验组织方法。
2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力, 确定直管阻力摩擦系数与雷诺数之间的关系。
3. 熟悉压差计和流量计的使用方法。
4. 认识组成管路系统的各部件、阀门并了解其作用。
三、实验原理流体通过由直管和阀门组成的管路系统时, 由于粘性剪应力和涡流应力的存在, 要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力 流体流动过程是一个多参数过程, 。
由因次分析法, 从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示:⎥⎦⎤⎢⎣⎡ξμρ=ρ∆d ,du ,d l F u P 2 λ=Ψ(Re, ε/d ) 雷诺准数μρdue =R ;22u d l Ph f ⋅⋅=∆=λρ只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。
g P Hg )R(ρρ-=∆易知, 直管摩擦系数λ仅与Re 和 有关。
因此, 只要在实验室规模的装置上, 用水做实验物系, 进行试验, 确定λ与Re 和 的关系, 然后计算画图即可。
2.局部阻力局部阻力可以用当量长度法或局部阻力系数法来表示, 本实验用局部阻力系数法来表示, 即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数来表示, 用公式表示:一般情况下, 由于管件和阀门的材料及加工精度不完全相同, 每一制造厂及每一批产品的阻力系数是不尽相同的。
四、实验设计由和知, 当实验装置确定后, 只要改变管路中流体流速u及流量V, 测定相应的直管阻力压差ΔP1和局部阻力压差ΔP2, 就能通过计算得到一系列的λ和ξ的值以及相应的Re的值,【原始数据】在实验中, 我们要测的原始数据有流量V, 用来计算直管阻力压差ΔP1和局部阻力压差ΔP2的U型压差计的左右两边水银柱高度, 流体的温度t(据此确定ρ和μ), 还有管路的直径d和直管长度l。
流体流动阻力的测定一、引言流体力学是物理学的一个分支,主要研究流体的运动规律和性质。
在工程领域中,流体力学是非常重要的一门学科,涉及到许多领域,如航空、船舶、汽车、建筑等。
在这些领域中,流体的运动特性对于设备的设计和性能有着重要影响。
而测定流体流动阻力是了解这些运动特性的基础。
二、实验原理1. 流体阻力公式当一个物体在流体中运动时,会受到来自流体的阻力。
根据牛顿第二定律,物体所受合外力等于其质量乘以加速度。
因此,在水平方向上运动的物体所受合外力为:F = ma其中F为合外力,m为物体质量,a为加速度。
当物体在水平方向上运动时,在没有其他外力作用下,其所受合外力即为来自水对其作用的阻力Ff。
因此:Ff = ma将牛顿第二定律代入上式可得:Ff = 1/2 * ρ * v^2 * S * Cd其中ρ为流体密度,v为物体相对于流体的速度(即物体速度减去流体速度),S为物体所受阻力的面积,Cd为阻力系数。
2. 流体阻力的测定在实验中,我们可以通过测量物体在流体中运动时所受到的阻力来计算出阻力系数Cd。
一般来说,测量流体阻力有两种方法:直接法和间接法。
直接法是指将物体放置在流体中,然后通过测量所需施加的力来计算出流体阻力。
这种方法通常需要使用特殊设备,如浮子式流量计、翼型试验台等。
间接法是指通过测量物体在流体中运动时所需施加的外部力来计算出流体阻力。
这种方法通常需要使用天平或重量计等设备来测量物体的重量,并结合运动学公式来计算物体所受的加速度和速度等参数。
三、实验步骤1. 实验器材准备准备好天平或重量计、滑轮、绳子、小球等实验器材,并将它们固定在实验台上。
2. 实验样本制备制作一个小球样本,并将其质量称重记录下来。
3. 流动介质准备将水注入实验槽中,并将水温调节到室温。
4. 实验数据测量将小球样本用绳子系在滑轮上,并将滑轮固定在实验台上。
然后,拉动小球样本,使其开始运动,并记录下所需施加的力和小球样本的运动时间。
流体流动阻⼒的测定⼀、实验⽬的1、掌握层流流体经直路和管件时阻⼒损失的测定⽅法。
通过实验了解流体流动中能量损失的变化规律。
2、测定直管摩擦系数λ与雷诺准数Re 的关系。
3、测定流体流经闸阀等管件时的局部阻⼒系数ξ。
4、学会压差计和流量计的使⽤⽅法。
5、观察组成管路的各种管件、阀件,并了解其作⽤。
⼆、实验原理1、直管摩擦系数λ与雷诺数Re 的测定:流体在管道内流动时,由于流体的粘性作⽤和涡流的影响会产⽣阻⼒。
流体在直管内流动阻⼒的⼤⼩与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:h f =ρfP ?=22u d l λ(1-1)λ=22u P l d fρ (1-2) Re =µρu d (1-3)式中:-d 管径,m ;-?f P 直管阻⼒引起的压强降,Pa ;-l 管长,m ;-u 流速,m/s ;-ρ流体的密度,kg/m 3; -µ流体的粘度,N ·s/m 2。
直管摩擦系数λ与雷诺数Re 之间有⼀定的关系,这个关系⼀般⽤曲线来表⽰。
在实验装置中,直管段管长l 和管径d 都已固定。
若⽔温⼀定,则⽔的密度ρ和粘度µ也是定值。
所以本实验实质上是测定直管段流体阻⼒引起的压强降△P f 与流速u (流量V)之间的关系。
根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,⽤式(1-3)计算对应的Re ,从⽽整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。
2、局部阻⼒系数ζ的测定22'u P h ff ζρ=?=' (1-4)2'2uP f ?????? ?=ρζ (1-5) 式中:-ζ局部阻⼒系数,⽆因次;-?'f P 局部阻⼒引起的压强降,Pa ;-'f h 局部阻⼒引起的能量损失,J/kg 。
图1-1 局部阻⼒测量取压⼝布置图局部阻⼒引起的压强降'f P ? 可⽤下⾯的⽅法测量:在⼀条各处直径相等的直管段上,安装待测局部阻⼒的阀门,在其上、下游开两对测压⼝a-a'和b-b',见图1-1,使ab =bc ;a'b'=b'c'则:△P f ,a b =△P f ,bc ;△P f ,a 'b '= △P f ,b 'c '在a-a'之间列⽅程式: P a -P a '=2△P f ,a b +2△P f ,a 'b '+△P 'f (1-6) 在b-b'之间列⽅程式: P b -P b '=△P f,bc +△P f ,b 'c '+△P 'f=△P f ,a b +△P f ,a 'b '+△P 'f (1-7) 联⽴式(1-6)和(1-7),则:'f P ?=2(P b -P b ')-(P a -P a ')为了实验⽅便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。
实验三 流体流动阻力测定实验一.实验目的(1) 辨别组成管路的各种管件、阀门,并了解其作用。
(2)测定流体在圆形直管内流动时摩擦系数λ与雷诺数Re 的关系。
(3)测定流体流经闸阀时的局部阻力系数ξ。
二.基本原理直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。
流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为:ρρff P P P h ∆=-=21 (1)又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式)22u d l h fP f λρ==∆ (2)整理(1)(2)两式得22u P l d f∆⋅⋅=ρλ (3) μρ⋅⋅=u d Re (4)式中:-d 管径,m ;-∆f P直管阻力引起的压强降,Pa;l管长,m;-u流速,m / s;-ρ流体的密度,kg / m3;-μ流体的粘度,N·s / m2。
-在实验装置中,直管段管长l和管径d都已固定。
若水温一定,则水的密度ρ和粘度μ也是定值。
所以本实验实质上是测定直管段流体阻力引起的压强降△P f与流速u(流量V)之间的关系。
根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。
三.实验装置与参数1、实验装置实验流程示意图见图1。
实验装置由贮水槽、离心泵、变频器、电动调节阀、涡轮流量计、压力表、差压变送器、不同材质的水管、倒U型压差计(图中未画出)等组成。
装置上有三段并联的水平直管,自上而下分别用于测定局部阻力、光滑管直管阻力和粗糙管直管阻力。
测定局部阻力时使用不锈钢管,中间装有待测管件(闸阀);测定光滑管直管阻力时,同样使用内壁光滑的不锈钢管,而测定粗糙管直管阻力时,采用管道内壁较粗糙的镀锌管。
水泵2将储水槽1中的水抽出,送入实验系统,首先经玻璃转子流量计15、16测量流量,然后送入被测直管段测量流体在光滑管或粗糙管的流动阻力,或经10测量局部阻力后回到储水槽,水循环使用。
实验一流体流动阻力的测定一、实验目的1、掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。
2、测定直管摩擦系数大与雷诺准数Re的关系,验证在一般湍流区内为与Re的关系曲线。
3、测定流体流经管件(阀门)时的局部阻力系数季4、识辨组成管路的各种管件、阀门,并了解其作用。
二、实验装置实验装置如下图所示:11+J1、水箱2、离心泵3、压差传感器4、温度计5、涡轮流量计6、流量计7、转子流量计8、转子流量计9、压差传感器10、压差传感器11、压差传感器12、粗糙管实验段13、光滑管实验段14、层流管实验段15、压差传感器16、压差传感器17、阐阀18、截止阀图1实验装置流程图装置参数:三、实验原理1、直管阻力摩擦系数大的测定流体在水平等径直管中稳定流动时,阻力损失为:. 2 d Ap九二- -fP lu 2du pRe = 一N采用涡轮流量计测流量VV u =900冗d 2用压差传感器测量流体流经直管的压力降A P f o根据实验装置结构参数1、d,流体温度T (查流体物性p、四),及实验时测定的流量V、压力降APf,求取Re和大,再将Re和大标绘在双对数坐标图上。
2、局部阻力系数Z的测定流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,这种方法称为阻力倍数法。
即:故0= 2A L ⑹P U 2根据连接管件或阀门两端管径中小管的直径d,流体温度T (查流体物性p、四),及实验时测定的流量V、压力降APf,,通过式⑸或⑹,求取管件(阀门)的局部阻力系数Z。
四、实验步骤1、开启仪表柜上的总电源、仪表电源开关。
2、首先对水泵进行灌水,然后关闭出口阀,启动水泵,待电机转动平稳后,把出口阀缓缓开到最大。
3、实验从做大流量开始做起,最小流量应控制在1.5m3/h。
由于实验数据处理时使用的是双对数坐标,所以实验时每次流量变化取一递减的等比数列这样得到的数据点就会均匀分布,时实验结果更具准确性。
流体流动阻力的测定一、实验流程实验装置流程如图1所示,装置图如图2所示。
压差的测量采用压差传感器或U 型压差计,流量的测量采用涡轮流量计。
直管两测压点之间的距离为3m ,光滑管内径为28 mm ,粗糙管内径为26.6 mm ,局部阻力管段内径为32mm 。
图1流体流动阻力测定实验流程图图2流体流动阻力测定实验装置图二、实验内容(1)测定流体在不同材质和d 的直管中流动时的阻力摩擦系数λ,在双对数坐标纸绘出λ和R e 之间的关系;(2)测定流体通过阀门或90º弯头时的局部阻力系数。
三、实验步骤1. 关闭控制阀,打开光滑管管路上2 个压差变送器的平衡阀,打开光滑管引压阀、光滑管切换阀、弯头引压阀,关闭其它所有阀,打开引水阀,灌泵,放气,然后关闭。
2. 启动泵,系统排气。
(1)总管排气:先将控制阀开至最大然后再关闭,重复三次,目的为了使总管中的大部分气体被排走,然后打开总管排气阀,开至最大后再关闭,重复三遍。
(2)引压管排气:依次对4个放气阀进行排气,将阀门开、关重复三次。
(3)压差计排气:关闭2个平衡阀,重复上述(2)步骤。
3. 将控制阀开至最大,读取流量显示仪读数Q max,然后关至压差显示值约为0.2Kpa~0.3Kpa时,再读取流量显示仪读数Q min,在Q min和Q max二个读数之间布15个点,读取数据。
4.关闭光滑管切换阀。
打开粗糙管管路上2 个压差变送器的平衡阀,打开粗糙管引压阀、粗糙管切换阀、阀门引压阀。
5.粗糙管系统排气步骤同2的(2)、(3)。
6.粗糙管系统流动阻力的测定同光滑管,重复步骤3。
7.实验结束后,关闭控制阀。
离心泵特性曲线的测定一、实验流程实验流程如图3所示,装置图如图4所示,离心泵进、出口管内径分别为40mm、32mm。
图3 离心泵特性曲线测定实验流程图图4 离心泵特性曲线测定装置图二、实验内容用作图法处理实验数据,绘制离心泵特性曲线。
三、实验步骤1. 打开压差传感器平衡阀,关闭离心泵调节阀,打开引水阀,反复开、关放气阀,气体被排尽后,关闭放气阀和引水阀。
实验一流体流动阻力的测定一、实验目的⒈了解测定流体直管或管件时的阻力损失方法,确定摩擦系数λ与流体Re的关系、局部阻力系数ξ。
⒉学会压差计和流量计的使用方法。
⒊识别管路中各个管件、阀门,并了解其作用。
二、实验内容1.测定流体流过直管的阻力,确定摩擦系数λ与雷诺数Re的关系;2.测定阀门、管件的局部阻力系数ζ。
三、实验原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能。
管路是由直管和管件(如三通、肘管及大小弯头等)、阀件等组成。
流体在直管中流动造成的机械能损失称直管阻力。
而在通过管件、阀件等局部障碍时因流动方向和流动截面的突然改变所造成的机械能损失称局部阻力。
流体在水平管道中作定常流动时,由截面1流动到截面2的阻力损失表现在静压的降低,即所以流体流过直管时的能量损失[J/kg]λ=2dΔP1/ρlu2流体流过阀门或管件因局部阻力引起的能量损失[J/kg]ζ=2ΔP2/ρu2式中λ——摩擦系数; l ——管长,m; d ——管内径,m; u ——管内流速,m/s;ζ——阻力系数;ρ——流体密度,kg/m3; Δp1,Δp2——可由U形管压差计中的读数R值求得;Δp=(ρ指-ρ)gR ρ指——指示液的密度,kg/m3; g ——重力加速度,9.81m/s2四、实验装置流体流动测定示意图1—真空表 2—压力表 3—测压阀 4—控制阀5—涡轮流量计 6—平衡阀 7—放气阀 8—U形管压差计五、操作方法⒈选择进行实验的管路,打开其两端的阀门,同时关闭其余管路两端的阀门。
⒉打开各U形管压差计上的平衡阀及相应的测压阀。
⒊开启流量指示积算仪。
⒋转动泵轴,看其松紧是否正常。
⒌打开管路未端出口阀,关闭泵出口阀。
⒍引水灌泵。
7.开启泵的电源开关,若真空表和压力表上有读数,说明泵的转动正常,此时就可以送液。
(注意在泵出口阀关阀的情况下,泵转动不可过久,以防其发热损坏)。
8.逐渐打开出口阀,至流量指示积算仪上的指针达到满量程为止,然后关闭管路末端出口阀。
管路中流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能。
流体在直管中流动造成机械能损失称为直管阻力损失,用Hp 表示。
而流体流经阀门管件等的局部障碍所造成的机械损失, 称为局部阻力损失,用He 表示。
直管阻力损失,表现在水平均匀管路中两截面的压强降低,即ρ2
1p p h f -=。
因为影响阻力损失的因素很多,即),,,,,,(ερμu l d f h f
= 所以,我们采用因次分析指导下的实验研究方法。
根据因次分析法,将
),,,,,(ερμu l d f p h f =∆=组合成无因次式: ⎪⎪⎭⎫ ⎝⎛=∆d d l du u P εμ
ρϕρ,,2 (1) 变换(1)式, 得 ∆P l d d u ρϕε=⎛⎝ ⎫⎭⎪⋅Re,2
2
(2) 由(2)式可知 h P l d u f ==⋅⋅∆ρλ22
(3) (3)式中的λ, 即为直管摩擦系数, 它可表示成
λϕε=⎛⎝ ⎫⎭
⎪Re,d 。
它只是雷诺数及管壁相对粗糙度的函数,确定它们之间的关系,只要用水作物系,在实验室规模的装置中进行有限量的实验即可得知, 知道了λ的值,就可计算任何物系的流体在管道中的阻力损失,使实验结果具有普遍意义。
局部阻力损失,用局部阻力系数法表示,即用动能系数来表示,可写成
he u =ξ2
2。
三、流程示意图
四、操作要点
(一)、排气
1.总管路排气
关闭出口控制阀,压差计平衡阀、局部阻力闸阀全开,启动泵。
全开出口控制阀,让水流动10~15秒钟后再将其关闭,再打开总管路排气考克,让水排出10~15秒后关闭排气考克。
2.测压导管排气
打开压差计的平衡阀,将“U”型计上方两个排气的考克轮流“开启”、“关闭”数次。
3.压差计排气
关闭压差计上方的平衡阀,将“U”型计上方的两个排气考克轮流“开启”、“关闭”数次。
注意不能让水银冲出,排气时要特别小心。
(二)、局部阀开度的调节
排气工作完成后,把全开着的闸阀(测局部阻力)逐渐关闭,记录其旋转的圈数。
再逐渐将闸阀旋开,估计压差计水银不会冲出时, 打开出口控制阀至最大,再逐渐开大闸阀,直至压差计水银所显示的直管压降和局部压降大约相等为止。
记下开了几圈,估算出阀门的开度。
(三)测试
上述步骤完成,然后依次从大到小调节流量并测得相应的涡轮流量计“转速”、“直管阻力压差”及“局部阻力压差”。
在安排测试点时,大流量稀一些,小流量密一些。
四、原始数据记录
Ⅰ号设备:
(一)、设备参数(Ⅰ)
1.蜗轮流量变送器编号:
2.蜗轮流量变送器仪表常数:
3.管道材质: 镀锌白铁管、
(二)原始数据记录(局部阻力:闸阀开度=4/9)
1.常数记录
管长L1: 2m;管径:d1=20.5mm;d2=32.5mm;水温:℃;
2.实验记录
转速表读数直管压差(kpa) 局部压差(闸阀)(kpa) (脉冲/秒) 左右左右
五、数据处理
为了简化计算,可采用常数归纳法,将计算式中不变的物理量合并成计算常数.整理成下述计算式.
式中:A、B、C”为归纳的计算常数.
将处理后的数据填入数据处理表中.依表中数据在双对数坐标纸上绘制λ-Re图
六、实验报告的主要内容
(1)将实验数据整理成λ-Re数据表.在双对数坐标纸上绘制λ-Re曲线.
(2)确定阀门的阻力系数
七、思考题
(1)为了确定λ-Re的函数关系要测定哪些数据?宜选用什么仪器仪表来测定?如何处理数据?
(2)为什么要进行排气操作?如何排气?为什么操作失误
可能将U形管中的水银冲走?
(3)不同管径、不同水温下测定的λ-Re数据能否关联到
一条曲线上,为什么?
(4)以水为工作流体测定的λ-Re曲线能否用于计算空气在管内的流动阻力,为什么?。