材料力学正应力计算
- 格式:ppt
- 大小:1.69 MB
- 文档页数:45
弯曲正应力计算公式推导过程在我们学习材料力学的时候,有一个非常重要的知识点,那就是弯曲正应力的计算公式推导过程。
这可是个相当关键的内容,就像一把神奇的钥匙,能帮我们打开理解很多结构力学问题的大门。
咱们先来说说弯曲的概念。
想象一下一根长长的木条,你在中间给它施加一个力,这根木条是不是就会弯下去啦?这就是简单的弯曲现象。
那弯曲正应力是怎么回事呢?其实就是在弯曲的时候,材料内部产生的应力。
比如说一根钢梁,它在承受重物的时候会弯曲,这时候钢梁内部各个点就会有不同大小的应力。
咱们来推导这个公式。
先从一个简单的梁的弯曲模型开始。
假设这根梁是等截面的,而且材料是均匀的。
我们考虑梁的一个微小的横截面,就像切蛋糕一样切一小片。
在这一小片上,有一些力在作用着。
想象一下,梁上面的纤维被拉长,下面的纤维被压缩。
而在中间有一个层面,这个层面既不被拉长也不被压缩,我们把它叫做中性层。
中性层就像是梁的“对称轴”。
从中性层到梁的上表面或者下表面的距离,我们叫做 y 。
接下来,咱们得引入一个重要的概念——弯矩 M 。
弯矩就像是让梁弯曲的那个“大力士”。
我们假设梁的横截面上的应力分布是和到中性层的距离y 成正比的。
那应力σ 就可以表示为σ = Ey / ρ ,这里的 E 是材料的弹性模量,ρ 是梁弯曲时的曲率半径。
但是我们更常用的是用弯矩 M 来表示应力。
经过一系列的推导和计算(这里的数学过程就不详细展开啦,不然脑袋都要晕啦),最终我们得到弯曲正应力的计算公式:σ = My / I ,其中 I 是截面的惯性矩。
我还记得有一次,我在工厂里看到工人师傅在安装钢梁。
他们非常小心地计算着钢梁的承载能力,用的就是弯曲正应力的公式。
我在旁边看着,心里就在想,这些看似枯燥的公式,在实际生活中是多么的重要啊!如果计算错了,钢梁可能就承受不住重量,会出大问题的。
总之,弯曲正应力的计算公式虽然推导过程有点复杂,但是只要我们认真理解,掌握其中的关键概念和原理,就能运用它解决很多实际问题。
第一章 绪论和基本概念应力(全应力):2P 正应力:σ 切应力:τ 222τσ+=P线应变:l l dx du //x ∆==ε 切应变:角度的改变量α只受单向应力或纯剪的单元体:胡克:εσ⋅=E 剪切胡克:r G ⋅=τ ()E G =+ν12 第二章 杆件的内力分析 轴力N F :拉力为正扭矩T :右手螺旋,矢量方向与截面外法线方向一致为正 剪力S F :顺时针方向转动为正外力偶矩:()m N N P ·/9549m = ()m N N P ·/7024m = (K N /马力) 第三章 截面图形的几何性质 静矩:⎰=Ax ydA S 若C 为形心[质心]:A S XC/y =组合截面图形形心坐标计算:∑∑===ni i ni cii C A y A y 11/惯性矩:⎰=Ax dA y I 2惯性积:⎰=Axy xydA I 包括主轴在内的任意一对正角坐标0=xy I对O 点的极惯性矩:()y x AAP I I dA y x dA I +=+==⎰⎰222ρ 实心圆:32/224d I I I P y x π=== 圆环:()64/-12244απD I I I P y x === D d /=α平行四边/三角形:12/3bh I x =平行移轴公式:A b I I xc x ⋅+= A ab I I xcyc xy ⋅+= 转轴公式(逆转α):()()αα2s i n 2/2c o s2/1xy y x y x x I I I I I I --++=()()αα2sin 2/2cos 2/1xy y x y x y I I I I I I +--+= ()αα2cos 2sin 11xy y x y x I I I I +-= 求主轴:000=y x I ()y x xy I I I --=/22tan 0α()[]2//2a r c t a n 0y x xy I I I --=α主惯性矩:()22min max 00x 4212xy y xy x y I I II I I I I I +-±+==第四章 杆件的应力与强度计算斜面上的正应力:ασσα2cos = 切应力:2/2sin αστα=许用应力:脆性材料[]b b n /σσ= 塑性材料:[]s s n /σσ=或[]s n /5.0σσ= 拉压杆强度条件:[]σσ≤=A F N /max max 校核强度:[]()[]%5%100/max ≤⨯-σσσ 剪切强度条件:[]ττ≤=s A F /s 挤压强度条件:[]bs bs bs A F σσ≤=/bs圆轴扭转切应力:p I T /ρτρ⋅= []ττ≤=⋅=p p W T I R T //m a x 梁的弯曲:中性层曲率:()z EI M //1=ρ 等直梁在弯曲时的正应力:z I M /y =σz z W M I M //y m a x m a x ==σ矩形截面梁的弯曲切应力:()()z s z z s I y h F bI S F 2/4//22*-==τ在中性轴处:()A F bh F s s 2/32/3max ==τ 最大切应力均在中性轴上工字型截面梁:腹板:()d I S F z z s /*=τ 翼缘:()δτz z s I S F /*1=圆形截面:A F s 3/4max =τ 薄壁环形截面:A F s /2max =τ切应力强度条件:[][]ττ≤=d I S F z z s /*max max max 理想设计:[][]c t c t σσσσ//max max = 许用拉应力:[]t σ 许用压应力:[]c σ 两垂直平面内弯曲组合截面梁:z N M N I y M A F //max max +=+=σσσ偏心压缩(拉伸):截面上任意点:22max /-/-/-z F y F M N i y Fy i z Fz A F =+=σσσ2y y Ai I = 0=σ时中性轴截距:F y y y i a /2-=第五章 杆件的变形与刚度计算轴向拉(压)杆的变形:l l /∆=ε b b /'∆=ε νεε-=' ∑===∆ni ii i Ni N A E lF EA l F l 1圆轴扭转变形:()P GI Tl /=ϕ [在弹性范围之内]刚度条件:()[]rad GI l T P '/max 'max ϕϕ≤= ()[]m GI l T P /'/180max 'max ︒≤⋅⋅=ϕπϕ梁的弯曲变形:挠度:w ()x M ''=E I w θEI EIw =' ()⎰⎰++=D Cx dxdy x M EIw支承处:0=w 悬梁臂:0=w ,0=θ 连接处:21w w =,21θθ= 梁的刚度条件:[]l w l w //max ≤ []w w ≤max []θθ≤m a x第六章 应力状态分析 任意斜截面上的应力:()()ατασσσσσα2sin 2/2cos 2/xy y x y x--++=()ατασστα2cos 2/2sin xy y x +-=αασσσσ-+=︒+y x 90 ααττ-=︒+90应力圆:22min max 22xy yx y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+= y x xy σστα--=22tan 0三向应力状态:()2/31max σστ-=应力应变关系:()E /90︒+-=ααανσσε ()E /9090ααανσσε-=︒+︒+ G /αβαβτγ=第七章 强度理论及其应用 强度理论:断裂失效:11r σσ=()3212r σσνσσ+-=屈服失效:313r σσσ-= ()()()[]2/2132322214r σσσσσσσ-+-+-=轴向拉压弯扭组合变形:[]στσσ≤+=223r 4[]στσσ≤+=224r 3仅圆轴弯扭:[]σσ≤+=Z W T M /223r []σσ≤+=Z W T M /5.70224r ,Z P W W 2=薄壁圆筒强度:横截面上的正应力:()24/'σσ==t PD 纵截面上的正应力:()12/''σσ==t PD 03=σ第八章 压杆稳定临界应力:欧拉公式:()()222222cr /λπμπμπσEi l E A l EI A F cr ==== A I i /= 利用欧拉公式前提条件:P P E σπλλ/2=≥不满足时用经验公式:λσb a -=cr211cr λσb a -=压杆的稳定性计算:安全因素法:st cr cr n F F n ≥==σσ//折剪因素法:[][]st cr st n A F //σσσϕσ==≤= 第九章 能量方法杆件应变能:轴向拉伸或压缩:()⎰==∆==l N N dx EAx F EA lF l F w V 22222ε扭转:()⎰====l P P dx GI x T GI l T T w V 22222ϕε弯曲:()⎰====l dx EIx M EI l m m w V 22222θε 组合变形: 2/2/2/θϕεεm T l F dV V l++∆==⎰。
1、钢受均布荷载(1)工字钢力学正应力计算:根据材料力学正应力计算公式:max M maxW,其中:12#矿用工字钢的许用应力510 MPa12#矿用工字钢抗弯截面W系数为 144.5 cm 3最大弯矩 M max0.125ql 2q为顶板作用在工字钢上的压力工字钢长度 l 按4米计算得出: 5101060.125q 462,144.510510106144.510 636847.5Nq0.12542(2)工字钢最大弯曲下沉量计算:根据工字钢挠度计算公式:max5ql 4384EI其中:q已计算得出为工字钢长度 l 按4米计算弹性模量 E=206GPa 12#工字钢惯性矩为 867.1cm4得出:max536847.5440.068206109867.110 83842、工字钢受集中荷载(1)工字钢力学正应力计算:根据材料力学正应力计算公式:max M maxW,其中:12#矿用工字钢的许用应力510 MPa12#矿用工字钢抗弯截面W系数为 144.5 cm 3最大弯矩 M max0.25Fl 2F为顶板作用在工字钢上的压力工字钢长度 l 按4米计算得出: 5101060.25F 462,144.510510106144.5106F0.254218423 .75N(2)工字钢最大弯曲下沉量计算:根据工字钢挠度计算公式:Fl 3max48EI其中:q已计算得出为工字钢长度 l 按4米计算弹性模量 E=206GPa 12#工字钢惯性矩为 867.1cm4得出:max18423 .75430.001320610 9867.110 848。
材料⼒学公式⼤全材料⼒学常⽤公式1.外⼒偶矩计算公式(P功率,n转速)2.弯矩、剪⼒和荷载集度之间的关系式3.轴向拉压杆横截⾯上正应⼒的计算公式(杆件横截⾯轴⼒F N,横截⾯⾯积A,拉应⼒为正)4.轴向拉压杆斜截⾯上的正应⼒与切应⼒计算公式(夹⾓a 从x 轴正⽅向逆时针转⾄外法线的⽅位⾓为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松⽐8.胡克定律9.受多个⼒作⽤的杆件纵向变形计算公式?10.承受轴向分布⼒或变截⾯的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许⽤应⼒,脆性材料,塑性材料13.延伸率14.截⾯收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松⽐和切变模量G之间关系式17.圆截⾯对圆⼼的极惯性矩(a)实⼼圆(b)空⼼圆18.圆轴扭转时横截⾯上任⼀点切应⼒计算公式(扭矩T,所求点到圆⼼距离r)19.圆截⾯周边各点处最⼤切应⼒计算公式20.扭转截⾯系数,(a)实⼼圆(b)空⼼圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应⼒计算公式22.圆轴扭转⾓与扭矩T、杆长l、扭转刚度GH p的关系式23.同⼀材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截⾯和纵截⾯上的应⼒计算公式,28.平⾯应⼒状态下斜截⾯应⼒的⼀般公式,29.平⾯应⼒状态的三个主应⼒,,30.主平⾯⽅位的计算公式31.⾯内最⼤切应⼒32.受扭圆轴表⾯某点的三个主应⼒,,33.三向应⼒状态最⼤与最⼩正应⼒ ,34.三向应⼒状态最⼤切应⼒35.⼴义胡克定律36.四种强度理论的相当应⼒37.⼀种常见的应⼒状态的强度条件,38.组合图形的形⼼坐标计算公式,39.任意截⾯图形对⼀点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截⾯图形对轴z和轴y的惯性半径? ,41.平⾏移轴公式(形⼼轴z c与平⾏轴z1的距离为a,图形⾯积为A)42.纯弯曲梁的正应⼒计算公式43.横⼒弯曲最⼤正应⼒计算公式44.矩形、圆形、空⼼圆形的弯曲截⾯系数? ,,45.⼏种常见截⾯的最⼤弯曲切应⼒计算公式(为中性轴⼀侧的横截⾯对中性轴z的静矩,b为横截⾯在中性轴处的宽度)46.矩形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处47.⼯字形截⾯梁腹板上的弯曲切应⼒近似公式48.轧制⼯字钢梁最⼤弯曲切应⼒计算公式49.圆形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处50.圆环形薄壁截⾯梁最⼤弯曲切应⼒发⽣在中性轴处51.弯曲正应⼒强度条件52.⼏种常见截⾯梁的弯曲切应⼒强度条件53.弯曲梁危险点上既有正应⼒σ⼜有切应⼒τ作⽤时的强度条件或,54.梁的挠曲线近似微分⽅程55.梁的转⾓⽅程56.梁的挠曲线⽅程?57.轴向荷载与横向均布荷载联合作⽤时杆件截⾯底部边缘和顶部边缘处的正应⼒计算公式58.偏⼼拉伸(压缩)59.弯扭组合变形时圆截⾯杆按第三和第四强度理论建⽴的强度条件表达式,60.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时,合成弯矩为61.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时强度计算公式62.63.弯拉扭或弯压扭组合作⽤时强度计算公式64.剪切实⽤计算的强度条件65.挤压实⽤计算的强度条件66.等截⾯细长压杆在四种杆端约束情况下的临界⼒计算公式67.压杆的约束条件:(a)两端铰⽀µ=l(b)⼀端固定、⼀端⾃由µ=2(c)⼀端固定、⼀端铰⽀µ=(d)两端固定µ=68. 压杆的长细⽐或柔度计算公式,69. 细长压杆临界应⼒的欧拉公式70. 欧拉公式的适⽤范围传动轴所受的外⼒偶矩通常不是直接给出,⽽是根据轴的转速n 与传递的功率P 来计算。
材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法22cm/kgfm/kgf、工程单位制:线应变单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。
材料力学应力材料力学是研究材料在外力作用下的力学性能和变形规律的学科,而应力则是材料受力时内部分子间的相互作用所产生的结果。
在材料力学中,应力是一个非常重要的概念,它直接影响着材料的强度、变形和破坏行为。
因此,对于应力的理解和分析对于工程材料的设计、制造和使用具有重要意义。
首先,我们来看一下应力的定义。
应力是单位面积上的力,它是描述材料内部受力状态的物理量。
在工程力学中,通常将应力分为正应力和剪应力两种。
正应力是垂直于截面的力对截面积的比值,而剪应力则是平行于截面的力对截面积的比值。
正应力可以进一步分为拉应力和压应力,它们分别表示材料在拉伸和压缩状态下的受力情况。
接下来,我们需要了解应力的计算方法。
对于均匀材料,其应力可以通过受力分析和应力分布来计算。
在静力学中,我们可以利用受力平衡方程来计算材料受力的情况,然后根据材料的几何形状和受力情况来确定应力的分布。
而在实际工程中,通常会通过有限元分析等方法来计算复杂结构下的应力分布,以确保材料在受力情况下的安全性和稳定性。
此外,应力的影响因素也是我们需要重点关注的内容。
材料的性质、几何形状、受力方式等因素都会对材料的应力产生影响。
例如,材料的强度和韧性会直接影响其在受力时的应力情况,而材料的形状和尺寸也会对应力分布产生影响。
在工程实践中,我们需要综合考虑这些因素,对材料的应力进行合理的分析和设计,以确保材料在使用过程中不会因应力过大而导致破坏。
最后,我们需要注意应力的作用和应用。
应力不仅影响着材料的强度和变形性能,还直接关系到材料的使用寿命和安全性。
在工程实践中,我们需要根据材料的应力特点来选择合适的材料和结构设计,以确保材料在受力情况下能够满足设计要求。
同时,对于材料的使用和维护也需要考虑应力的影响,及时发现并处理材料受力过大的情况,以确保设备和结构的安全运行。
综上所述,材料力学中的应力是一个非常重要的概念,它直接关系到材料的强度、变形和破坏行为。
对于应力的理解和分析对于工程材料的设计、制造和使用具有重要意义。
材料力学正应力计算公式
《材料力学正应力计算公式》
正应力计算公式的一般表达式:
σ = P / A
其中:
P:作用于节点的外力
A:受力节点对应的横截面积
在材料力学中,应力是指材料在力的作用下,产生的变形程度。
可以用应力可以反映出材料承受力的强度,因此正应力计算公式是计算材料受力强度的重要工具。
正应力计算公式的应用:
1、塑料件应力计算:
塑料件在受力的时候,可以使用正应力计算公式计算出受力强度。
2、管道应力计算:
管道在受力时,也可以使用正应力计算公式,计算出受力强度。
3、焊接应力计算:
当焊接件遭受力时,也可以使用正应力计算公式,计算出受力强度。
- 1 -。
材料力学常用公式1. 外力偶矩计算公式(P功率,n转速)2. 弯矩、剪力和荷载集度之间的关系式3. 轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正)5. 纵向变形和横向变形(拉伸前试样标距l ,拉伸后试样标距l1 ;拉伸前试样直径d,拉伸后试样直径di)6. 纵向线应变和横向线应变7. 泊松比8. 胡克定律9. 受多个力作用的杆件纵向变形计算公式?10. 承受轴向分布力或变截面的杆件,纵向变形计算公式11. 轴向拉压杆的强度计算公式12. 许用应力 , 脆性材料 ,塑性材料13. 延伸率14. 截面收缩率15. 剪切胡克定律(切变模量G切应变g)16. 拉压弹性模量E、泊松比和切变模量G之间关系式17. 圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18. 圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r )19. 圆截面周边各点处最大切应力计算公式20. 扭转截面系数,(a)实心圆(b)空心圆21. 薄壁圆管(壁厚R o /10 , R0为圆管的平均半径)扭转切应力计算公式22. 圆轴扭转角与扭矩T、杆长I、扭转刚度GH的关系式23. 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24. 等直圆轴强度条件25. 塑性材料;脆性材料26. 扭转圆轴的刚度条件? 或27. 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28. 平面应力状态下斜截面应力的一般公式,29. 平面应力状态的三个主应力, ,30. 主平面方位的计算公式31. 面内最大切应力32. 受扭圆轴表面某点的三个主应力,,33. 三向应力状态最大与最小正应力,34. 三向应力状态最大切应力35. 广义胡克定律36. 四种强度理论的相当应力37. 一种常见的应力状态的强度条件,38. 组合图形的形心坐标计算公式,39. 任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40. 截面图形对轴z 和轴y 的惯性半径? ,41. 平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42. 纯弯曲梁的正应力计算公式43. 横力弯曲最大正应力计算公式44. 矩形、圆形、空心圆形的弯曲截面系数? , ,45. 几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46. 矩形截面梁最大弯曲切应力发生在中性轴处47. 工字形截面梁腹板上的弯曲切应力近似公式48. 轧制工字钢梁最大弯曲切应力计算公式49. 圆形截面梁最大弯曲切应力发生在中性轴处50. 圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51. 弯曲正应力强度条件52. 几种常见截面梁的弯曲切应力强度条件53. 弯曲梁危险点上既有正应力(T又有切应力T作用时的强度条件或,54. 梁的挠曲线近似微分方程55. 梁的转角方程56. 梁的挠曲线方程?57. 轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58. 偏心拉伸(压缩)59. 弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60. 圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61. 圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.62. 弯拉扭或弯压扭组合作用时强度计算公式63. 剪切实用计算的强度条件64. 挤压实用计算的强度条件65. 等截面细长压杆在四种杆端约束情况下的临界力计算公式66. 压杆的约束条件:(a)两端铰支11 =1(b)—端固定、一端自由1 =2(c )一端固定、一端铰支 (d )两端固定(1 =67. 压杆的长细比或柔度计算公式 ,68. 细长压杆临界应力的欧拉公式 69. 欧拉公式的适用范围70. 压杆稳定性计算的安全系数法 71. 压杆稳定性计算的折减系数法 72. 关系需查表求得1、材料力学的任务:强度、刚度和稳定性;应力 单位面积上的内力 平均应力p m A 正应力垂直于截面的应力分量,用符号 切应力相切于截面的应力分量,用符号 应力的量纲:2 2工程单位制:kgf / m 、kgf / cm线应变 单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变 形量的大小。
外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n 与传递的功率P 来计算。
当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为m).(N 9549e nPM =当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为m).(N 7024e nPM =2.5.2切应力计算公式横截面上某一点切应力大小为 p pT I ρτ=(3-12) 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离。
圆截面周边上的切应力为 max tTW τ=(3-13) 式中p t I W R=称为扭转截面系数,R 为圆截面半径。
2.5.3 切应力公式讨论(1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。
(2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3。
在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。
因此,设计空心轴比实心轴更为合理。
表3-3实心圆 (外径为d )432p d I π=316t d W π=空心圆 (外径为D , 内径为d )44(1)32p D I a π=-d a D=44(1)16t D W a π=-2.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。
因此,强度条件为[]max maxt T W ττ⎛⎫=≤⎪⎝⎭ (3-14) 对等圆截面直杆 []maxmaxt T W ττ=≤ (3-15)式中[]τ为材料的许用切应力。
3.1.1中性层的曲率与弯矩的关系1zMEI ρ=(3-16)式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩。
3.1.2横截面上各点弯曲正应力计算公式 ZMy I σ=(3-17) 式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处 max max max max z zM My I W σ=∙= (3-18) 式中,max z z I W y =称为抗弯截面系数。
1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I M z tmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n 2w r34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAx x N EAL N EA NL L d )(ii2、 扭转 ()⎰=∑==Φpp i i p GI dxx T GI L T GI TL πφ0180⋅=Φ=p GI T L (m / )3、 弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θEIML f B 22=EI PL f B 33= EI qL f B 84=EIML B3=θ,EI MLA 6=θEIPL A B 162==θθEIqL A B 243==θθEIML f c 162=EIPL f c 483=EIqL f c 3844=(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)PAB MAB A BqL LLLL=∂∂=∆ii P U()()⎰∂∂∑dx P x M EI x M i 三、应力状态与强度理论 1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2c o s 2s i n 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 03、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=(2)、表达形式之二(用应变表示应力))(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,, Gxy xy τγ= ()zx yz xy ,,7、强度理论 (1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=(2)[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析 (1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx y x+-=⎪⎭⎫ ⎝⎛-αεεγα2s i n 22yx αγ2c o s 2⎪⎪⎭⎫ ⎝⎛-xy (2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE= ②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ”=s σ或 b σ2、关于柔度的几个公式 i Lμλ= p2p σπλE=ba s s σλ-=3、惯性半径公式AI i z= (圆截面4di z =,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击)st20d ∆=g v K (水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π ()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh123hb 323maxd y I W zz π==()43132απ-D62bh62hb2、惯性矩平移轴公式A a I I 2zc z +=。
1.外力偶矩计算公式〔P功率,n转速〕2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式〔杆件横截面轴力F N,横截面面积A,拉应力为正〕4.轴向拉压杆斜截面上的正应力与切应力计算公式〔夹角a 从x轴正方向逆时针转至外法线的方位角为正〕5.纵向变形和横向变形〔拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1〕6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律〔切变模量G,切应变g 〕16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩〔a〕实心圆〔b〕空心圆18.圆轴改变时横截面上任一点切应力计算公式〔扭矩T,所求点到圆心间隔r〕19.圆截面周边各点处最大切应力计算公式20.改变截面系数,〔a〕实心圆〔b〕空心圆21.薄壁圆管〔壁厚δ≤ R0 /10 ,R0为圆管的平均半径〕改变切应力计算公式22.圆轴改变角与扭矩T、杆长l、改变刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同〔如阶梯轴〕时或24.等直圆轴强度条件25.塑性材料;脆性材料26.改变圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴外表某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式〔形心轴z c与平行轴z1的间隔为a,图形面积为A〕42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式〔为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度〕46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载结合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸〔压缩〕59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪实在用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.68.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的平安系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴改变 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I M ztmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉〔压〕弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5〞与“6〞两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n2wr34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EALN EANL L d )(ii2、 改变 ()⎰=∑==Φpp i i p GI dxx T GI LT GI TL πφ0180⋅=Φ=p GI T L 〔m / 〕3、 弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)根本变形表(注意:以下各公式均指绝对值,使用时要根据详细情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θEIML f B 22=EI PL f B 33= EI qL f B 84=EI ML B 3=θ,EI ML A 6=θ EI PL A B 162==θθ EIqL A B 243==θθEI ML f c 162=EI PL f c 483= EIqL f c 3844= (4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆i i P U()()⎰∂∂∑dx P x M EI x M i三、应力状态与强度理论 1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 0PAB MAB A BqL LLLL3、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律〔1〕、表达形式之一〔用应力表示应变〕)(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=〔2〕、表达形式之二〔用应变表示应力〕)(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,,Gxyxy τγ=()zx yz xy ,,7、强度理论 〔1〕[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=〔2〕[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析 〔1〕αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx y x+-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫ ⎝⎛-xy 〔2〕22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x yx γεεεεεεyx xyεεγα-=02tg四、压杆稳定1、临界压力与临界应力公式〔假设把直杆分为三类〕①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ〞=s σ或 b σ2、关于柔度的几个公式 i Lμλ= p2p σπλE=ba s s σλ-=3、惯性半径公式AI i z= 〔圆截面4di z =,矩形截面12min b i =〔b 为短边长度〕〕五、动载荷〔只给出冲击问题的有关公式〕 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK 〔自由落体冲击〕st20d ∆=g v K 〔程度冲击〕六、截面几何性质1、 惯性矩〔以下只给出公式,不注明截面的形状〕⎰=dA I P 2ρ=324d π ()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh123hb 323maxd y I W zz π==()43132απ-D62bh62hb2、惯性矩平移轴公式A a I I 2zc z +=。
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*材料力学的基本计算公式外力偶矩计算公式(P功率,n转速)1.弯矩、剪力和荷载集度之间的关系式2.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)5.纵向线应变和横向线应变6.泊松比7.胡克定律8.受多个力作用的杆件纵向变形计算公式?9.承受轴向分布力或变截面的杆件,纵向变形计算公式10.轴向拉压杆的强度计算公式11.许用应力,脆性材料,塑性材料12.延伸率13.截面收缩率14.剪切胡克定律(切变模量G,切应变g )15.拉压弹性模量E、泊松比和切变模量G之间关系式16.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆17.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)18.圆截面周边各点处最大切应力计算公式19.扭转截面系数,(a)实心圆(b)空心圆20.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式22.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或23.等直圆轴强度条件24.塑性材料;脆性材料25.扭转圆轴的刚度条件? 或26.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,27.平面应力状态下斜截面应力的一般公式,28.平面应力状态的三个主应力,,29.主平面方位的计算公式30.面内最大切应力31.受扭圆轴表面某点的三个主应力,,32.三向应力状态最大与最小正应力 ,33.三向应力状态最大切应力34.广义胡克定律35.四种强度理论的相当应力36.一种常见的应力状态的强度条件,37.组合图形的形心坐标计算公式,38.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式39.截面图形对轴z和轴y的惯性半径? ,40.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)41.纯弯曲梁的正应力计算公式42.横力弯曲最大正应力计算公式43.矩形、圆形、空心圆形的弯曲截面系数?,,44.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)45.矩形截面梁最大弯曲切应力发生在中性轴处46.工字形截面梁腹板上的弯曲切应力近似公式47.轧制工字钢梁最大弯曲切应力计算公式48.圆形截面梁最大弯曲切应力发生在中性轴处49.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处50.弯曲正应力强度条件51.几种常见截面梁的弯曲切应力强度条件52.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,53.梁的挠曲线近似微分方程54.创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*。