常用过流、过压、过温保护电路之选型技巧
- 格式:pdf
- 大小:322.94 KB
- 文档页数:9
电路保护类型及选型要点庇护器件就是为电路和元器件提供防护的被动元件。
电路庇护主要是庇护电子电路中的元器件在受到过压、过流、浪涌、电磁干扰等状况下不受损坏。
作为电子工程师必不行少的就是跟电子元器件打交道,其中也少不了为客户提供防护计划设计、整改以及电路庇护器件选型建议。
但是在为客户提供计划及选型建议前,工程师自己首先要清晰客户的产品需要哪种防护,防护的重点是以过流为主?过压为主,还是在防雷限压的基础上要兼顾静电放电。
以下是FAE工程师收拾的几种频繁的电路庇护类型及过压过流防护器件选型要点。
电路庇护的几种常见类型1.过流庇护(over current)是当过大时自动断电,防止电路与案件因超过额定电流而造成的损坏。
2.过压庇护(Over-Voltage Protection)主要是防止过或静电放电(Discharge Suppression)对电子元器件的损坏,被广泛地应用于电话机、传真机及高速传输接口(,IEEE1394,,SATA)等各种电子系统产品,尤其是电子通讯设备,对于如何避开由于电压异样(Over-Voltage or EOS(Electrical Over-Stress))或静电放电(ESD)而对电子备造成损害损失尤为重要。
3.过温庇护(OT)温度庇护组件从商品化到现在,已经走过了一个甲子,目前过温庇护组件广泛运用于对温度有特别要求的场合,此类庇护组件根据作动原理可分为化学药品作动型、低温合金作动型,其中化学药品作动型产品的主要特点是可以做低温型产品(目前有做到48℃),但结构较为复杂,成本较高;低温合金型作动主要是一根直径较大的低温熔丝起导通作用,必需保证在通过额定电流产生的热量不会使熔丝熔化,此低温熔丝普通是通过调整锡(Sn)、铜(Cu)、银(Ag)、铋(Bi)、铟(In)等成份的比例来调整其熔点。
4.过温过流庇护(TFR)近年来,随着应用的提升, 单纯的温度庇护功能, 已不能满足日新月异电器、电机、马达及3C产品平安庇护的需求,因此再研发出能因应因温度、电流及电压异样状况下同时监控并准时庇护的组件, 而此样组件的兴起主要以锂离子电池及锂高分子电池为最大应用。
电路保护设计的器件选型技巧与应用方案在电路保护设计中,合适的器件选型是保证电路安全可靠运行的关键之一、下面提供一些器件选型的技巧和应用方案,以帮助设计工程师做出明智的选择。
1. 保险丝(Fuse):保险丝是电路保护中最常见的器件之一,用于在短路或过载情况下切断电路。
在选择保险丝时,需要考虑额定电流、断电容量、快速断开能力和热功率等因素。
在应用中,保险丝应根据所需的电流和热功率来选择合适的尺寸和类型。
2.热释放型保险丝(PTC):热释放型保险丝具有自恢复特性,可在过流条件下自动恢复。
它们适用于需要在设备正常工作温度下保护电路的应用,如电源线圈、电机、传感器等。
选型时需要考虑应用电流和动作温度。
3. 过流保护器(Circuit Breaker):与保险丝类似,过流保护器也用于在短路或过载情况下切断电路,但不需要更换。
选型时需要考虑额定电流、断电能力、断路模式(短路或过载)、电气特性和动作速度等因素。
4. 静电防护器件(ESD Protection Devices):在防止静电损害方面,静电防护器件起着重要作用。
它们包括TVS二极管和静电放电芯片等,用于保护电路免受静电放电的影响。
选型时需要考虑电压容忍度、电流容忍度和响应时间等因素。
5. 过压保护器(Overvoltage Protection Devices):过压保护器用于在电路暂时或持续超过额定电压时保护电路。
它们可以是压敏电阻、金属氧化物浅夹层(MOVs)或硅可控整流器(SCRs)等。
选型时需要考虑额定电压、电流容忍度、响应时间和功率容忍度等因素。
6. 瞬态电压抑制器(Transient Voltage Suppressor,TVS):TVS 器件用于保护电路免受瞬态电压峰值(例如雷电)的影响。
它们可以是双向或单向的二极管。
选型时需要考虑额定电压、电流容忍度、响应时间和耐久性等因素。
7. 热敏电阻(Thermistor):热敏电阻用于监测和控制温度。
如何选择过压保护器件,过压保护器件选型要点[一点资讯]在电路设计中,随着技术的发展,电路保护器件有越来越多的种类,根据不同的防护要求,每种电路保护器件能达到的不同防护等级。
那么电路保护器件的选择和应用是否合理,就成为了影响电路是否高效可靠的重要原因之一。
我们常常需要结合保护器件的工作原理,工作条件和使用环境来考虑,今天我们要讨论的是过压保护器件,它用于保护后续电路免受甩负载或瞬间高压的破坏。
过压器件又根据作用方式的不同分为钳位型和开关型。
开关型过压器件就是我们熟知的防雷器件:陶瓷气体放电管、半导体放电管和玻璃放电管,另一类的钳位型过压器件有钳位型过压器件有瞬态抑制二极管、压敏电阻、贴片压敏电阻和ESD放电二极管。
过压保护器件选型应注意以下四个要点:1)关断电压Vrwm的选择。
一般关断电压至少要比线路最高工作电压高10%;2)箝位电压VC的选择。
VC是指在ESD冲击状态时通过TVS的电压,它必须小于被保护电路的能承受的最大瞬态电压;3)浪涌功率Pppm的选择。
不同功率,保护的时间不同,如600w(10/1000μs);300W(8/20μs);4)极间电容的选择。
被保护元器件的工作频率越高,要求TVS的电容要越小。
以下是硕凯电子汇总的开关型|钳位型过压器件的选型要点:陶瓷气体放电管选型要点:1.电压选型单独使用GDT:弧光压要高于用户的正常工作电压,并留有一定的余量。
与MOV配合使用:直流击穿电压要高于用户的正常工作电压,并留有一定的余量。
2.GDT的通流量应根据防雷电路的设计指标来定,GDT通流量需大于防雷电路设计的通流容量。
半导体放电管选型要点:1.信号接口的电平要低于Vs,并留有一定的余量。
2.根据要过浪涌的等级来选择不同通流量的TSS。
3.电路的正常工作电流不能高于TSS的保持电流。
玻璃放电管选型要点:1.直流击穿电压要高于用户的正常工作电压。
2.玻璃放电管的通流量应根据防雷电路的设计指标来定,玻璃放电管通流量需大于防雷电路设计的通流容量。
输出过压保护电路当用户在使用电源模块时,可能会由于某种原因,造成模块输出电压升高,为了保护用户电路板上的器件不被损坏,当模块的输出电压高于一定值时,模块必须封锁脉冲,阻止输出电压的继续上升。
D320产生一个5.1V电压基准送至运放U301反相输入端,R330、R334、R336用于检测输出电压、检测电压值送至运放U301同相输入端。
输出电压没有达到过压保护点时,运放U301 5脚的电压小于6脚的电压,运放输出为低电平,输出正常。
输出电压Vo升高到设定检测点电压时,电阻R336、R334、R330检测的分压比送入运放U301的5脚,此时5脚电压高于6脚电压,运放U301输出高电平,封闭控制芯片PWM信号,模块输出电压为零。
过流保护电路实例(1)图2.过流保护电路实例工作原理T2采集模块原边开关管的输入电流,采样电流经取样电阻R18转换成电压信号,再经两路开关二极管(D6)整流形成两路控制信号。
一路峰值信号去控制38C43的3脚;另一路准峰值电平进入38C43 EA的反相输入端2脚。
采用CT作电流采样的好处是采样电路功耗小,采样电路灵活,CT可以放置在MOSFET开关管的D极或S极,也可以串联于主变压器原边的Vin+端。
缺点是电路稍复杂,体积大,CT存在大占空比时不能有效复位的问题。
CT采样一般用于中大功率的模块。
3843PWM芯片介绍图3.3843芯片内部结构图芯片工作原理虚线所框部分为38C43芯片内置的误差放大器和电流放大器。
误差放大器的输出经过内部分压后(被钳位到1V),进入电流放大器的反相输入端,与电流采样信号比较后进入PWM产生电路。
最终在芯片的6脚输出PWM信号。
在这里,误差放大器被用来作OCP保护,电流控制放大器I/A作峰值电流限流保护。
误差放大器E/A用于准峰值限流。
当38C43反相输入端2脚的直流电平达到2.5V时,误差放大器E/A起作用,使38C43的6脚输出驱动信号占空比D减小,达到模块OCP之目的。
几种常见过压保护器件
电路保护主要有三种形式:过压保护、过流保护和过温保护。
选择适当的电路保护器件是实现高效、可靠电路保护设计的关键,涉及到电路保护器件的选型,我们就必须要知道各电路保护器件的作用。
在选择电路保护器件的时候我们要知道保护电路不应干扰受保护电路的正常行为,此外,其还必须防止任何电压瞬态造成整个系统的重复性或非重复性的不稳定行为。
一些常见的过压保护器件:
1、陶瓷气体放电管
气体放电电子管主要靠在密封容器里一种气体的衰弱,是固有的一种双向过压保护器件。
它们限制相对过高的起始工作电压,但是可以承受相当大的电流并且通常应用在初级保护。
2、TVS瞬态抑制二极管
瞬态电压抑制器(TVS)是基于雪崩和被设计来处理大电流抑制的稳压二极管。
单一的二极管本质上是单向的钳位设备。
但是TVS器件是为了针对类似于集成电路的问题而制造的,为生产多种双向、单向、多极的保护元件提供了可能。
TVS器件可以应用在要求多信号线保护、简单、小体积的场合。
3、压敏电阻
压敏电阻这个术语是“变化的”和“电阻器”两个单词的结合体。
在低电流电压下,压敏电阻具有高阻抗但是在更高的电压电流下,阻抗会急剧地下降。
阻抗体现在氧化锌颗粒构成的陶瓷上。
压敏电阻通常是双向的电压钳位器件。
晶闸管的基本保护措施晶闸管是一种电子器件,常用于控制大功率电流的开关。
为了确保晶闸管的正常工作和延长其寿命,需要采取一系列的基本保护措施。
本文将详细介绍晶闸管的基本保护措施,包括过电流保护、过压保护、过温保护和防射频干扰等方面。
1. 过电流保护过电流是指晶闸管工作时电流超过其额定值的情况。
过电流可能导致晶闸管损坏甚至烧毁。
为了保护晶闸管免受过电流的损害,可以采用以下措施:•使用电流保险丝或电流限制电阻:在电路中串联一个电流保险丝或电流限制电阻,当电流超过额定值时,保险丝会熔断或电流限制电阻会限制电流,从而保护晶闸管。
•使用过电流保护电路:设计一个过电流保护电路,当电流超过设定值时,保护电路会迅速切断电源,保护晶闸管不受损害。
2. 过压保护过压是指晶闸管工作时电压超过其额定值的情况。
过压可能导致晶闸管击穿或损坏。
为了保护晶闸管免受过压的损害,可以采用以下措施:•使用过压保护二极管:在晶闸管的控制端口并联一个过压保护二极管,当电压超过晶闸管的额定值时,过压保护二极管会导通,将过压电流引到地,保护晶闸管。
•使用过压保护电路:设计一个过压保护电路,当电压超过设定值时,保护电路会迅速切断电源,保护晶闸管不受损害。
3. 过温保护过温是指晶闸管工作时温度超过其额定值的情况。
过温可能导致晶闸管烧毁。
为了保护晶闸管免受过温的损害,可以采用以下措施:•安装散热器:在晶闸管上安装散热器,增加散热面积,提高散热效果,减少晶闸管的工作温度。
•使用温度传感器:在晶闸管上安装温度传感器,监测晶闸管的温度,当温度超过设定值时,触发过温保护电路,切断电源,保护晶闸管。
4. 防射频干扰晶闸管在工作时会产生射频干扰,可能影响到其他电子设备的正常工作。
为了防止射频干扰,可以采取以下措施:•使用抗干扰滤波器:在晶闸管的输入和输出端口安装抗干扰滤波器,滤除射频干扰信号,减少对其他设备的干扰。
•使用屏蔽壳体:将晶闸管放入屏蔽壳体中,阻挡射频干扰信号的辐射,减少对其他设备的干扰。
IGBT驱动保护电路的详细的设计与如何测试过流保护:1.过流检测器设计:使用电流传感器来检测IGBT的电流,常见的传感器有霍尔效应传感器和电阻式传感器。
根据检测到的电流信号,设计一个比较器电路,比较检测到的电流值与预设的过流阈值。
当电流超过阈值时,比较器输出高电平,触发保护电路。
2.过流保护电路设计:采用一级或多级的电流保护电路,例如使用可控整流器电路、继电器电路或熔断器电路来切断IGBT的电源。
过温保护:1.过温检测器设计:通过温度传感器监测IGBT的温度。
可选用NTC 热敏电阻或热电偶等传感器。
根据检测到的温度信号,设计一个比较器电路,将检测到的温度值与预设的过温阈值进行比较。
当温度超过阈值时,比较器输出高电平,触发保护电路。
2.过温保护电路设计:使用温度控制器(例如PID控制器)来降低IGBT的温度。
可以通过减小机箱内部温度、增加散热和降低IGBT占空比等方式来实现。
过压保护:1.过压检测器设计:使用电压传感器来检测IGBT的输入电压。
可以选用正弦波电流互感器等传感器。
设计一个比较器电路,将检测到的电压值与预设的过压阈值进行比较。
当电压超过阈值时,比较器输出高电平,触发保护电路。
2.过压保护电路设计:可以采用电压降压器或直流开关等方法来控制IGBT的输入电压,将其降低到安全范围内。
1.过电流测试:在设计过程中,设置合理的过电流阈值。
通过电流源提供过电流信号,触发保护电路,验证保护电路的响应时间和准确性。
2.过温测试:在设计过程中,设置合理的过温阈值。
通过加热IGBT 器件,提高其温度,触发保护电路,验证保护电路的响应时间和准确性。
3.过压测试:在设计过程中,设置合理的过压阈值。
通过提供超过预设阈值的电压信号,触发保护电路,验证保护电路的响应时间和准确性。
4.短路测试:将IGBT的输出端短接,触发保护电路,验证保护电路的响应时间和准确性。
5.整体测试:在实际应用中,应全面测试保护电路的性能。
电路保护方法概述1. 引言在电路设计和使用中,保护电路是非常重要的一项工作。
电路保护的主要目的是确保电路的平安运行,防止因外界因素或内部故障引起的电路损坏或故障。
本文将概述一些常见的电路保护方法,包括过电压保护、过流保护、短路保护和过温保护等。
2. 过电压保护过电压保护是指在电路中采取措施来保护电路免受过高电压的损害。
过电压可能是因外界原因引起的,比方雷击、电力系统故障等;也可能是因内部故障引起的,比方电压压降不良、开关故障等。
常见的过电压保护方法包括使用过压保护器、电压稳压器、电压限制器等。
这些保护器能够及时检测并切断过高电压,确保电路的平安运行。
过流保护是指在电路中采取措施来保护电路免受过高电流的损害。
过流可能是因外界原因引起的,比方短路、故障电流波动等;也可能是因内部故障引起的,比方电路元件损坏、电压调整不良等。
常见的过流保护方法包括使用过流保护器、保险丝、电流限制器等。
这些保护器能够及时检测并切断过高电流,防止电路的过载运行。
4. 短路保护短路保护是指在电路中采取措施来保护电路免受短路电流的损害。
短路是指电路中两个或多个导体直接接触而导致电流异常增加的现象。
短路会引起电路过热、设备损坏甚至火灾等严重后果。
常见的短路保护方法包括使用熔断器、自动断路器、短路保护器等。
这些保护器能够在检测到电路短路时迅速切断电路,保护电路的平安运行。
过温保护是指在电路中采取措施来保护电路免受过高温度的损害。
过高的温度可能是因大电流通行引起的,也可能是因环境温度过高引起的,还可能是因散热不良引起的。
过高的温度会导致电路元件老化、烧坏、减寿等。
常见的过温保护方法包括使用温度传感器、风扇散热、散热片等。
这些保护器能够及时检测并采取相应的措施来降低电路温度,保护电路的正常运行。
6. 总结电路保护是保证电路平安运行的重要手段。
本文概述了一些常见的电路保护方法,包括过电压保护、过流保护、短路保护和过温保护。
这些保护方法能够有效地防止电路因外界因素或内部故障引起的损坏或故障。
一文说清开关电源常用的几种保护摘要:一、开关电源保护电路的概述二、开关电源常用的保护电路1.过流保护2.过压保护3.过热保护4.短路保护5.空载保护三、保护电路在开关电源中的重要性四、选择合适的保护方案和电路结构正文:开关电源是电子设备中不可或缺的组成部分,其性能直接影响着设备的稳定性和可靠性。
为了保证开关电源的正常工作,保护电路的设计尤为重要。
本文将详细介绍开关电源常用的几种保护电路。
首先,开关电源的保护电路主要包括过流保护、过压保护、过热保护、短路保护和空载保护。
这些保护电路可以防止电源因异常工作状态而损坏,确保电源的稳定性和可靠性。
1.过流保护:过流保护是开关电源中最常见的保护方式。
当电源负载电流超过额定电流时,过流保护电路会立即切断电源,以保护电源和负载设备。
2.过压保护:过压保护主要针对输入电压过高的情况。
当输入电压超过电源的额定电压时,过压保护电路会启动,切断电源,以防止电源因电压过高而损坏。
3.过热保护:过热保护主要针对开关电源内部器件的过热情况。
当电源内部器件的温度超过额定值时,过热保护电路会启动,切断电源,以防止电源因过热而损坏。
4.短路保护:短路保护主要针对电源负载短路的情况。
当负载短路时,短路保护电路会立即切断电源,以防止电源因负载短路而损坏。
5.空载保护:空载保护主要针对电源在无负载情况下的保护。
当电源处于空载状态时,空载保护电路会启动,切断电源,以防止电源因长时间空载而损坏。
保护电路在开关电源中的重要性不言而喻。
合适的保护电路可以有效延长电源的使用寿命,提高电源的稳定性和可靠性。
因此,在设计开关电源时,应根据实际需求选择合适的保护方案和电路结构。
总之,开关电源的保护电路是电源稳定性和可靠性的重要保障。
常用过流、过压、过温保护电路之选型技巧
随着电子系统的复杂性和集成度越来越高,而工作电压越来越低,电子系统对可靠性、稳定性和安全性的要求也越来越高,电路保护设计的重要性也越来越强。
在电路保护设计中,电路保护器件的选择和应用是否合理,将直接影响电子系统电路保护方案的保护效果。
为了帮助工程师正确选择电路保护器件,合理应用电路保护器件设计高效的电路保护解决方案,本期大讲台将分三部分进行介绍:第一部分介绍常见的电路保护器件之选型技巧;第二部分重点分析保险丝、瞬态电压抑制器、ESD保护器件、防雷保护器件等的实际应用方案;第三部分将结合电子元件技术网论坛和电路保护与电磁兼容研讨会中关于选用电路保护器件的讨论,整理出电路保护设计过程中较常遇到的难题Q&A。
电路保护主要有三种形式:过压保护、过流保护和过温保护。
选择适当的电路保护器件是实现高效、可靠的电路保护设计之关键的第一步,那幺,如何合理选择电路保护器件?不同的保护器件其保护原理也各有不同,选择的时候应结合其保护原理、工作条件和使用环境来考虑。
本文将介绍常用的几种过压、过流和过温保护器件之选型技巧,帮助工程师正确选择电路保护器件。
1. 过压保护器件的选型要点
过压保护器件(OVP)用于保护后续电路免受甩负载或瞬间高压的破坏,常用的过压保护器件有压敏电阻、瞬态电压抑制器、静电抑制器和放电管等。