初中数学《统计与概率》中考的综合复习试题
- 格式:doc
- 大小:249.50 KB
- 文档页数:2
2024中考专题训练——统计与概率知识点梳理考点一、平均数1.平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++= 叫做这n 个数的平均数,x 读作“x 拔”。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x =11+22+ k k,这样求得的平均数x 叫做加权平均数,其中f 1,f 2, ,f k 叫做权。
2.平均数的计算方法(1)定义法当所给数据x 1,x 2, ,x n ,比较分散时,一般选用定义公式:1(x 1x 2x n )nx +++= (2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,其中n f f f k =++ 21。
(3)新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。
)'''(1'21n x x x x =n++ +是新数据的平均数(通常把x 1,x 2, ,x n ,叫做原数据,x '1,x '2, ,x 'n ,叫做新数据)。
考点二、统计学中的几个基本概念1.总体所有考察对象的全体叫做总体。
2.个体总体中每一个考察对象叫做个体。
3.样本从总体中所抽取的一部分个体叫做总体的一个样本。
4.样本容量样本中个体的数目叫做样本容量。
5.样本平均数样本中所有个体的平均数叫做样本平均数。
6.总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
中考数学复习《统计与概率》专项提升训练题-附答案学校:班级:姓名:考号:说明:共三大题,23小题,满分120分,作答时间120分钟.中考对接点统计常考频数分布图(表)、条形统计图、扇形统计图、折线统计图,利用各种统计量分析数据,样本估计总体;概率常考利用画树状图或列表的方法计算随机事件的概率,用频率估计概率一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)题号12345678910答案1.下列事件中适合采用抽样调查的是A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对神舟十四号太空飞船各零部件质量情况的检查D.对市面上某品牌奶粉质量情况的调查2.下列事件是必然事件的是A.小明中考模拟考时,数学成绩都是110分以上,则中考时,他的数学成绩必定在110分以上B.明天不会出太阳C.367人中至少有2人生日相同D.随意抛掷两枚质地均匀的骰子,两次朝上的数字之和等于13.某市教委高度重视安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全图标的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片的正面图案中有一张是轴对称图形的概率是A.12B.13C.14D.164.数学老师在江西智慧作业中布置了8道题目,根据“作业归集”中学生的答题情况制作了如下统计表:答对题目数量/道5678人数419189根据表中数据,全班同学答对题目数量(单位:道)的中位数和众数分别是A.6, 6B.6, 7C.7, 7D.7, 65.关于事件与概率,下面表述不正确的是A.若P(A)=0,则A为不可能事件B.若A为不可能事件,则P(A)=0C.若A为必然事件,则P(A)=1D.若A为随件事件,则0≤P(A)≤16.小明在调查全班同学喜爱的电视节目时,若喜爱体育节目的同学占全班同学的30%,那么在制作扇形统计图时,“体育”节目对应扇形的圆心角的度数为A.30°B.108°C.54°D.120°7.如图,在6×6正方形网格中,任选一个白色的小正方形并涂黑,恰好能使图中黑色部分为轴对称图形的概率是A.533B.433C.111D.2338.已知在一个样本中,50个数据分别落在5个小组内,第一,二,三,五组数据分别为2,6,7,15,则第四小组的频数和频率分别为A.25,50%B.20,50%C.20,40%D.25,40%9.教育部规定,初中生每天的睡眠时间应为9个小时.小红同学记录了她一周的睡眠时间.并将统计结果绘制成如图所示的折线统计图,则小红这一周每天睡眠时间在9个小时以上(含9个小时)的有A.4天B.3天C.2天D.1天10.国庆期间,数学研究小组对游客前往山西凤凰山生态植物园的出行方式进行了随机抽样调查,将结果整理后绘制了如下两幅统计图(尚不完整).根据图中的信息,下列结论中错误的是A.本次抽样调查的样本容量是2000B.扇形统计图中的m为5C.若国庆期间去该地观光的游客有1万人,则选择自驾方式出行的大约有4500人D.样本中选择自驾方式出行的有1000人二、填空题(本大题共5个小题,每小题3分,共15分)11.如图,一个游戏盘中,红、黄、蓝三个扇形的圆心角度数分别为45°,120°,195°,让转盘自由转动,指针停止后(指针指向分界线时重新转)在黄色区域的概率是.12.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差这几个统计量中,该鞋厂最关注的是.13.小明、小华两人进行飞镖比赛,已知他们每人十次投得的成绩如图所示,那么两人中成绩更稳定的是.14.垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访100名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;①绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比;①整理采访记录并绘制空矿泉水瓶投放频数分布表.正确统计步骤的顺序应该是.15.如图,这是某旅游景区某周当日最高气温的折线统计图,则这7天的日最高气温的平均数为℃.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2小题,每小题5分,共10分)(1)已知数据3, 4, 5, 8, x的平均数为5,求这组数据的众数.(2)将2023,-22与π, 3.14159和√4, sin 60°六个数字分别写在六张卡片上,这些卡片除了数字外其他都相同,洗匀7后背面朝上放在桌面上,任取一张卡片,求卡片上面写的数字恰是无理数的概率.17.(本题8分)小明和小亮用如图所示的两个转盘(每个转盘被平均分成面积相等的扇形)做游戏:同时转动两个转盘(指针指向分界线时重新转),停止转动后,若指针所指两个区域的数字之差的绝对值为奇数,则小明胜;若指针所指两个区域的数字之差的绝对值为偶数,则小亮胜.这个游戏对双方公平吗?请你用列表法或树状图说明理由.18.(本题7分)甲、乙两位同学参加数学综合素质测试,各项成绩(单位:分)如下表:数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)甲成绩的众数是;乙成绩的中位数是.(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按4①3①1①2计算,那么甲、乙的数学综合素质成绩分别为多少分?19.(本题8分)某校九年级两个班各选派6名学生参加“垃圾分类知识竞赛”,各参赛选手的成绩如下(满分150分):九(1)班: 86, 91, 92, 92, 94, 96.九(2)班: 83, 89, 90, 90, 91, 97.(1)九(1)班参赛选手成绩的中位数是分,众数是分.(2)求九(2)班参赛选手成绩的方差.20.(本题8分)某商场国庆期间为促销特举办抽奖活动,规则如下:在不透明的袋子中有2个红球和3个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小颖只有一次摸球机会,那么小颖获得奖品的概率为.(2)如果小颖有两次摸球机会(摸出后不放回),求小颖获得2份奖品的概率.(请用“画树状图”或“列表”的方法写出分析过程)21.(本题8分)某校在七年级新生中举行了全员“防溺水”安全知识竞赛,竞赛题目共10题,每题10分.现从三个班中各随机抽取10名同学的成绩(单位:分).收集数据:1班: 90, 70, 80, 80, 80, 90, 80, 90, 80, 1002班: 60, 80, 80, 90, 90, 90, 60, 90, 100, 1003班: 80, 90, 60, 80, 80, 90, 80, 100, 100, 80整理、分析数据:班级平均数中位数众数1班m80802班84n903班848080根据以上信息回答下列问题:(1)填空:表格中m=,n=.(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩最好?请说明理由.(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,已知该校七年级新生共630人,试估计需要准备多少张奖状.22.(本题13分)为了加强对食堂的监控,有效保证饮食质量,某学校随机抽取部分学生开展满意度问卷调查,学生根据实际情况给食堂评分,并将本次调查结果制成如下统计表:评分/分45678910人数6183646a284比率3%9%18%23%31%b2%(1)本次问卷调查,学生所评分数的众数是分.(2)根据本次调查结果,若从本校随机抽选一名学生给食堂评分,估计他的评分不低于8分的概率是多少?(3)学校决定:本次调查综合得分8~10分为“满意”,给予食堂通报表扬; 6~8分为“比较满意”,提醒食堂进行改善; 0~6分为“不满意”,责令食堂限时整改.根据本次调查结果,判断学校可能对食堂采取何种措施,说明理由.(这里的0~6表示大于等于0同时小于6)23.(本题13分)某校文学社为了解学生课外阅读情况,对本校七年级的学生进行了课外阅读知识水平检测.为了解情况,从七年级学生中随机抽取部分女生和男生的测试成绩,这些学生的成绩记为x(0≤x≤100),将所得数据分为5组:A组: x<60.B组: 60≤x<70.C组: 70≤x<80.D组: 80≤x<90.E组: 90≤x≤100.学校对数据进行分析后,提供了如下信息:女生成绩在70≤x<80这一组的数据:70,72,72,72.男生成绩在60≤x<80这一组的数据:72,68,62,68,70.抽取的男生和女生测试成绩的平均数、中位数、众数如表所示:平均数中位数众数男生76a68女生7672b请根据以上信息解答下列问题:(1)a=, b=.(2)通过以上的数据分析,你认为(填“男”或“女”)学生的课外阅读整体水平较高,请说明理由:.(写出一条理由即可)(3)现在打算从得分为D组的学生中随机选出2名学生调查他们课外阅读的时间,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.参考答案1.D2.C3.A4.D5.D6.B7.B8.C9.C 10.D 提示:样本容量是700÷35%=2000,故A 正确; m %=1-45%-35%-15%=5% ①m=5,故B 正确;10000×45%=4500(人),故C 正确; 2000×45%=900(人),故D 错误.11.1312.众数 13.小明 14.①①① 15.20 16.解:(1)由题意,得3+4+5+8+x=5×5,解得x=5.所以数据3, 4, 5, 8, 5的众数是5. ......................................................................................................................... 5分 (2)①六个数字2023,-227,π, 3.14159,√4, sin 60°中,无理数只有π和sin 60°两个①P (卡片上面写的数字恰是无理数)=26=13. ........................................................................................................... 5分 17.解:这个游戏对双方公平. .................................................................................................................................. 2分 理由:画树状图如下:共有12种等可能的结果,其中指针所指两个区域的数字之差的绝对值为奇数的结果有6种,指针所指两个区域的数字之差的绝对值为偶数的结果有6种,①小明胜的概率=612=12,小亮胜的概率=612=12 ①小明胜的概率=小亮胜的概率①这个游戏对双方公平. ......................................................................................................................................... 8分 18.解:(1)93;93. ........................................................................................................................................................ 1分 (2)甲的数学综合素质成绩为93×4+93×3+89×1+90×24+3+1+2=92(分), (4)分 乙的数学综合素质成绩为94×4+92×3+94×1+86×24+3+1+2=91.8(分). ................................................................................ 7分19.解:(1)92; 92. ....................................................................................................................................................... 3分 (2)平均数为83+89+90×2+91+976=90(分),方差s 2=16[(83-90)2+(89-90)2+2×(90-90)2+(91-90)2+(97-90)2]=503. (8)分20.解:(1)25. ................................................................................................................................................................ 2分(2)列表如下:红1红2 黑1 黑2 黑3 红1(红1,红2)(红1,黑1) (红1,黑2) (红1,黑3) 红2 (红2,红1)(红2,黑1)(红2,黑2) (红2,黑3) 黑1 (黑1,红1) (黑1,红2)(黑1,黑2)(黑1,黑3) 黑2 (黑2,红1) (黑2,红2) (黑2,黑1)(黑2,黑3)黑3(黑3,红1)(黑3,红2)(黑3,黑1)(黑3,黑2)................................................................................................................................................................................. 6分 由上表可知,共有20种等可能的结果,其中两次摸到红球的结果数为2①P (两次获得奖品)=220=110. .................................................................................................................................... 8分 21.解:(1)84;90. ........................................................................................................................................................ 2分 (2)2班成绩最好.理由如下: 从平均数上看,三个班都一样;从中位数上看, 1班和3班都是80分, 2班是90分; 从众数上看, 1班和3班都是80分, 2班是90分.综上所述, 2班的成绩最好. ................................................................................................................................... 5分 (3)630×530=105(张).答:估计需要准备105张奖状. ............................................................................................................................... 8分 22.解:(1)8. ............................................................................................................................................................... 3分 (2)6÷3%=200a=200-6-18-36-46-28-4=62. ①由表格知评分不低于8分的频率是62+28+4200×100%=47% (或1-3%-9%-18%-23%=47%) ............................................................................................................................... 7分 ①评分不低于8分的概率是47%. ......................................................................................................................... 8分 (3)方法一:x =4×6+5×18+6×36+7×46+8×62+9×28+10×4200=7.2(分). ........................................................................... 11分①6<7.2<8①学校对食堂采取提醒改善的措施. ................................................................................................................... 13分方法二: b=28200×100%=14%.x =4×3%+5×9%+6×18%+7×23%+8×31%+9×14%+10×2%=7.2(分). ........................................................... 11分 ①6<7.2<8①学校对食堂采取提醒改善的措施. ................................................................................................................... 13分 23.解:(1)71;72. ........................................................................................................................................................ 4分 提示:本次调查人数为(2+4)÷30%=20(名)B 组的人数为20×25%=5(人), B 组中的女生有5-3=2(名) 调查人数中,女生有1+2+4+1+2=10(人),男生有20-10=10(人)抽查人数中,10名男生成绩处在中间位置的两个数的平均数为71分,因此中位数是71,即a=71 在10名女生成绩中,出现次数最多的是72,因此众数是72,即b=72.(2)女; ....................................................................................................................................................................... 6分 女生成绩的中位数、众数均比男生的高. ............................................................................................................ 8分 (3)根据题意列表如下:男1男2 男3 女 男1男1男2男1男3 男1女 男2 男2男1男2男3男2女 男3 男3男1 男3男2男3女女女男1女男2女男3共有12种等可能的结果,其中1男1女的结果有6种所以恰好是1男1女的概率是612=12. ................................................................................................................... 13分。
统计与概率综合测试(时间:100分钟 总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.如图,是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,指针落在()区域的可能性最大 A .1 B .2 C .3 D .42.下列事件为确定事件的有( )①在一标准大气压下,20℃的纯水结冰;②平时的百分制测验,•小明的成绩为105分;③抛一枚硬币落地后正面朝上;④边长为a 、b 的长方形面积为ab . A .1个 B .2个 C .3个 D .4个3.关于全班50名同学的生日,下列说法正确的是( )A .一定有两名同学生日相同;B .每一个月都至少有四名同学过生日C .至少有四名同学的生日相同;D .每名同学的生日均不相同 4.华北某市近几年连年干旱,市政府采取各种措施扩大水源,措施之一是投资增建水厂,如图,是该市目前水资源结构扇形统计图,•请根据图中圆心角的大小计算黄河水在总供水中所占的百分比约为( )A .64%B .60%C .54%D .74%5.2000年某区有15 000名学生参加高考,为了考查他们的数学考试情况,评卷人抽取了800名学生的数学成绩进行统计,那么下列四个判断正确的是( )A .每名学生的数学成绩是个体;B .15 000名学生是总体;C .800名学生是总体的一个样本;D .上述调查是普查 6.下列说法不正确的是( )A .频数与总数的比值叫做频率;B .频率与频数成正比;C .在频数分布直方图中,小长方形的面积是该组的频率;D .用样本来估计总体时,样本越大对总体的估计就越精确。
7.如果一组数据x 1,x 2,x 3,x 4,x 5的平均数是x ,则另一组数据x 1,x 2+1,x 3+2,x 4+3,x 5+4的平均数为( ) A .x B .x +2 C .x +52D .x +1 8.一组数据9.9,10.3,10,10.1,9.7的方差为( ) A .0 B .0.04 C .0.2 D .0.4 9.甲、乙两名同学在几次测验中,平均分都是86分,甲的方差是0.61,•乙的方差是0.72,则可知( )A .甲的成绩好B .乙的成绩好;C .甲的成绩稳定D .乙的成绩稳定 10.当五个数从小到大排列后,其中位数是4,如果这组数据唯一的众数是6,那么这5个数可能的最大和是( )A .21B .22C .23D .24二、填空题(本大题共8小题,每小题3分,共24分) 11.在一副扑克牌中任取一张,则P (抽到梅花)=______.12.甲、乙、丙三种糖果售价分别为每千克6元、7元、8元,若将甲种8千克,•乙种10千克,丙种2千克混合在一起,则售价应定为________元.13.对某班60名同学的一次数学测验成绩进行统计,如果频率分布直方图80.5~90.5分这一组的频率是0.35,那么这个班的学生这次数学测验成绩在80.5~90.5•分之间的人数是_________.14.你想对一批炮弹的质量进行检查,应选用________方法来调查最合理.15.一个班25名男生中,身高1.79米的1人,4人身高1.75米,9人身高1.70米,8•人身高1.65米,2人身高1.60米,1人身高1.56米,则这个班男生身高的众数为______,中位数为________.16.在相同的条件下,对30辆同一型号的汽车进行耗油1升走的路程的试验,根据测得的数据画出频率分布直方图如图,则本次实验中,耗油1•升所行走的路程在13.05~13.35千米范围内的汽车共______辆.17.已知一组数据x 1,x 2,x 3,x 4,x 5的方差是1,那么另一组数据2x 1-1,2x 2-1,2x 3-1,2x 4-1,2x 5-1的方差为________. 18.•随机掷一枚均匀的骰子,•连续掷两次,•则两次骰子的总数和为6•的概率是________. 三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写出文字说明、证明过程或演算步骤)19.你能从图中获取哪些信息?(1)小明家在哪方面的支出最多?占总支出的百分比是多少?(2)小明家在哪两个方面的支出相差不大,所占的百分比分别是多少?(3)若小明一家教育支出为2 800元,则生活费用是多少?20.设计一个均匀的正二十面体形状的骰子,将这个骰子掷出后,“5”朝上的概率为14,“3”朝上的概率是310,“1”朝上的概率为110,“2”朝上的概率是320,“4”朝上的可能性是320,“6”朝上的概率为120,问正二十面体形状的骰子上的数的分布情况.21(1)如果根据平分分来排名,则哪个班得分高一些?(2)如果地面、门窗、桌椅按3:3:4的比例算分,则哪个班得分高一些?22.将分别标有数字1,2,3的3张卡片洗匀后,背面朝上放在桌面上.(1)随机抽一张,求P(奇数).(2)随机抽取一张作为十位上的数字(不放回),再抽一张作为个位上的数字能组成哪些两位数?恰好是32的概率是多少?23.某农民2003年收获了44袋大米,先随意称了5袋大米的质量,每袋大米的质量(单位:千克)如下:35,35,34,39,37.(1)根据样本平均数估计这年该农民粮食的总产量约是多少?(2)若该农民2002年粮食的总产量为1 100千克,•近几年来该农民的粮食产量的增长率大致相同,请你预测一下2004年该农民可以收多少粮食?24.为了解中学生的体能情况,某校抽取了50名中学生进行了一分钟跳绳测试,•将所得数据整理后画出部分频率分布直方图,如图所示,已知图中从左到右前四个小组的频率分别为0.04、0.12、0.4、0.28,根据已知条件填空或画图.(1)第四小组频数为_________,第五小组频率为__________.(2)在这次测验中,跳绳次数的中位数落在第______小组中.(3)补全频率分布直方图.25.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三个年级根据初赛情况分别选出了10•名同学参加决赛,•这些选手的决赛成绩(••满分100分)(1(2)请你从以下两个不同的角度对三个年级的决赛成绩进行分析:①以平均数和众数相结合分析哪个年级成绩好些.②以平均数和中位数相合分析哪个年级成绩好些.③如果在每个年级参加决赛的选手中选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.答案:一、选择题1.A 2.C 3.C 4.A 5.A 6.C 7.B 8.B 9.C 10.A 二、填空题11.135412.6.7 13.21 14.抽样调查15.1.70米,1.70米 16.12 17.4 18.5 36三、解答题19.解:(1)小明家在生活方面支出最多,占总支出的百分比是35%.(2)小明家在教育与储蓄方面支出相差不大,所占的百分比分别为28%和30%.(3)280028%×35%=3 500(元).20.解:20×14=5,20×310=6,20×110=6,20×320=3,20×320=3,20×120=1,分布情况为:5个5个点,6个3点,2个1点,3个2点,3个4点,1个6点.21.解:(1)三个班的平均分一样,都为90分.(2)一班:95×0.3+90×0.3+85×0.4=89.5.二班:95×0.3+80×0.3+95×0.4=90.5.三班:90×0.3+90×0.3+90×0.4=90.二班得分高一些.22.解:(1)P(奇数)=23.(2)可以组成12,13,21,23,31,32,P(32)=16.23.解:(1)35353439375++++×44=1 584(千克).(2)1 584×158411001100-+1 584≈2 281(千克).24.解:(1)14,0.16 (2)三.(3)略.25.解:(1)平均数85.5,众数80,78,中位数86.(2)①初二年级;②初一年级;③初三年级实力更强一些,因为初三年级前三名选手的平均分高.。
(11)统计与概率——2023年中考数学真题专项汇编1.【2023年河南】为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. B. C. D.2.【2023年安徽】如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A. B. C. D.3.【2023年河北】有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D.4.【2023年福建】为贯彻落实教育部办公厅关于“保障学生每天校内、校外各1小时体育活动时间”的要求,学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间(单位:分钟),并制作了如图所示的统计图.根据统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是( )A.平均数为70分钟B.众数为67分钟C.中位数为67分钟D.方差为05.【2023年甘肃兰州】2022年我国新能源汽车销量持续增长,全年销量约为572.6万辆,同比增长91.7%,连续8年位居全球第一.如图,统计图反映了2021年、2022年新能源汽车月度销量及同比增长速度的情况.(2022年同比增长速度)根据统计图提供的信息,下列推断不合理的是( )A.2021年新能源汽车月度销量最高是12月份,超过40万辆B.2022年新能源汽车月度销量超过50万辆的月份有6个C.相对于2021年,2022年新能源汽车同比增长速度最快的是2月份,达到了181.1%D.相对于2021年,2022年从5月份开始新能源汽车同比增长速度持续降低6.【2023年北京】某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:_________只.7.【2023年重庆A】一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.8.【2023年河南】某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm)的统计图,则此时该基地高度不低于300 cm的“无絮杨”品种苗约有__________棵.9.【2023年山西】中国古代的“四书”是指《论语》《孟子》《大学》《中庸》(如图),它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是__________.10.【2023年福建】某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:甲的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是_________.11.【2023年天津】为培养青少年的劳动意识,某校开展了剪纸、编织、烘焙等丰富多彩的活动.该校为了解参加活动的学生的年龄情况,随机调查了a名参加活动的学生的年龄(单位:岁).根据统计的结果,绘制出如下的统计图(1)和图(2).请根据相关信息,解答下列问题:(1)填空:a的值为________,图(1)中m的值为________;(2)求统计的这组学生年龄数据的平均数、众数和中位数.12.【2023年北京】某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175b.16名学生的身高的平均数、中位数、众数:(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好.据此推断:在下列两组学生中,舞台呈现效果更好的是__________(填“甲组”或“乙组”).168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为__________和____________.13.【2023年重庆A】为了解A、B两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A、B两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x表示,共分为三组:合格,中等,优等),下面给出了部分信息:A款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B款智能玩具飞机架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表根据以上信息,解答下列问题:(1)上述图表中___________,___________,___________;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可).(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架.14.【2023年河南】蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c.配送速度和服务质量得分统计表:(1)表格中的______;______(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?15.【2023年安徽】端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行活整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是______________,七年级活动成绩的众数为______________分;(2)______________,______________;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.16.【2023年陕西A】一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为_________;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.17.【2023年陕西A】某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了如下统计图表:根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是________;(2)求这20个数据的平均数;(3)“校园农场“中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数.18.【2023年山西】为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按的比例计算出每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图.(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分.(2)请你计算小涵的总评成绩.(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.19.【2023年江西】为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件;(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁2名同学都被选为宣传员的概率.20.【2023年江西】为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表(1)_______,_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由.②约定:视力未达到1.0为视力不良.若该区有26000名初中学生,估计该区有多少名初中学生视力不良?并对视力保护提出一条合理化建议.21.【2023年河北】某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)监督人员从余下问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?22.【2023年广东】小红家到学校有两条公共汽车线路,为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间,数据统计如下:(单位:min)数据统计表___________;___________(2)应用你所学统计知识,帮助小红分析如何选择乘车线路.答案以及解析1.答案:B解析:用A,B,C分别代表三部影片,画树状图如下:由树状图可知,共有9种等可能的情况,其中两个年级选择的影片相同的情况有3种,故所求概率为.故选B.2.答案:C解析:根据题意,有以下6种等可能的结果:123,132,213,231,312,321,其中恰好是“平稳数”的结果有:123,321,共有2种,故所求概率为,即.3.答案:B解析:在7张扑克牌中,有1张黑桃牌,3张红心牌,1张梅花牌,2张方块牌.因为红心牌的张数最多,所以从中随机抽取一张,抽到红心牌的可能性最大.4.答案:B解析:平均数(分钟).把这组数据按照从低到高的顺序排列为65,67,67,70,75,79,88,位于中间的数为70,故中位数为70分钟.这组数据中67出现了2次,出现的次数最多,故众数是67分钟.由于这7个数不完全相等,故方差不为0.5.答案:D解析:比较统计表中的数据可知,相对于2021年,2022年5月到6月,新能源汽车同比增长速度提高,而从6月到12月,新能源汽车同比增长速度持续降低.故选项D推断不合理.6.答案:460解析:(只).7.答案:解析:根据题意列表如下:率为.8.答案:280解析:该基地高度不低于300 cm的“无絮杨”品种苗约有(棵).9.答案:解析:将《论语》《孟子》《大学》《中庸》分别用A,B,C,D表示,根据题意列表如下:率是.10.答案:乙解析:利用加权平均数计算.甲:(分);乙:(分);丙:(分).,故被录用的是乙.11.答案:(1)40;15(2)14解析:(1).,.(2)观察条形统计图,,这组数据的平均数是14.在这组数据中,15出现了16次,出现的次数最多,这组数据的众数是15.将这组数据按由小到大的顺序排列,处于中间的两个数都是14,且,这组数据的中位数是14.12.答案:(1),.(2)甲组(3)170;172解析:(1)将这组数据按照从小到大的顺序排列为:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,出现次数最多的数是165,出现了3次,即众数,16个数据中的第8和第9个数据分别是166,166,中位数,,;(2)甲组身高的平均数为,甲组身高的方差为乙组身高的平均数为,乙组身高的方差为,舞台呈现效果更好的是甲组,故答案为:甲组;(3)168,168,172的平均数为所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,数据的差别较小,数据才稳定,可供选择的有:170,172,且选择170,172时,平均数会增大,故答案为:170;172.13.答案:(1)72;70.5;10(2)答案一:A款智能玩具飞机运行性能更好.理由如下(写出一条理由即可):①A款智能玩具飞机运行最长时间的中位数71大于B款智能玩具飞机运行最长时间的中位数70.5;②A款智能玩具飞机运行最长时间的众数72大于B款智能玩具飞机运行最长时间的众数67.答案二:B款智能玩具飞机运行性能更好,理由如下:A,B两款智能玩具飞机运行最长时间的平均数均为70,B款智能玩具飞机运行最长时间的方差26.6小于A款智能玩具飞机运行最长时间的方差30.4.(3)(架)答:估计两款智能玩具飞机运行性能在中等及以上的共有192架.解析:14.答案:(1)7.5;<(2)选择乙公司.因为乙公司配送速度得分的平均数和中位数都比甲公司高,说明乙公司的整体配送速度较快.(注:答案不唯一,合理即可)(3)收集快递公司的收费标准.(注:答案不唯一,合理即可)解析:(1)由题意可得,,∴,故答案为:7.5.(2)略(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)15.答案:(1)1;8(2)2;3(3)否.理由:七年级平均成绩(分),优秀率.八年级平均成绩(分),优秀率.因为,,所以根据样本数据,本次活动中优秀率高的年级平均成绩较低.解析:(1)根据扇形统计图,七年级活动成绩为分学生数的占比为.样本中,七年级活动成绩为分的学生数是,根据扇形统计图,七年级活动成绩的众数为8分故答案为:1;8.(2)八年级10名学生活动成绩的中位数为8.5分,第5名学生为8分,第6名学生为9分,,,故答案为:2;3.(3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为,平均成绩为,八年级优秀率为,平均成绩为:,优秀率高的年级为八年级,但平均成绩七年级更高,优秀率高的年级不是平均成绩也高.16.答案:(1)(2)解析:(1)由题意可得,数字1,1,2,3中,数字1有2个,所以,从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为,故答案为:;(2)根据题意列表如下:数的结果有7种,所以.17.答案:(1)54(2)50(3)15000个解析:(1)补全的频数分布直方图如图所示(2).(3)估计这300棵西红柿植株上小西红柿的总个数是.18.答案:(1)69;69;70(2)82分(3)结论:小涵能入选,小悦不一定能入选,理由见解析.解析:(1)从小到大排序,67,68,69,69,71,72,74,中位数是69,众数是69,平均数:(2)(分).答:小涵的总评成绩为82分.(3)结论:小涵能入选,小悦不一定能入选.理由:理由:由题中20名学生的总评成绩频数直方图可得,总评成绩不低于80分的学生有10名,总评成绩不低于70分且低于80分的学生有6名.小涵和小悦的总评成绩分别是82分、78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.19.答案:(1)随机(2)解析:(1)略(2)解法一:列表如下:同学1同学2甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)由上表可知,所有可能的结果共有12种,且每种结果出现的可能性相等,其中甲、丁2名同学都被选为宣传员的结果有2种.所以P(甲、丁2名同学都被选为宣传员).解法二:画树状图如下:由树状图可知,所有可能的结果共有12种,且每种结果出现的可能性相等,其中甲、丁2名同学都被选为宣传员的结果有2种.所以P(甲、丁2名同学都被选为宣传员).20.答案:(1)68;(2)320(3)①小胡的说法正确②估计该区有14300名中学生视力不良,建议见解析解析:(1)略(2)略(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中学生视力的中位数为1.0,高中学生视力的中位数为0.9,所以初中学生的视力水平好于高中学生.理由二:从众数看,初中学生视力的众数为1.0,高中学生视力的众数为0.9,所以初中学生的视力水平好于高中学生.②方法一:(名).方法二:(名).答:估计该区有14300名中学生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.21.答案:(1)中位数为3.5分,平均数为3.5分;该部门不需要整改(2)监督人员抽取的问卷所评分数为5分;与(1)相比,中位数发生了变化解析:(1)由条形统计图可知,客户所评分数按从小到大排列后,第10,11个数据分别是3分,4分,客户所评分数的中位数为(分).客户所评分数的平均数为(分).客户所评分数的平均数和中位数都不低于3.5分,该部门不需要整改.(2)设监督人员抽取的问卷所评分数为x分,根据题意,得,解得.满意度从低到高为1分,2分,3分,4分,5分,共5档,监督人员抽取的问卷所评分数为5分.中位数发生了变化.理由:加入这个数据后,将客户所评分数按从小到大排列,第11个数据是4分,加入这个数据之后,中位数是4分,与(1)相比,中位数发生了变化.22.答案:(1)19;26.8;25(2)选择A线路.理由:A线路平均用时少.或选择B线路.理由:B线路方差小,说明用时波动性不大.解析:(1)将A线路所用时间数据按从小到大的顺序排列,中间的两个数是18,20,故该组数据的中位数是,即.,即.B线路所用时间数据中,25出现的次数最多,故众数是25,即.(2)(可从平均数、中位数、众数、方差等四个方面分析,并说明理由,合理即可)。
中考统计与概率专题复习题及答案热点8 统计与概率本次考试时间为100分钟,总分为100分。
一、选择题(共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知一组数据5,5,6,x,7,7,8的平均数为6,则这组数据的中位数是()A。
7B。
6C。
5.5D。
52.检测1000名学生的身高,从中抽出50名学生测量。
在这个问题中,50名学生的身高是()A。
个体B。
总体C。
样本容量D。
总体的样本3.下列事件为必然事件的是()A。
买一张电影票,座位号是偶数;B。
抛掷一枚普通的正方体骰子1点朝上;C。
百米短跑比赛,一定产生第一名;D。
明天会下雨。
4.一次抽奖活动中,印发的奖券有10,000张,其中特等奖2张,一等奖20张,二等奖98张,三等奖200张,鼓励奖680张。
那么第一位抽奖者(仅买一张奖券)中奖的概率为()A。
1111B。
5000C。
1050D。
505.某校把学生的笔试、实践能力、成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀。
甲、乙、丙三人的各项成绩(单位:分)如下表。
学期总评成绩优秀的是()笔试 | 实践能力 | 成长记录 |甲。
| 90.| 83.| 95.|乙。
| 88.| 90.| 95.|丙。
| 90.| 88.| 90.|A。
甲B。
乙、丙C。
甲、乙D。
甲、丙6.甲、乙两个样本的方差分别是s甲^2=6.06,s乙^2=14.31.由此可反映出()A。
样本甲的波动比样本乙的波动大;B。
样本甲的波动比样本乙的波动小;C。
样本甲的波动与样本乙的波动大小一样;D。
样本甲和样本乙的波动大小关系不确定。
7.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差为3.那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是()A。
2,1B。
2,3C。
4,1D。
4,38.某班一次数学测验,其成绩统计如下表:分数 | 50.| 60.| 70.| 80.| 90.| 100 |人数 | 16.| 12.| 11.| 15.| 5.| 5.|则这个班此次测验的众数为()A。
中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。
2022年中考数学一轮复习:统计与概率综合练习一、单选题1.某班体育课上老师记录了8位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,23,38,38,35,35,38,48,这组数据的中位数和众数分别是()A.35,38 B.36.5,38 C.38,35 D.38,382.某学校女子排球队12名队员的年龄分布如图所示,则这12名队员的年龄的众数、平均数分别是()A.15岁,15岁B.15岁,14岁C.14岁,14岁D.14岁,15岁3.随机从1,2,3,4中任取两个不同的数,分别记为a和b,则a+b>4的概率是()A.12B.23C.34D.564.从2-,0,1,2这四个数中,任取两个不同的数作为一次函数y kx b=+的系数k,b,则一次函数y kx b=+的图象不经过第四象限的概率是()A.13B.49C.29D.595.某校举行“弘扬传统文化”诗词背诵活动,为了解学生一周诗词背诵数量,随机抽取50名学生进行一周诗词背诵数量调查,依据调查结果绘制了折线统计图.下列说法正确的是()A.一周诗词背诵数量的众数是6B .一周诗词背诵数量的中位数是6C .一周诗词背诵数量从5到10首人数逐渐下降D .一周诗词背诵数量超过8首的人数是246.下列说法:(1)了解一批灯泡的使用寿命,采用全面调查;(2)若∠α=20°40′,则∠α的补角为159°60′;(3)若一个正n 边形的每个内角为144°,则正n 边形的所有对角线的条数是35;(4)等腰三角形的一边长是3,另两边的长是关于x 的方程x 2﹣4x +k =0的两个根,则k 的值为3;正确的个数是( ) A .1B .2C .3D .47.为了减轻学生课外作业负担,数学老师准备按照学生每天课外作业完成量(完成题目个数)实行分档布置作业.作业量分档递增,计划使第一档、第二档和第三档的作业量覆盖全校学生的70%,20%和10%,为合理确定各档之间的界限,随机抽查了该校500名学生过去一个阶段完成作业量的平均数(单位:个);绘制了统计图.如图所示,下面四个推断合理的是( )A .每天课外作业完成量不超过15个题的该校学生按第二档布置作业B .每天课外作业完成量超过21个的该校学生按第三档布置作业C .该校学生每天课外作业完成量的平均数不超过18D .该校学生每天课外作业完成量的中位数在15﹣18之间8.在对一组样本数据进行分析时,小月列出了方差的计算公式:s 2=2222(3)(3)(2)(4)x x x x n -+-+-+-,由公式提供的信息,则下列说法错误的是( )A .样本的众数是3B .样本的中位数是2.5C .样本的平均数是3D .n =49.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如表:操作组管理组研发组日工资(元/人) 260280300人数(人) 444现从管理组抽调2人,其中1人到研发组,另1人到操作组,调整后与调整前相比,下列说法不正确的是( )A .团队日工资的平均数不变 B .团队日工资的方差不变 C .团队日工资的中位数不变 D .团队日工资的极差不变10.如图1所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为8m ,宽为5m 的长方形,将不规则图案围起来,然后在适当位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(小球扔在界线上或长方形区域外不计入试验结果),他将若干次有效试验的结果绘制成了图2所示的折线统计图,由此可估计不规则图案的面积大约是( )A .212mB .214mC .216mD .218m二、填空题11.从小到大排列的一组数2,4,,10x ,如果这组数据的平均数与中位数相等,则x 的值为__________.12.在一个不透明的布袋中装有6个红球和若干个白球,它们除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到白球的频率稳定在0.6,则布袋中白球有_______个.13.某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价 05x <≤好 510x ≤< 一般 1015x ≤< 拥挤 1520x ≤<严重拥挤根据以上信息.以下四个判断中,正确的是______(填写所有正确结论的序号). ①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天; ②该景区这个月每日接待游客人数的中位数0~5万人之间; ③该景区这个月平均每日接待游客人数低于5万人.14.某种小麦种子每10000粒重约350克,小麦播种的发芽概率约是95%,1株麦芽长成麦苗的概率约是90%,一块试验田的麦苗数是8550株,则播种这块试验田需麦种约为_______克.15.某单位设有6个部门,共153人,如下表: 部门 部门1 部门2 部门3 部门4 部门5 部门6 人数 261622324314参与了“学党史,名师德、促提升”建党100周年,“党史百题周周答活动”,一共10道题,每小题10分,满分100分;在某一周的前三天,由于特殊原因,有一个部门还没有参与答题,其余五个部门全部完成了答题,完成情况如下表: 分数100 90 80 70 60 50及以下比例 52111综上所述,未能及时参与答题的部门可能是_______.三、解答题16.为全面落实党的教育方针,培养全面发展的合格学生.某校为了让学生在体育锻炼中享受乐趣、增强体质、健全人格、锤炼意志,落实市教育局制定的《青岛市促进中小学生全面发展“十个一”项目行动计划》.开展了以下体育活动:代号 A B C D E 活动类型球类游泳跳绳武术其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项活动),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题:(1)此次共调查了_____名学生;(2)将条形统计图补充完整;(3)“武术”所在扇形的圆心角为_____°;(4)若该校共有3600名学生,请估计该校选择A类活动的学生共有多少人?(写出计算过程)17.随着我国网络信息技术的不断发展,在课堂中恰当使用技术辅助教学是时代提出的新要求.城北区为了解初中数学教师对“网络画板”信息技术的掌握情况,对部分初中数学教师进行了调查,并根据调查结果绘制成如下不完整的统计图、表.掌握情况人数非常熟练20比较熟练a不太熟练16基本不会b请根据图、表信息,解答下列问题:(1)求表中a,b的值;(2)求图中表示“比较熟练”的所在扇形圆心角的度数;(3)城北区共有初中数学教师460人,若将“非常熟练”和“比较熟练”作为良好标准,试估计城北区初中数学教师对“网络画板”信息技术掌握情况为“良好”的教师有多少人?18.为了落实“全民阅读活动”,从某学校初一学生中随机抽取了100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:排号分组频数1 0≤x<2 62 2≤x<4 83 4≤x<6 174 6≤x<8 225 8≤x<10 256 10≤x<12 127 12≤x<14 68 14≤x<16 29 16≤x<18 2合计100(1)求频率分布直方图中的a,b的值;(2)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).19.某中学为调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)请你补全条形统计图;(2)在这次调查的数据中,做作业所用时间的众数是多少,中位数是多少;(3)若该校共有2 000名学生,根据以上调查结果该校全体学生每天做作业时间在3小时内(含3小时)的同学共有多少人?20.2021年9月30日,以抗美援朝战争中长津湖战役为背景的电影《长津湖》在各大影院上映后,赢得口碑与票房双丰收.小亮和小明都想去观看这部电影,但是只有一张电影票,于是他们决定采用摸球的办法决定胜负,获胜者去看电影,游戏规则如下:在一个不透明的袋子中装有编号为1,2,3,4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后不放回,再从中摸出一个球,记下数字,若两次数字之和大于5,则小亮获胜,若两次数字之和小于5,则小明获胜.请用列表或画树状图的方法求小明获胜的概率.21.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n 100 150 200 500 800 1000 摸到黑球的次数m 23 31 60 130 203 251摸到黑球的频率mn0.23 0.21 0.30 0.26 0.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.22.某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图.由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录特级柑橘的售价(元/千克)14 15 16 17 18特级柑橘的日销售量(千克)1000 950 900 850 800(1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_____千克;(2)按此市场调节的观律,①若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由②考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由.23.弘扬鹭岛新风,文明有你有我.某校初中部组织学生开展志愿服务活动,活动设有“义务讲解”、“交通督导”、“图书义卖”、“社区服务”、“探望老人”等五个项目,要求每名同学至少选择其中一个项目参加.该校初中部共有800名学生,现随机抽取该校初中三个年级的部分学生,对其参加活动项目的情况进行调查,并制作了统计图表,如表、图1、图2.被抽样学生参加的活动项目频数分布表:被抽样学生参加的活动项目数量人数所占比例参加一项活动57 0.38参加两项活动 a 0.30参加三项活动30 0.20参加四项活动12 0.08参加五项活动 6 0.04(1)求a的值;(2)估计该校初中部800名学生中参加三项以上(含三项)活动的人数;(3)被抽样学生中,参加社区服务活动的初二年级人数占参加该项目的总人数的比例达到52%,小刚结合图2判断:相比图书义卖,社区服务更受该校初二年级的学生欢迎.你认为小刚的判断正确吗?请说明理由.参考答案1.B2.B3.B4.A5.B6.A7.C8.B9.B10.B11.812.913.①②14.35015.516.(1)共调查的学生数是:45÷15%=300(名).故答案为:300;(2)B类的学生数有:300×25%=75(名),B类的学生数有:300﹣60﹣75﹣45﹣30=90(名),补全统计图如下:(3)“武术”所在扇形的圆心角为:360°×90300=108°.故答案为:108; (4)3600×60300=720(人),答:该校选择A 类活动的学生共有720人. 17. (1)解:由统计图和统计表可知,“非常熟练”的人数为20人,其所占的百分比为40%, ∴总人数=205040%=(人), “基本不会”的人数50×8%=4(人), ∴b =4,a =50-20-16-4=10. (2)解:“比较熟练”所占的百分比为10÷50×100%=20%, ∴“比较熟练”所在扇形圆心角的度数为:20%×360°=72°. (3)解:在抽样调查中,“非常熟练”和“比较熟练”所占的总人数为:20+10=30(人), 其所占的百分比为:30÷50×100%=60%, ∴460人中对“网络画板”信息技术掌握情况为“良好”的教师有450×60%=270(人) . 18 (1)根据表格得:a =17,b =25; (2)根据题意得:P (这名学生该周课外阅读时间少于12小时)=1-622100++=0.9; (3)根据题意得:163851772292511121361521727.68100⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=,则样本中的100名学生该周课外阅读时间的平均数在第4组. 19.解. (1)每天作业用时4个小时的人数是:506121688----=(人), 故条形统计图如图所示:(2)每天作业用时是3小时的人数最多, ∴众数是3小时;从小到大排列后排在第25位和第26位的都是每天作业用时3小时的人, ∴中位数是3小时;(3)612162000136050++⨯=(人), 故答案为:1360人. 20画树状图如下:共有12种等可能的结果,其中两次数字之和小于5的结果有4种, 事件A 小明获胜,两次数字和小于5的结果有4种,()41123P A ==. 21(1)解:2511000=0.251÷,∵ 大量重复试验中事件发生的频率稳定到0.25附近, ∴估计从袋中摸出一个球是黑球的概率是0.25; 故填:0.25. (2)解:设袋中白球为x 个, 则10.251x=+ , ∴x =3,答:估计袋中有3个白球; (3)解:用B 代表一个黑球,1W 、2W 、3W 代表白球,将摸球情况列表如下:B1W 2W3WB (B ,B ) (B , 1W ) (B , 2W ) (B , 3W )1W(1W ,B ) (1W ,1W ) (1W ,2W ) (1W ,3W )2W(2W ,B ) (2W ,1W ) (2W ,2W ) (2W ,3W )3W(3W ,B ) (3W ,1W ) (3W ,2W ) (3W ,3W )总共有16种等可能的结果,其中两个球都是白球的结果有9种, 所以摸到两个球都是白球的概率为916. 22.(1)由图可知损坏率在0.1上下波动,并趋于稳定 故所求为()1000010.19000⨯-=千克(2)①设销售量y 与售价x 的函数关系式为y kx b =+由题意可得函数图像过()18,800及()17,850两点8001885017k bk b =+⎧⎨=+⎩得501700k b =-⎧⎨=⎩∴y 与x 的函数关系式为501700y x =-+ 把16.5x =代入,875y =∴当售价定为16.5元/千克,日销售量为875千克 ②依题意得:12天内售完9000千克柑橘 故日销售量至少为:900075012=(千克) ∴501700750y x =-+≥ 解得19x ≤设利润为w 元,则2(9)(501700)50215015300w x x x x =-⨯-+=-+- ∴对称轴为5.21=x∴当19x ≤时w 随x 的增大而增大∴当19x =时销售利润最大,最大利润为(199)(50191700)7500-⨯-⨯+=(元) 23.解:(1)被调查的总人数为570.38150÷=(人),1500.345a ∴=⨯=;(2)估计该校初中部800名学生中参加三项以上(含三项)活动的人数为800(0.20.080.04)256⨯++=(人);(3)小刚的判断不正确,理由:被抽样学生中参加社区服务的人数未知,从而无法比较初二学生中图书义卖,社区服务学生人数.。
2014年中考数学总复习专题测试卷1(统计与概率) Fighting, Fighting, Fighting ……一、选择题(本题共10 小题,每小题4 分,满分40分) 1.若一组数据1,2,3,x 的极差为6,则x 的值是( )。
A .7 B .8 C .9 D .7或-32.样本X 1、X 2、X 3、X 4的平均数是X ,方差是S 2,则样本X 1+3,X 2+3,X 3+3,X 4+3的平均数和方差分别是( )。
A .x +3,S 2+3 B . x +3, S 2 C . x ,S 2+3 D . x , S 23.刘翔在出征北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这20次成绩的( )。
A 、方差B .平均数C .频数D . 众数 4.盒中装有5个大小相同的球,其中3个白球,2个红球,从中任意取两个球,恰好取到一个红球和一个白球的概率是( )。
A .254 B .101 C .53 D .215.如图所示的两个圆盘中,指针落在每一个数上的机会均等, 那么两个指针同时落在偶数上的概率是( )。
A .1925 ;B .1025 ;C .625 ;D .5256.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( )。
A . 明天本市70%的时间下雨,30%的时间不下雨B . 明天本市70%的地区下雨,30%的地区不下雨C . 明天本市一定下雨D . 明天本市下雨的可能性是70% 7.男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( )。
A .只发出5份调查卷,其中三份是喜欢足球的答卷 B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8 C .在答卷中,喜欢足球的答卷占总答卷的53D .发出100份问卷,有60份答卷是不喜欢足球 8.一个袋中装有2个黄球和2个红球,任意摸出一个球后放回,再任意摸出一个球,则两次都摸到红球的概率为( )。
中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。
统计与概率【命题趋势】在中考.这是必考内容.主要考查形式包括:选择特、填空题和解答题。
难度系数不大.分值约占14分左右。
【中考考查重点】一、调查方式二、综合体、个体、样本及样本容量三、数据分析考点:全面调查与抽样调查1.有关概念1)全面调查:为一特定目的而对所有考察对象进行的全面调查叫做全面调查.2)抽样调查:为一特定目的而对部分考察对象进行的调查叫做抽样调查.2.调查的选取:当受客观条件限制.无法对所有个体进行全面调查时.往往采用抽样调查.3.抽样调查样本的选取:1)抽样调查的样本要有代表性.2)抽样调查的样本数目要足够大.1.(2021•柳州)以下调查中.最适合用来全面调查的是()A.调查柳江流域水质情况B.了解全国中学生的心理健康状况C.了解全班学生的身高情况D.调查春节联欢晚会收视率【答案】C【解答】解:A、调查柳江流域水质情况.适合抽样调查.故本选项不符合题意.B、了解全国中学生的心理健康状况.适合抽样调查.故本选项不符合题意.C、了解全班学生的身高情况.适合普查.故本选项符合题意.D、调查春节联欢晚会收视率.适合抽样调查.故本选项不符合题意.故选:C.2.(2020•安顺)2020年为阻击新冠疫情.某社区要了解每一栋楼的居民年龄情况.以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62.63.75.79.68.85.82.69.70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【答案】C【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62.63.75.79.68.85.82.69.70.获得这组数据的方法是:调查.故选:C.考点总体、个体、样本及样本容量总体:所要考察对象的全体叫做总体.个体:总体中的每一个考察对象叫做个体.样本:从总体中抽取的部分个体叫做样本.样本容量:样本中个体的数目叫做样本容量.3.(2021•张家界)某校有4000名学生.随机抽取了400名学生进行体重调查.下列说法错误的是()A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生的体重D.样本容量是400【答案】B【解答】解:A.总体是该校4000名学生的体重.说法正确.故A不符合题意.B.个体是每一个学生的体重.原来的说法错误.故B符合题意.C.样本是抽取的400名学生的体重.说法正确.故C不符合题意.D.样本容量是400.说法正确.故D不符合题意.故选:B.考点:几种常见的统计图表1.条形统计图:条形统计图就是用长方形的高来表示数据的图形.特点:(1)能够显示每组中的具体数据.(2)易于比较数据之间的差别.2.折线统计图:用几条线段连成的折线来表示数据的图形.特点:易于显示数据的变化趋势.3.扇形统计图:用一个圆代表总体.圆中的各个扇形分别代表总体中的不同部分.扇形的大小反映部分在总体中所占百分比的大小.这样的统计图叫扇形统计图.百分比的意义:在扇形统计图中.每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360°的比.扇形的圆心角=360°×百分比.4.频数分布直方图1)每个对象出现的次数叫频数.2)每个对象出现的次数与总次数的比(或者百分比)叫频率.频数和频率都能够反映每个对象出现的频繁程度.3)频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况.4)频数分布直方图的绘制步骤:①计算最大值与最小值的差.②决定组距与组数.③确定分点.常使分点比数据多一位小数.并且把第一组的起点稍微减小一点.④列频数分布表.⑤画频数分布直方图:用横轴表示各分段数据.纵轴反映各分段数据的频数.小长方形的高表示频数.绘制频数分布直方图.4.(2021•云南)2020年以来.我国部分地区出现了新冠疫情.一时间.疫情就是命令.防控就是责任.一方有难八方支援.某公司在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶.有关信息见如下统计图:下列判断正确的是()A.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.每天单独生产C型帐篷的数量最多【答案】C【解答】解:A、单独生产B帐篷所需天数为=4(天).单独生产C帐篷所需天数为=1(天).∴单独生产B型帐篷的天数是单独生产C型帐篷天数的4倍.此选项错误.B、单独生产A帐篷所需天数为=2(天).∴单独生产B型帐篷的天数是单独生产A型帐篷天数的2倍.此选项错误.C、单独生产D帐篷所需天数为=2(天).∴单独生产A型帐篷与单独生产D型帐篷的天数相等.此选项正确.D、单由条形统计图可得每天单独生产A型帐篷的数量最多.此选项错误.故选:C.6.(2021•宁波)图1表示的是某书店今年1~5月的各月营业总额的情况.图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元.观察图1、图2.解答下列问题:(1)求该书店4月份的营业总额.并补全条形统计图.(2)求5月份“党史”类书籍的营业额.(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高.并说明理由.【答案】(1) 略(2) 10.5万元(3)5月份“党史”类书籍的营业额最高【解答】解:(1)该书店4月份的营业总额是:182﹣(30+40+25+42)=45(万元).补全统计图如下:(2)42×25%=10.5(万元).答:5月份“党史”类书籍的营业额是10.5万元.(3)4月份“党史”类书籍的营业额是45×20%=9(万元).∵10.5>9.且1﹣3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份.∴5月份“党史”类书籍的营业额最高.考点:众数、中位数、平均数、方差1.众数:在一组数据中.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列.把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. 3.平均数1)平均数:一般地.如果有n 个数1x .2x .….n x .那么.121()n x x x x n=+++…叫做这n 个数的平均数.x 读作“x 拔”. 2)加权平均数:如果n 个数中.1x 出现f 1次.x 2出现f 2次.….x k 出现f k 次(这里12k f f f n +++=…).那么.根据平均数的定义.这n 个数的平均数可以表示为1122k kx f x f x f x n+++=….这样求得的平均数x 叫做加权平均数.其中f 1.f 2.….f k 叫做权.4.方差.通常用“2s ”表示.即2222121[()()()]n s x x x x x x n=-+-++-….在一组数据1x .2x .….n x 中.各数据与它们的平均数x 的差的平方的平均数.叫做这组数6.(2021•本溪)下表是有关企业和世界卫生组织统计的5种新冠疫苗的有效率.则这5种疫苗有效率的中位数是( ) 疫苗名称 克尔来福 阿斯利康 莫德纳 辉瑞 卫星V 有效率 79%76% 95%95% 92%A .79%B .92%C .95%D .76%【答案】B【解答】解:从小到大排列此数据为:76%、79%、92%、95%、95%.92%处在第3位为中位数. 故选:B .7.(2021•湘潭)某中学积极响应党的号召.大力开展各项有益于德智体美劳全面发展的活动.小明同学在某学期德智体美劳的评价得分如图所示.则小明同学五项评价的平均得分为()A.7分B.8分C.9分D.10分【答案】C【解答】解:小明同学五项评价的平均得分为=9(分).故选:C.8.(2021•山西)每天登录“学习强国”App进行学习.在获得积分的同时.还可获得“点点通”附加奖励.李老师最近一周每日“点点通”收入明细如表.则这组数据的中位数和众数分别是()星期一二三四五六日收入(点)15212727213021A.27点.21点B.21点.27点C.21点.21点D.24点.21点【答案】C【解答】解:将这7个数据从小到大排列为:15.21.21.21.27.27.30.所以中位数为21.众数为21.故选:C.9.(2021•上海)商店准备确定一种包装袋来包装大米.经市场调查后.做出如下统计图.请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包【答案】A【解答】解:由图知这组数据的众数为1.5kg~2.5kg.取其组中值2kg.故选:A.10.(2021•金华)小聪、小明准备代表班级参加学校“党史知识”竞赛.班主任对这两名同学测试了6次.获得如图测试成绩折线统计图.根据图中信息.解答下列问题:(1)要评价每位同学成绩的平均水平.你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算.你认为哪位同学的成绩较好?请简述理由.【答案】(1)应选择平均数.小聪、小明的平均数分别是8分.8分. (2)(平方分)(3)小聪同学的成绩较好【解答】解:(1)要评价每位同学成绩的平均水平.选择平均数即可.小聪成绩的平均数:(7+8+7+10+7+9)=8(分).小明成绩的平均数:(7+6+6+9+10+10)=8(分).答:应选择平均数.小聪、小明的平均数分别是8分.8分.(2)小聪成绩的方差为:[(7﹣8)2+(8﹣8)2+(7﹣8)2+(10﹣8)2+(7﹣8)2+(9﹣8)2]=(平方分).(3)小聪同学的成绩较好.理由:由(1)可知两人的平均数相同.因为小聪成绩的方差小于小明成绩的方差.成绩相对稳定.故小聪同学的成绩较好.考点:概率11.(2021•怀化)“成语”是中华文化的瑰宝.是中华文化的微缩景观.下列成语:①“水中捞月”.②“守株待兔”.③“百步穿杨”.④“瓮中捉鳖”描述的事件是不可能事件的是()A.①B.②C.③D.④【答案】A【解答】解:①“水中捞月”是不可能事件.符合题意.②“守株待兔”是随机事件.不合题意.③“百步穿杨”.是随机事件.不合题意.④“瓮中捉鳖”是必然事件.不合题意.故选:A.12.(2021•百色)骰子各面上的点数分别是1.2.….6.抛掷一枚骰子.点数是偶数的概率是()A.B.C.D.1【答案】A【解答】解:∵任意抛掷一次骰子共有6种等可能结果.其中朝上一面的点数为偶数的只有3种.∴朝上一面的点数为偶数的概率=.故选:A.13.(2021•兰州)如图.将一个棱长为3的正方体表面涂上颜色.再把它分割成棱长为1的小正方体.将它们全部放入一个不透明盒子中摇匀.随机取出一个小正方体.只有一个面被涂色的概率为()A.B.C.D.【答案】B【解答】解:将一个棱长为3的正方体分割成棱长为1的小正方体.一共可得到3×3×3=27(个).有6个一面涂色的小立方体.所以.从27个小正方体中任意取1个.则取得的小正方体恰有一个面涂色的概率为=.故选:B.14.(2021•临沂)现有4盒同一品牌的牛奶.其中2盒已过期.随机抽取2盒.至少有一盒过期的概率是()A.B.C.D.【答案】D【解答】解:把2盒不过期的牛奶记为A、B.2盒已过期的牛奶记为C、D.画树状图如图:共有12种等可能的结果.至少有一盒过期的结果有10种.∴至少有一盒过期的概率为=.故选:D.15.(2021秋•任城区校级期末)4张相同的卡片上分别写有数字0、1、﹣2、3.将卡片的背面朝上.洗匀后从中任意抽取1张.将卡片上的数字记录下来.再从余下的3张卡片中任意抽取1张.同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是非负数的概率为.(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时.甲获胜.否则.乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)【答案】(1)【解答】解:(1)第一次抽取的卡片上数字是非负数的概率为.故答案为:.(2)小敏设计的游戏规则公平.理由如下:列表如下:01﹣23 01﹣231﹣1﹣32﹣22353﹣3﹣2﹣5由表可知.共有12种等可能结果.其中结果为非负数的有6种结果.结果为负数的有6种结果.∴甲获胜的概率=乙获胜的概率==.∴小敏设计的游戏规则公平.1.下列调查中.适合采用抽样调查的是()A.了解全班学生的身高B.检测“天舟三号”各零部件的质量情况C.对乘坐高铁的乘客进行安检D.调查某品牌电视机的使用寿命【答案】D【解答】解:A.了解全班学生的身高.适宜全面调查.故A选项不符合题意.B.检测“天舟三号”各零部件的质量情况.适宜全面调查.故B选项不合题意.C.对乘坐高铁的乘客进行安检.适宜全面调查.故C选项不合题意.D、调查某品牌电视机的使用寿命.适宜抽样调查.故D选项合题意.故选:D.2.随着中国经济的高速发展.人们的生活水平发生了巨大改变.目前大部分中小学生的营养问题已经从以前的营养不良变成营养过剩.某中学从该校的4000名学生中随机抽取了400名学生进行体重调查.下列说法错误的是()A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生的体重D.样本容量是400【答案】B【解答】解:A.总体是该校4000名学生的体重.说法正确.故A不符合题意.B.个体是每一个学生的体重.原来的说法错误.故B符合题意.C.样本是抽取的400名学生的体重.说法正确.故C不符合题意.D.样本容量是400.说法正确.故D不符合题意.故选:B.3.某校学生参加体育兴趣小组的情况如图所示.已知参加排球小组的有25人.则参加乒乓球小组的人数为()A.100人B.40人C.35人D.25人【答案】B【解答】解:参加兴趣小组的总人数25÷25%=100(人).参加乒乓球小组的人数100×(1﹣25%﹣35%)=40(人).故选:B.4.某中学七年级甲、乙两个班进行了一次数学运算能力测试.测试人数每班都为40人.每个班的测试成绩分为A.B.C.D四个等级.绘制的统计图如图.根据以上统计图提供的信息.下列说法错误的是()A.甲班D等的人数最多B.乙班A等的人数最少C.乙班B等与C等的人数相同D.C等的人数甲班比乙班多【答案】D【解答】解:由条形统计图可知.甲班D等的人数最多.故选项A不合题意.由扇形统计图可知.乙班A等级的人数为:40×10%=4(人).故乙班A等的人数最少.故选项B不合题意.B、C均站35%.故乙班B等与C等的人数相同.故选项C不合题意.乙班C等级的人数为:40×35%=14(人).∴C等的人数甲班比乙班少.故选项D符合题意.故选:D.5.不透明的袋子里装有除标号外完全一样的三个小球.小球上分别标有﹣1.2.3三个数.从袋子中随机抽取一个小球.记标号为k.放回后将袋子摇匀.再随机抽取一个小球.记标号为b.两次抽取完毕后.直线y=kx与反比例函数y=的图象经过的象限相同的概率为.【答案】【解答】解:由题意可得.∵从袋子中随机抽取一个小球.记标号为k.放回后将袋子摇匀.再随机抽取一个小球.记标号为b.∴直线y=kx与反比例函数y=的图象经过的象限相同的可能性为:(﹣1.﹣1).(2.2).(2.3).(3.2).(3.3).∴直线y=kx与反比例函数y=的图象经过的象限相同的概率为:.6.小林掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6).他把第一次掷得的点数记为x.第二次掷得的点数记为y.则分别以这两次掷得的点数值为横、纵坐标的点A(x.y)恰好在直线y=﹣2x+8上的概率是.【答案】【解答】解:列表得:123456 1(1.1)(2.1)(3.1)(4.1)(5.1)(6.1)2(1.2)(2.2)(3.2)(4.2)(5.2)(6.2)3(1.3)(2.3)(3.3)(4.3)(5.3)(6.3)4(1.4)(2.4)(3.4)(4.4)(5.4)(6.4)5(1.5)(2.5)(3.5)(4.5)(5.5)(6.5)6(1.6)(2.6)(3.6)(4.6)(5.6)(6.6)∵共有36种等可能的结果.点A(x.y)恰好在直线y=﹣2x+8上的有(1.6)、(2.4)、(3.2).∴点A(x.y)恰好在直线y=﹣2x+8上的概率是=.故答案为:.7.为了了解学生在2022年3月的学习情况.某校九年级1班组织了一次网上全班数学测试.任科老师从本班中抽取了n个学生的成绩(满分100分.且抽取的学生成绩均在[40.100]内)进行统计分析.按照成绩分数段[40.50).[50.60).[60.70).[70.80).[80.90).[90.100]的分组作出频数分布表和频率分布直方图.频数分布表[40.50)1[50.60)2[60.70)5[70.80)x[80.90)4[90.100]2(1)求n.x的值.并补充完整频率分布直方图:(2)老师对小明说.估计你在这次的测试中成绩中等.请写出小明这次测试成绩在哪个分数段内的可能性最大?(3)在选取的样本中.从低于60分的学生中随机抽取两名学生.请用列表法或树状图求这两名学生在同一成绩分数段的概率?【答案】(1)0.3(2)[70.80)(3)【解答】解:(1)n=1÷0.05=20.x=20﹣1﹣2﹣5﹣4﹣2=6.[70.80)这组的频率为=0.3.频率分布直方图为:(2)样本的中位数在[70.80)中.所以小明这次测试成绩在[70.80)这个分数段内的可能性最大.(3)低于60分的有3个.在分数段[40.50)中的学生有A表示.在分数段[50.60)内的学生用B、B表示.画树状图为:共有6种等可能的结果数.其中这两名学生在同一成绩分数段的结果数为2.所以这两名学生在同一成绩分数段的概率==1.(2021•郴州)下列说法正确的是()A.“明天下雨的概率为80%”.意味着明天有80%的时间下雨B.经过有信号灯的十字路口时.可能遇到红灯.也可能遇到绿灯C.“某彩票中奖概率是1%”.表示买100张这种彩票一定会有1张中奖D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上【答案】B【解答】解:A.明天下雨的概率为80%.只是说明明天下雨的可能性大.与时间无关.故本选项不符合题意.B.经过有信号灯的十字路口时.可能遇到红灯.也可能遇到绿灯.故本选项符合题意.C.某彩票中奖概率是1%.买100张这种彩票中奖是随机事件.不一定会有1张中奖.故本选项不符合题意.D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩不一定在90分以上.故本选项不符合题意.故选:B2.(2021•通辽)为迎接中国共产党建党一百周年.某班50名同学进行了党史知识竞赛.测试成绩统计如下表.其中有两个数据被遮盖.成绩/分919293949596979899100人数■■1235681012下列关于成绩的统计量中.与被遮盖的数据无关的是()A.平均数.方差B.中位数.方差C.中位数.众数D.平均数.众数【解答】解:由表格数据可知.成绩为91分、92分的人数为50﹣(12+10+8+6+5+3+2+1)=3(人).成绩为100分的.出现次数最多.因此成绩的众数是100.成绩从小到大排列后处在第25、26位的两个数都是98分.因此中位数是98.因此中位数和众数与被遮盖的数据无关.故选:C.3.(2021•泰安)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求.了解学生的睡眠状况.调查了一个班50名学生每天的睡眠时间.绘成睡眠时间频数分布直方图如图所示.则所调查学生睡眠时间的众数.中位数分别为()A.7h 7h B.8h 7.5h C.7h 7.5h D.8h 8h【答案】C【解答】解:∵7h出现了19次.出现的次数最多.∴所调查学生睡眠时间的众数是7h.∵共有50名学生.中位数是第25、26个数的平均数.∴所调查学生睡眠时间的中位数是=7.5(h).故选:C.4.(2021•百色)如图.是一组数据的折线统计图.则这组数据的中位数是9.【解答】解:由图可得.这组数据分别是:4.8.9.11.12.所以这组数据的中位数是9.故答案为:9.5.(2021•宜昌)社团课上.同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球.将盒子里面的球搅匀后从中随机摸出一个球记下颜色.再把它放回盒子中.不断重复上述过程.整理数据后.制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示.经分析可以推断盒子里个数比较多的是.(填“黑球”或“白球”)【答案】白球【解答】解:由图可知.摸出黑球的概率约为0.2.∴摸出白球的概率约为0.8.∴白球的个数比较多.故答案为白球.6.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果.若商家用加权平均数来确定什锦糖果的单价.则这5千克什锦糖果的单价为24元/千克.【答案】24【解答】解:这5千克什锦糖果的单价为:(30×2+20×3)÷5=24(元/千克).故答案为:24.7.(2021•北京)有甲、乙两组数据.如下表所示:甲1112131415乙1212131414甲、乙两组数据的方差分别为s甲2.s乙2.则s甲2>s乙2(填“>”.“<”或“=”).【答案】>【解答】解:=×(11+12+13+14+15)=13.s甲2=[(11﹣13)2+(12﹣13)2+(13﹣13)2+(14﹣13)2+(15﹣13)2]=2.=×(12+12+13+14+14)=13.s乙2=[(12﹣13)2+(12﹣13)2+(13﹣13)2+(14﹣13)2+(14﹣13)2]=0.8.∵2>0.8.∴s甲2>s乙2.解法二:∵甲、乙5个数据有3个相同.且平均数相等.甲的极差=15﹣11=4.乙的极差=14﹣12=2.∴s甲2>s乙2.故答案为:>.8.(2021•黔东南州)黔东南州某校今年春季开展体操活动.小聪收集、整理了成绩突出的甲、乙两队队员(各50名)的身高得到:平均身高(单位:cm)分别为:=160.=162.方差分别为:S2甲=1.5.S2乙=2.8.现要从甲、乙两队中选出身高比较整齐的一个队参加上一级的体操比赛.根据上述数据.应该选择甲队.(填写“甲队”或“乙队”)【答案】甲队【解答】解:∵S2甲=1.5.S2乙=2.8.∴S2甲<S2乙.∴甲队身高比较整齐.故答案为:甲队.9.(2021•青海)为了倡导“节约用水.从我做起”.某市政府决定对该市直属机关200户家庭用水情况进行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨).调查中发现.每户家庭月平均用水量在3~7吨范围内.并将调查结果制成了如下尚不完整的统计表:34567月平均用水量(吨)4a9107频数(户数)频率0.080.40b c0.14请根据统计表中提供的信息解答下列问题:(1)填空:a= .b=.c=.(2)这些家庭中月平均用水量数据的平均数是.众数是.中位数是.(3)根据样本数据.估计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?(4)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中.选取两户进行“节水”经验分享.请用列表或画树状图的方法.求出恰好选到甲、丙两户的概率.并列出所有等可能的结果.【答案】(1)20.0.18.0.20 (2)4.92.4.5 (3)33(户)(4)略【解答】解:(1)抽查的户数为:4÷0.08=50(户).∴a=50×0.40=20.b=9÷50=0.18.c=10÷50=0.20.故答案为:20.0.18.0.20.(2)这些家庭中月平均用水量数据的平均数==4.92(吨).众数是4吨.中位数为=5(吨).故答案为:4.92.4.5.(3)∵4+20+9=33(户).∴估计该市直属机关200户家庭中月平均用水量不超过5吨的约有:200×=132(户).(4)画树状图如图:共有12种等可能的结果.恰好选到甲、丙两户的结果有2种.∴恰好选到甲、丙两户的概率为=.所有等可能的结果分别为(甲.乙)、(甲.丙)、(甲.丁)、(乙.甲)、(乙.丙)、(乙.丁)、(丙.甲)、(丙.乙)、(丙.丁)、(丁.甲)、(丁.乙)、(丁.丙).10.(2021•北京)为了解甲、乙两座城市的邮政企业4月份收入的情况.从这两座城市的邮政企业中.各随机抽取了25家邮政企业.获得了它们4月份收入(单位:百万元)的数据.并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:6≤x <8.8≤x<10.10≤x<12.12≤x<14.14≤x≤16):b.甲城市邮政企业4月份收入的数据在10≤x<12这一组的是:10.0 10.0 10.1 10.9 11.4 11.5 11.6 11.8c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:平均数中位数甲城市10.8m乙城市11.011.5根据以上信息.回答下列问题:(1)写出表中m的值.(2)在甲城市抽取的邮政企业中.记4月份收入高于它们的平均收入的邮政企业的个数为p1.在乙城市抽取的邮政企业中.记4月份收入高于它们的平均收入的邮政企业的个数为p2.比较p1.p2的大小.并说明理由.(3)若乙城市共有200家邮政企业.估计乙城市的邮政企业4月份的总收入(直接写出结果).【答】(1)10.1 (2)p1<p2(3)2200【解答】解:(1)将甲城市抽取的25家邮政企业4月份的营业额从小到大排列.处在中间位置的一个数是10.1.因此中位数是10.1.即m=10.1.(2)由题意得p1=5+3+4=12(家).由于乙城市抽取的25家邮政企业4月份的营业额的平均数是11.0.中位数是11.5.因此所抽取的25家邮政企业4月份营业额在11.5及以上的占一半.也就是p2的值至少为13.∴p1<p2.(3)11.0×200=2200(百万元).答:乙城市200家邮政企业4月份的总收入约为2200百万元.1.(2022•福州模拟)下列事作中.必然事件是()A.通常温度降到0℃以下.纯净的水结冰B.射市运动员射击一次.命中靶心C.汽车累积行驶5000公里.从未出现故障D.经过有交通信号灯的路口.通到绿灯【答案】A【解答】解:温度降到0摄氏度以下.纯净的水一定会结冰.是必然事件.故A符合题意.射击运动员射击一次.命中靶心可能会发生.也有可能不发生.是随机事件.故B不合题意.汽车累计行驶5000公里.从未出现故障.可能会发生.也有可能不发生.是随机事件.故C不合题意.经过有交通信号灯的路口.遇到绿灯.可能会发生.也有可能不发生.是随机事件.故D不合题意.故选:A.2.(2022•平凉模拟)“杂交水稻之父”袁隆平培育的超级杂交水稻在全世界推广种植.2021年5月22日他离开了世界.但他的两个梦想已然实现.平凉市李大爷为了考察所种植的杂交水稻苗的长势.从稻田中随机抽取了9株水稻苗.测得苗高分别是:25.23.26.25.23.24.22.24.23(单位cm).则这组数据的中位数和众数分别是()A.23.23B.24.24C.24.23D.24.25【答案】C【解答】解:将这组数据从小到大重新排列为22.23.23.23.24.24.25.25.26.∴这组数据的众数为23cm.中位数为24cm.故选:C.3.(2022•鹿城区校级一模)如图是某种学生快餐的营养成分统计图.若脂肪有30g.则蛋白质有()A.135g B.130g C.125g D.120g【答案】A【解答】解:由题意可得.30÷10%×45%=300×0.45=135(g).即快餐中蛋白质有135克.故选:A.4.(2022•商城县一模)下列问题中.适合抽样调查的是()A.“双十一”期间某网店的当日销售额B.神舟十三号飞船的零部件检查C.“7•20”特大暴雨河南省受损的农作物面积D.东京奥运会乒乓球比赛用球的合格率。
中考总复习学案
统计与概率的综合复习
典例呈现 例1:(宜昌)某市有A 、B 、C 、D 四个区.A 区2003年销售了商品房2千套,从2003年到2007
年销售套数(y )逐年(x )呈直线上升,A 区销售套数2009年与2006年相等,2007年与2008年相等(如图①所示);2009年四个区的销售情况如图②所示,且D 区销售了2千套. (1)求图②中D 区所对扇形的圆心角的度数及2009年A 区的销售套数; (2)求2008年A 区的销售套数.
例2:去年,为了响应省“课内比教学,课外访万家”的活动的号召,我校对全校各班留守儿童的人
数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图。
(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
(2)某爱心人士决定从只有2名留守儿童的班级中,任选两名进行生活资助,请用列表法或画树
状图的方法,求出所选两名留守儿童来自同一个班级的概率.
中考演练
1.(福州)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表: 根据图表提供的信息,回答下列问题:
(1)样本中,男生身高的众数在 组,中位数在 组; (2)样本中,女生身高在 E 组的人数有 人;
(3)已知该校共有男生400人、女生 380人,请估计身高在160≤x<170之间的学生约有多少人?
2.(宜昌)某超市销售多种颜色的运动服装,其中平均每天销售红、黄、蓝、白四种颜色运动服的数量如表,由此绘制的不完整的扇形统计图如图:
四种颜色服装销量统计表
服装颜色 红 黄 蓝 白 合计 数量(件) 20 n
40 1.5n m 所对扇形的圆心角
α
90°
360°
(1)求表中m 、n 、α的值,并将扇形统计图补充完整: 表中m = ,n = ,α= ;
(2)为吸引更多的顾客,超市将上述扇形统计图制成一个可自由转动的转盘,并规定:顾客在本
超市购买商品金额达到一定的数目,就获得一次转动转盘的机会.如果转盘停止后,指针指向红色服装区域、黄色服装区域,可分别获得60元、20元的购物券.求顾客每转动一次转盘获得购物券金额的平均数.
3.(泰州)保障房建设是民心工程,某市从2008年开始加快保障房建设进程,现统计了该市2008
2009年四个区商品房销售扇形统计图A
50%
C 10%B 20%
图②D 全校留守儿童班级情况扇形统计图
全校留守儿童人数情况条形统计图 A 区2003年-2009年商品房销售统计图x/年
y/千套
2003 2004 2005 2006 2007 2008 2009 A 区2003年-2009年商品房销售统计图
x/年
图① 2 四种颜色服装销量扇形统计图
E
D C
B
A O 年到2012年5月新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图. (1)小丽看了统计图后说:“该市2011年新建保障房的套数比2010年少了.”你认为小丽说法正
确吗?请说明理由; (2)请补全条形统计图;
(3)求这5年平均每年新建保障房的套数.
4.(重庆)减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A ,B ,C ,D 表示,根据调查结果绘制成了如图所示的两幅不完整的统计图.由图中所给出的信息解答下列问题.
(1)求出x 的值,并将不完整的条形统计图补充完整;
(2)在此调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人去参加学校的知识抢答赛.用列表或画树状(形)图的方法求选出的2人来自不同小组的概率.
5.(宜昌)已知:如图,⊙O 的径直AD=2,BC CD DE ==,∠BAE=90°.
(1)求△CAD 的面积;
(2)如果在这个圆形区域中,随机确定一个点P ,那么点P 落在四边形ABCD 区域的概率是多少?
6. 为了决定谁将获得仅有的一张“畅想中国梦--我的梦”的演讲比赛入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分;得分高的获得入场券,如果得分相同,游戏重来. (1)运用列表或画树状图求甲得1分的概率;
(2)这个游戏是否公平?请说明理由.如果不公平,如何设计使游戏变公平。