chapter+6++核糖体与核酶
- 格式:doc
- 大小:35.50 KB
- 文档页数:5
1. 核糖体(riboso me)核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle), 其惟一功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。
按核糖体存在的部位可分为三种类型:细胞质核糖体、线粒体核糖体、叶绿体核糖体。
按存在的生物类型可分为两种类型:真核生物核糖体和原核生物核糖体。
原核细胞的核糖体较小, 沉降系数为70S,相对分子质量为2.5x103 kDa,由50S和30S两个亚基组成; 而真核细胞的核糖体体积较大, 沉降系数是80S,相对分子质量为3.9~4.5x103 kDa, 由60S和40S两个亚基组成。
在真核细胞中, 核糖体进行蛋白质合成时,既可以游离在细胞质中, 称为游离核糖体, 也可以附着在内质网的表面, 称为膜旁核糖体或附着核糖体。
真核细胞含有较多的核糖体, 每个细胞平均有106~107个, 而原核细胞中核糖体较少每个细胞平均只有15×102~18×103个。
典型的原核生物大肠杆菌核糖体是由50S大亚基和30S小亚基组成的。
在完整的核糖体中,rRNA约占2/3, 蛋白质约为1/3。
50S大亚基含有34种不同的蛋白质和两种RNA分子,相对分子质量大的rRNA的沉降系数为23S,相对分子质量小的rRNA为5S。
30S小亚基含有21种蛋白质和一个16S的rRNA分子。
真核细胞核糖体的沉降系数为80S,大亚基为60S,小亚基为40S。
在大亚基中,有大约49种蛋白质,另外有三种rRNA∶28S rRNA、5S rRNA 和5.8S rRNA。
小亚基含有大约33种蛋白质,一种18S的rRNA。
2. 基因扩增(gene a mp li fica tion)细胞内选择性复制DNA, 产生大量的拷贝。
如两栖类卵母细胞在发育的早期,rRNA基因的数量扩增到1000多倍。
基因扩增是通过形成几千个核进行的,每个核里含有几百拷贝的编码28S、18S和5.8S的rRNA基因,最后卵母细胞中的这些rRNA基因的拷贝数几乎达到50万个,而在相同生物的其它类型细胞中,这些rRNA基因的拷贝数只有几百个。
第六章核糖体与核酶核糖体(ribosome),是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle), 其惟一功能是按照mRNA 的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。
核糖体最早是Albert Claude 于20 世纪30 年代后期发现的, 其后又证明了其蛋白质合成功能。
随着分子生物学的发展,核糖体概念的涵意有了进一步的发展。
细胞内除了从事蛋白质合成的核糖体外,还有许多其它功能的核糖核蛋白体颗粒,通常是一些小分子的RNA 同蛋白质组成的颗粒,它们参与RNA 的加工、RNA 的编辑、基因表达的调控等。
6.1核糖体的形态结构核糖体是细胞内数量最多的细胞器,原核细胞和真核细胞都有核糖体,功能也相同,但是结构组成却有很大差别。
6.1.1核糖体的类型和化学组成■核糖体的类型●按存在的部位:有三种类型核糖体,细胞质核糖体、线粒体核糖体、叶绿体核糖体。
1●按存在的生物类型: 分为两种类型,即真核生物核糖体和原核生物核糖体。
原核细胞的核糖体较小,沉降系数为70S,相对分子质量为2.5x103 kDa,由50S 和30S 两个亚基组成(图6-1);而真核细胞的核糖体体积较大,沉降系数是80S,相对分子质量为3.9~4.5x103kDa,由60S 和40S 两个亚基组成。
图6-1 从两个不同角度观察的 E.coli 核糖体的三维结构●Mg2+的浓度对于大小亚基的聚合和解离有很大的影响,体外实验表明:70S 核糖体在Mg2+的浓度小于1mmol/L 的溶液中易解离; 当Mg2+浓度大于10mmol/L,两个核糖体通常形成100S 的二聚体(图6-2)。
图6-2 通过区带离心鉴定核糖体的亚基在低浓度的Mg2+时,完整的核糖体将分成大小两个亚基。
●在组成上,叶绿体中的核糖体与原核生物核糖体相同,但线粒体中核糖体的大小变化较大(表6-1)。
表6-1 不同类型核糖体的大小比较。
细胞生物学目录第一章绪论第二章细胞生物的研究方法和技术第三章质膜的跨膜运输第四章细胞与环境的相互作用第五章细胞通讯第六章核糖体和核酶第七章线粒体和过氧化物酶体第八章叶绿体和光合作用第九章内质网,蛋白质分选,膜运输第十章细胞骨架,细胞运动第十一章细胞核和染色体第十二章细胞周期和细胞分裂第十三章胚胎发育和细胞分化第十四章细胞衰老和死亡第一章绪论1.原生质体:被质膜包裹在细胞内的所有的生活物质,包括细胞核和细胞质细胞质:细胞内除核以外的原生质,即细胞中细胞核以外和细胞膜以内的原生质部分原生质体:除去细胞壁的细胞2.结构域:生物大分子中具有特异结构和独立功能的区域3.装配模型:模板组装,酶效应组装,自组装4.五级装配:第一级,小分子有机物的形成第二级,小分子有机物组装成生物大分子第三级,由生物大分子进一步组装成细胞的高级结构第四级,由生物大分子组装成具有空间结构和生物功能的细胞器第五级,由各种细胞器组装成完整细胞6.支原体:目前已知的最小的细胞第二章细胞生物的研究方法和技术1.显微镜技术:光镜标本制备技术、2.光镜标本制备技术步骤:样品固定、包埋与切片、染色3.电子显微镜种类:透射电子显微镜,扫描电镜,金属投影,冷冻断裂和冷冻石刻电镜,复染技术,扫描隧道显微镜4.细胞化学技术:酶细胞化学技术,免疫细胞化学技术,放射自显影5.细胞分选技术:流式细胞术6.分离技术:离心技术,层析技术,电泳技术第三章质膜的跨膜运输1.细胞功能:外界与通透性障碍,组织和功能定位,运输作用,细胞间通讯,信号检测2.膜化学组成:膜脂,膜糖,膜蛋白3.膜脂的三个种类:磷脂,糖脂,胆固醇4.脂质体用途:用作生物膜的研究模型,作为生物大分子与药物的运载体5.膜糖功能:细胞与环境的相互作用,接触抑制,信号转导,蛋白质分选,保护作用。
6.膜蛋白类型:整合蛋白,外周蛋白,脂锚定蛋白7.膜蛋白功能:运输蛋白,酶,连接蛋白,受体(信号接受和传递)8.不对称性的研究方法:冰冻断裂复型,冰冻蚀刻9.膜流动性研究方法:质膜融合,淋巴细胞的成斑成帽效应,荧光漂白恢复技术10.膜流动性的重要性:酶活性,信号转导,物质运输,能量转换,细胞周期11.影响膜脂流动性的因素:脂肪酸链,胆固醇,卵磷脂/鞘磷脂比值12.影响膜蛋白流动的因素:整合蛋白,膜骨架,细胞外基因,相邻细胞,细胞外配体、抗体、药物大分子13.膜骨架的主要蛋白:血影蛋白,肌动蛋白和原肌球蛋白,带4.1蛋白,锚定蛋白14.转运蛋白质包括:载体蛋白,通道蛋白15.协同运输的方向:同向协同,反向协同第四章细胞与环境的相互作用1.细胞表面结构:细胞外被、膜骨架、胞质溶胶2.细胞外被功能:连接,细胞保护,屏障3.糖萼:由细胞表面的碳水化合物形成的质膜保护层,又称为多糖包被。
一、核糖体的形态结构⏹ 核糖体唯一的功能是按照m R N A 的指令将氨基酸合成蛋白质多肽链。
使细胞内蛋白质合成的分子机器,是细胞内数量最多的细胞器。
1、 核糖体的类型和化学组成⏹大小两个亚基都是由核糖体R N A 和核糖体蛋白组 成的。
(M g 2+的浓度)⏹ 原核生物(大肠杆菌)的核糖体:⏹ 大亚基50S :33种蛋白质;23S r R N A ,5S r R N A ⏹ 小亚基30S :21种16S rRN A (小亚基 主要由16S r R N A 决定)⏹ 真核细胞核糖体: ⏹ 大亚基60S :49种蛋白质;28S r R N A ,5 S r R N A , 5.8 S r R N A ⏹ 小亚基40S :33种蛋白质;18S r R N A 二、核糖体的生物发生⏹ 1、 核糖体r R N A 基因的转录与加工⏹ 真核生物核糖体由18S 、5.8S 、28S r R N A 和5S r R N A 基因 ⏹ 真核生物有四种r R N A 基因,⏹ 真核生物前r R N A 的修饰:两个特征1. 2以及修饰的意义。
⏹真题再现:03选择前体r R N A 甲基化的重要作用是: A .保证最后的r R N A 能够装配成正确的三级结构B .防止前体r R N A 被加工(x 对加工起引导作用) C .防止成熟r R N A 部分被降解。
二、核糖体的生物发生 ---真核生物的核糖体生物发生 ⏹ 2 5S r R N A 基因的转录与加工 ⏹ 由R N A 聚合酶3转录,使用的是内部启动子。
⏹ 学习重点⏹ 1.关于核糖体的形态结构, 主要学习掌握真核细胞和原核细胞核糖体的化学组成、细菌核糖体的结构模型。
⏹ 2. 核糖体的生物发生是本章的重点内容之一⏹ 3.核糖体的蛋白质合成作用,反义R N A 与核酶⏹ 本章考题近年来主要以小题为主。
第六章 核糖体与核酶2.1原核生物核糖体重组实验:⏹ (1)30S 亚基的蛋白质只和16SR N A 结合,50S亚基质只和23S r R N A 结合⏹ (2)不同种之间提取的30S 亚基的r R N A 和蛋白质可以装 配成有功能的30S 亚基,即不存在种间的差异⏹ (3)原核生物核糖体与真核生物核糖体的亚基彼此不 同,由二者的r R N A 和蛋白质装配成的核糖体没有活性 ⏹ (4)大肠杆菌的核糖体与玉米叶绿素核糖体亚基重组后 具有功能 ⏹(5)线粒体的核糖体亚基同原核生物核糖体亚基之间形 成的杂合核糖体没有功能 真核生物核糖体重组⏹ 边合成边装配,18S r R N A ,5.8r R N A ,28S r R N A在核仁中,边转录边装配,5S r R N A 在细胞核中转录后在运送到核仁里参与装配三、核糖体的功能—蛋白质的合成⏹ 1、 核糖体的功能位点 ⏹ ●A 位点(受位):接收氨酰t R N A 的部位 ⏹ ●P 位点(供位):肽酰t R N A 位点 ⏹ ●E 位点:中间停靠点,而且当E 位点被占据后,A 位点同氨酰t R N A 的亲和力降低,防止氨酰t R N A 的结合,直到核糖体准备就绪 ⏹ ● m R N A 结合位点2、 蛋白质合成的基本过程⏹ 2.1 肽链的起始:⏹ (1)30S 亚基与m R N A 的结合 ⏹ (2)第一个a a —t R N A 进入核糖体(P 位) ⏹ (3)完整起始复合物的装配2、 核糖体的装配⏹ 核糖体是自组装的结构,没有样板或亲体结构所组成的结构。
核糖体与核酶引言:1.核糖体(ribosome)是细胞内的一种核糖蛋白颗粒,其唯一的功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。
6.1 核糖体的形态结构1.核酶是具有催化活性的反义RNA6.1.1 核糖体的类型和化学组成6.1.1.1 核糖体的类型和大小1.核糖体有种类型:细胞质核糖体、线粒体核糖体、叶绿体核糖体2.核糖体分为:真核生物核糖体和原核生物核糖体3.核糖体由大小两个不同的亚基组成,在不进行蛋白质合成时是分开的,各自游离在细胞质中,在进行蛋白质合成时结合在一起4.在真核细胞中,核糖体在进行蛋白质合成时:1.游离在细胞质中称游离核糖体2.附着在内质网的表面,称膜旁核糖体或附着核糖体。
6.1.1.2 核糖体的化学组成1.核糖体的大小两个亚基都是由核糖体RNA(rRNA)和核糖体蛋白质组成。
6.1.2核糖体的蛋白质与rRNA6.1.2.1 核糖体蛋白1. E.coli核糖体21个小亚基,为S1~S21,大亚基的核糖体蛋白命名为L1~L336.1.2.2 核糖体rRNA1.30S核糖体亚基的形态主要是由16S rRNA决定的6.1.3细菌核糖体的结构模型1.S4、S5、S8、S12等4个蛋白定位在核糖体的小亚基上,并且是背向大亚基。
2.小亚基中确定了与信使RNA(mRNA)和转移RNA(tRNA)结合位点3.催化肽键形成的位点位于大亚基,和GTP水解的功能区6.2核糖体的生物发生1.在细胞内,核糖体是自我装配的。
2.核糖体的生物发生包括蛋白质和rRNA的合成、核糖体亚基的组装等。
6.2.1 核糖体rRNA基因的转录与加工1.编码核糖体的基因分为两类:一类是编码蛋白质的基因,另一类是rRNA基因6.2.1.1 编码rRNA基因的过量扩增1.细胞为了满足大量需求的rRNA,在进化的过程中形成了一种机制:增加编码rRNA基因的拷贝数。
2.增加拷贝数有两种方法:1.在染色体上增加rRNA基因的拷贝数2.通过基因扩增6.2.1.2 真核生物18S、5.8S、28S rRNA和5S rRNA基因1.在真核生物的染色体中,18S、5.8S、28S rRNA和5S rRNA基因是串联在一起的,每个基因被间隔区隔开,5S rRNA基因位于不同的染色体上。
第六章.核糖体与核酶核糖体(r i b o s o me),是细胞内一种核糖核蛋白颗粒(r i b o n u c l e o p r o t e i n p a r t i c l e),其惟一功能是按照mR N A的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。
核糖体最早是Al b e r t C l a u d e于20世纪30年代后期发现的,其后又证明了其蛋白质合成功能。
随着分子生物学的发展,核糖体概念的涵意有了进一步的发展。
细胞内除了从事蛋白质合成的核糖体外,还有许多其它功能的核糖核蛋白体颗粒,通常是一些小分子的R N A同蛋白质组成的颗粒,它们参与R N A的加工、R N A的编辑、基因表达的调控等。
发现核糖体及核糖体功能鉴定的两个关键技术是什么?(答案)答:核糖体最早是Al b e r t C l a u d e于1930s后期用暗视野显微镜观察细胞的匀浆物时发现的,当时称为微体(M i c r o s o me s),直到1950s中期,Ge o r g e P a l a d e在电子显微镜下观察到这种颗粒的存在。
当时G e o r g e P a l a d e和他的同事研究了多种生物的细胞,发现细胞质中有类似的颗粒存在,尤其在进行蛋白质合成的细胞中特别多。
后来P h i l i p S i ek e v i t z用亚细胞组份分离技术分离了这种颗粒,并发现这些颗粒总是伴随内质网微粒体一起沉积。
化学分析揭示,这种微粒富含核苷酸,随之命名为r i b o so me,主要成分是核糖体R N A(r R N A),约占60%、蛋白质(r蛋白质)约占40%。
核糖体的蛋白质合成功能是通过放射性标记实验发现的。
将细胞与放射性标记的氨基酸短暂接触后进行匀浆,然后分级分离,发现在微粒体部分有大量新合成的放射性标记的蛋白质。
后将微粒体部分进一步分离,得到核糖体和膜微粒,这一实验结果表明核糖体与蛋白质合成有关。
第一章:细胞概述一、填空题:4誉为19世纪自然科学的三大发现:能量守恒定律,细胞学说,达尔文进化论6前发现最小最简单的原核细胞是:支原体7去细胞壁的植物、微生物细胞称作:原生质体9核生物与真生物最主要的差别是:前者具有:定形的核后者只有:拟核10由于发现了:核酶(ribozyme)有理由推测RNA是最早形成的遗传信息的一级载体。
11无论是真核细胞还是原核细胞,都具有以下共性:1、都有DNA 2、都有核糖体3、都是分裂法增殖4、都有细胞质膜21构成细胞最基本的要素是:1、基因组2、细胞质膜和完整的代谢系统。
23细胞是生命活动的基本单位,最早于1665 年被英国学者胡克发现。
细胞是由质膜包围着一团原生质所组成。
核膜与质膜之间的部分叫细胞质。
动物细胞和植物细胞在表面结构上主要差别是:植物细胞有细胞壁(动物细胞没有细胞壁)第二章:细胞生物学的研究方法1透射电子显微镜由镜筒、真空系统、电力系统三部分构成5物质在紫外光照射下发出的荧光可分为自发荧光和诱发荧光两种。
其中诱发荧光需要将被照射的物质进行染色。
6用紫外光为光源照射物体比用可见光的分辨率要高,这是因为紫外光波长比可见光波长短7通过突变或克隆化形成的细胞叫细胞珠11倒置显微镜与普通显微镜的不同在于其物镜和照明系统的位置颠倒12若用紫外光为光源,光学显微镜的最大分分辨率为0.1um ,透射电子显微镜的最大分别率为0.1nm ,扫描电镜的分辨率为3nm 。
13显微镜的分辨本领是指能够分辨出相邻两个点的能力,用最小分辨距离来表示16细胞培养的突出特点是:可在离体条件下观察和研究生命活动的规律。
19用细胞培养法来研究生命活动规律的局限性是体外环境下不能与体内的条件完全相同。
20 超薄切片染色常采用柠檬酸铅和醋酸双氧铀双染色法21免疫细胞化学技术是用来定位细胞中的抗原物质22电子显微镜使用的是电磁透镜,而光学显微镜使用的是玻璃透镜。
23电子染色是用重金属来增强电子的散射能力。
Chapter 6 核糖体与核酶
6.1核糖体的形态结构
核糖体(ribosome)是细胞内一种核糖核蛋白颗粒(ribonucleoprotein partical),是细胞内合成蛋白质的细胞器。
细胞内数量最多的细胞器。
在大肠杆菌中有几万个,占细胞干重的40%,在真核细胞中可达几十万甚至几百万个。
核糖体的主要成分是核糖体RNA(rRNA), 占60%, 蛋白质(r蛋白质), 占40%。
6.1.1 核糖体的类型
按存在部位分:
细胞质核糖体:游离核糖体和附着核糖体
细胞器核糖体:线粒体核糖体和叶绿体核糖体。
按生物类型分两种:
原核细胞的核糖体:沉降系数为70S,分子量为2.5x103KDa,由50S和30S 两个亚基组成。
真核细胞的核糖体:沉降系数是80S,分子量为3.9-4.5x103KDa,由60S和40S两个亚基组成。
6.2 核糖体的生物发生(Biogenesis)
在细胞内,核糖体是自我装配的。
真核细胞和原核细胞的核糖体合成和装配过程各不相同。
核糖体的生物发生包括蛋白质和rRNA的合成、核糖体亚基的组装。
6.2.1 核糖体基因
1. rRNA基因的扩增
在染色体上增加rRNA基因的拷贝数:细菌的E.coli的基因组中有七套rRNA 基因;典型的真核生物细胞含有几百到几千个18S、 5.8S和28S rRNA基因的拷贝,5S rRNA基因的拷贝数多达50,000个。
2. rRNA基因的选择性扩增
①两栖类卵母细胞rRNA基因扩增
基因扩增是通过形成几千个核进行的,每个核里含有几百拷贝的编码18S、5.8S和28S的rRNA基因,最后卵母细胞中的这些rRNA基因的拷贝数几乎达到50万个。
②卵母细胞中rRNA基因扩增机制
滚环复制(rolling circle replication)
卵母细胞中rRNA基因扩增的机制,有人认为归因于从染色体上分离出来的环状DNA分子,这种环状DNA中含有rRNA基因。
由于环状DNA能够通过滚环复制的方式进行复制,因而能够产生大量的rRNA基因。
3. 18S、5.8S和28S rRNA基因的转录和加工
①组织:真核生物18S、5.8S和28S rRNA基因为一组串联在一起,5S的rRNA基因则位于另一条染色体上。
②转录
人、老鼠等前rRNA为45S;不同种的生物,前rRNA的长度范围在34S~45S之间;在转录单位中除了三个rRNA基因外,还包括一些间隔区;真核生物中,RNA聚合酶I参与这三个rRNA基因的转录;
③前体rRNA的加工与修饰:
前体rRNA有两个独特的特点:一是含有大量的甲基化的核苷,另一个就是具有很多假尿苷(pseudouridine)。
在前体rRNA加工过程中,rRNA的甲基化可能起指导作用。
5S rRNA的合成和加工:真核生物的5S rRNA基因与其他三种rRNA基因不在同一条染色体上,它是由核仁以外的染色体基因转录的,然后运输到核仁内参与核糖体的装配。
5S rRNA基因是由RNA聚合酶Ⅲ转录的,内部启动。
5S rRNA 只需要进行简单的加工,或者根本不需要进行加工。
原核生物rRNA基因
原核与真核生物的rRNA基因在组织结构上的差异。
重复频率低:如E.coli,只重复了7次;细菌的5S rRNA与16SrRNA 、23S rRNA基因组成一个转录单位,在染色体上的排列顺序是:16S-23S-5S。
核酸酶RNaseⅢ将16S-23S-5S rRNA 前体切割成单体;细菌中的rRNA转录单位除了三种rRNA外,同时有几种tRNA 分子。
6.2.2 核糖体的装配
1. 原核生物核糖体的装配
小亚基的rRNA和蛋白质的装配关系:组成核糖体的蛋白质和rRNA在大小亚基中均有一定的空间排布。
核糖体在组装过程中,某些蛋白质必须首先结合到rRNA上,其他蛋白才能组装上去,即表现出先后层次。
根据同rRNA结合的顺序,将核糖体蛋白分为两种:
①初级结合蛋白(primary binding protein)
这些蛋白质直接同rRNA结合, 其中同16S rRNA结合的初级蛋白有14种, 它们是: S3, S4, S17, S20, S6, S15, S8, S18, S9, S11, S12, S13, S7, S1。
同5S rRNA结合的有11种。
②次级结合蛋白(secondary binding protein)
这些蛋白质不直接同rRNA结合, 而是同初级结合蛋结合。
它们是: S10, S16, S2, S6, S21, S14, S19。
2. 真核生物核糖体装配模型
①80S前体颗粒形成
45S rRNA+5S rRNA+蛋白质
45S rRNA 到41S rRNA
②大小亚基前体形成:
大:32S rRNA和5S rRNA 小:20S的前体rRNA;
③小亚基成熟与运送:
20S rRNA到18S rRNA
④大亚基成熟与运送
32S rRNA到28S rRNA+5.8S rRNA
6.3 核糖体的功能
1. 核糖体的RNA结合位点
2. 与mRNA结合的位点:SD序列
3. 蛋白质合成中各位点的协同性
4. 多聚核糖体(polysome)
6.4 Ribozyme and Antisense RNA
1. 核酶(ribozyme)
2. 反义RNA(Antisense RNA)
6.4.1 真核细胞中的小分子RNA(small RNA)
大小:100~300 bases。
由RNA聚合酶Ⅱ或RNA聚合酶Ⅲ所合。
某些像mRNA一样可被加帽。
类别:scRNA(small cytoplasmic RNA)和snRNA(small nuclear RNA)。
snRNPs(small nuclear ribonucleoproteins)颗粒,核小核糖核蛋白;一个snRNA,~10个蛋白质;有些蛋白质是某一snRNP所特有,有些则是各种snRNP 所共有。
snRNPs分类:由于snRNA富含脲嘧啶核苷,分类时把它分为U1、U2、……等。
6.4.2 Antisense RNA
反义RNA分类
◆I类:直接作用于其靶mRNA的SD序列和/或编码区;Ⅱ类:与mRNA
的SD序列的上游非编码区结合,从而抑制靶mRNA的翻译;III类:直接抑制靶mRNA转录的RNA。
6.4.3 核酶Ribozyme
具有催化活性的RNA,化学本质是核糖核酸(RNA),却具有酶的催化功能。
与蛋白质酶相比,核酶的催化效率较低,是一种较为原始的催化酶。
1. 几个基本概念
①间隔序列(space sequence) :编码基因间的序列。
②内含子(intron):基因内的间隔序列。
③外显子(exon):成熟RNA中的基因序列。
2. 核酶的发现
1980s,Thomas Cech等在研究四膜虫的26SrRNA前体加工时发现:26S rRNA前体可进行自剪切(self- splicing)。
3. 核酶的类型
根据核酶的结构和催化反应可分为3种类型:
①RNA和蛋白质复合物:催化切割tRNA
核糖核酸酶P (ribonuclease P),是一种核糖核蛋白, 含有一个单链RNA 分子(长为375个核苷)和一个分子量为20kDa的多肽。
②具有催化活性的小分子RNA
③Ⅰ、Ⅱ型内含子
4. 特点:都涉及磷酸二酯键的切割或连接,底物是RNA 。
5. 核酶的作用机制
①核剪接(nuclear splicing):剪接发生在细胞核中,从pre-mRNA中切除内含子,加工成熟的mRNA被运送到细胞质。
3个主要特点:在pre-mRNA中内含子与外显子间有特征性序列,即GU-AG 规则;需要snRNA参与,形成剪接体;形成套索结构。
剪接体(Spliceosomes):在剪接过程中形成的剪接复合物称为剪接体;主要组成:蛋白质与小分子的核RNA (snRNA),包括U1, U2, U4, U5, U6。
GU-AG 规则;前体RNA中参与内含子剪接的两个特殊位点,即在内含子和外显子交界处有两个相当短的保守序列: 5'端为GT,3'端为AG,
②I 组内含子剪接
结构特点:内含子转录后可以形成9个由碱基配对形成的特定二级结构, 分别命名为P1至P9, P1和P7是保守的。
需要游离的鸟苷。
存在的细胞器:核、线粒体、叶绿体。
基因:前体rRNA、mRNA和tRNA
③Group II intron splicing
结构特点:内含子转录后可以形成6个发夹环。
附合GU-AG规则;不需snRNA参与,不形成剪接体;形成套索;存在的细胞器:线粒体、叶绿体;基因:前体mRNA。