第六章核糖体总结
- 格式:ppt
- 大小:5.64 MB
- 文档页数:27
1. 发现核糖体及核糖体功能鉴定的两个关键技术是什么?答:核糖体最早是Albert Claude于1930s后期用暗视野显微镜观察细胞的匀浆物时发现的,当时称为微体(Microsomes),直到1950s中期,George Palade在电子显微镜下观察到这种颗粒的存在。
当时George Palade和他的同事研究了多种生物的细胞, 发现细胞质中有类似的颗粒存在, 尤其在进行蛋白质合成的细胞中特别多。
后来Philip Siekevitz 用亚细胞组份分离技术分离了这种颗粒, 并发现这些颗粒总是伴随内质网微粒体一起沉积。
化学分析揭示, 这种微粒富含核苷酸, 随之命名为ribosome,主要成分是核糖体RNA(rRNA),约占60%、蛋白质(r蛋白质)约占40%。
核糖体的蛋白质合成功能是通过放射性标记实验发现的。
将细胞与放射性标记的氨基酸短暂接触后进行匀浆,然后分级分离,发现在微粒体部分有大量新合成的放射性标记的蛋白质。
后将微粒体部分进一步分离,得到核糖体和膜微粒,这一实验结果表明核糖体与蛋白质合成有关。
两个关键技术是亚细胞组份分离技术和放射性标记技术。
2•说明人体单倍体染色体组中四种rRNA基因的组成、排列方式和拷贝数。
答:在人基因组的四种rRNA基因中,18S、5.8S和28S rRNA基因是串联在一起的,每个基因被间隔区隔开,5S的rRNA基因则是编码在另一条染色体上。
前3个基因组成一组,分布在人的13、14、15、21、22 等5条染色体上。
在间期核中,所有这5条染色体rRNA基因区域,转录时聚集在一起,形成一个核仁。
在人体单倍体染色体组中,每组rRNA基因有200个拷贝。
每一拷贝为一个rDNA 转录单位。
这 3 个基因是纵向串联排列在核仁组织者的DNA 上。
真核细胞核糖体的5S rRNA基因则是独立存在于一个或几个染色体上,拷贝数达几千个。
在人的细胞中,该基因的拷贝有24000 个之多,它们串联排列在 1 号染色体接近末端处。
第六章核糖体和核酶6.1核糖体的结构和功能6.1.1核糖体的组成和结构(1)核糖体的分类细胞质核糖体,线粒体核糖体,叶绿体核糖体。
真核核糖体,原核核糖体。
(2)核糖体的组成及化学成分核糖体由大小亚基组成,每个亚基都是由多种蛋白质及rRNA组成。
正常状况下各亚基在细胞质中单独存在,只有在蛋白质合成时才结合在一起。
①真核核糖体真核核糖体沉降系数为80S,由60S和40S组成,60S由28S rRNA,5.8S rRNA,5S rRNA,及49种蛋白质组成,40S亚基由18S rRNA和33种蛋白质组成。
②原核核糖体原核核糖体的沉降系数为70S,由50S和30S组成,50S亚基由33种蛋白质和23S rRNA及5S rRNA组成,30S亚基由21种蛋白质及16S rRNA组成。
(3)核糖体的结构6.1.2核糖体的生物发生6.1.2.1核糖体rRNA基因的转录和加工编码rRNA基因过量扩增,增加编码rRNA的基因拷贝数,以适应大量需要的rRNA。
其机制为:在染色体上增加rRNA基因的拷贝数;基因扩增,形成多个核。
(1)真核28S rRNA,5.8S rRNA,18S rRNA及5S rRNA的转录真核生物中28S rRNA,5.8S rRNA,18S rRNA串联在相同的染色体上,构成一个转录单位,并有大量的重复,在RNA PolmeraseI作用下在核仁转录中形成45S 的前rRNA。
5S rRNA位于不同的染色体上,由RNA PolmeraseIII在核仁外转录形成。
(2)原核23S rRNA,5S rRNA,16S rRNA的转录原核生物的rRNA基因的重复数比真核少,而且,编码23S rRNA,5S rRNA,16S rRNA的基因位于相同的转录单位中,且其排列顺序为16S-23S-5S.6.1.2.2核糖体的装配核糖体亚基的自我装配。
某些蛋白质首先独立地结合到rRNA上,然后作为后一批蛋白的结合框架,最后一些活性所需蛋白再加上去形成整体。
高中生物核糖体知识点核糖体是细胞中的一个重要细胞器,它是蛋白质合成的场所,也是高中生物课程中的重要知识点。
下面将从核糖体的结构、功能以及合成蛋白质的过程等方面来介绍核糖体的相关知识。
一、核糖体的结构核糖体是由核糖核酸(rRNA)和蛋白质组成的复合物。
在真核细胞中,核糖体分为大、小、中三个亚单位,分别为大亚单位(60S)、小亚单位(40S)和中亚单位(5.8S)。
而在原核细胞中,核糖体则分为大、小两个亚单位,分别为大亚单位(50S)和小亚单位(30S)。
二、核糖体的功能核糖体是蛋白质合成的场所,它通过读取mRNA上的遗传密码,将mRNA上的信息转化为氨基酸序列,从而合成蛋白质。
核糖体的功能主要可以分为三个方面:1. 担任翻译作用:核糖体通过识别mRNA上的起始密码子,并将其翻译为氨基酸序列,从而合成蛋白质。
2. 维持结构稳定:核糖体的结构稳定性对蛋白质的合成起着重要作用。
它能够保持合适的空间结构,使得tRNA和mRNA能够正确地结合在一起。
3. 负责核糖体组装:核糖体的组装是一个复杂的过程,需要参与多个rRNA和蛋白质的相互作用。
核糖体通过组装不同的rRNA和蛋白质,形成不同的亚单位,从而完成核糖体的组装。
三、核糖体的合成蛋白质过程核糖体合成蛋白质的过程主要包括三个阶段:起始阶段、延伸阶段和终止阶段。
1. 起始阶段:在起始阶段,小亚单位首先与mRNA和起始tRNA 结合,形成起始复合物。
起始复合物由起始tRNA和小亚单位的特定蛋白质组成。
随后,大亚单位与小亚单位结合,形成完整的核糖体。
2. 延伸阶段:在延伸阶段,核糖体沿着mRNA的模板链进行滑移,将tRNA上携带的氨基酸逐个添加到正在合成的多肽链上。
这个过程需要依赖rRNA的催化作用和tRNA的识别作用。
3. 终止阶段:在终止阶段,当到达终止密码子时,核糖体停止合成蛋白质,并释放蛋白质和mRNA。
这个过程需要依赖特定的终止tRNA和终止因子。
四、核糖体的调控核糖体的合成和活性受到多种因素的调控,包括细胞内外的信号以及某些特定的蛋白质。
核糖体知识点总结首先,我们来了解一下核糖体的结构。
核糖体呈现出一个小而细长的圆柱状结构,类似于一个小颗粒。
它由两个亚单位组成,分别是大亚单位和小亚单位。
大亚单位主要包含三个不同的位点,称为A位点、P位点和E位点。
而小亚单位主要负责识别mRNA上的启动子序列,并形成起始复合物。
接下来,我们来了解一下核糖体的功能。
核糖体主要的功能是合成蛋白质。
在蛋白质合成的过程中,mRNA会被核糖体识别,并且与tRNA上的氨基酸进行配对。
核糖体通过识别mRNA上的密码子来寻找正确的tRNA,并将氨基酸连接在一起合成蛋白质。
此外,核糖体还有一个重要的功能,就是保证蛋白质的正确合成。
在核糖体中,mRNA上的密码子会与tRNA上的反密码子进行配对,这样保证了蛋白质的正确合成。
如果配对错误,核糖体会停止合成蛋白质,从而保证了蛋白质的正确性。
除此之外,核糖体还参与了细胞的调控和信号传导。
在细胞的正常功能中,核糖体不仅仅是合成蛋白质的工具,它还可以通过改变mRNA的翻译速率来调控蛋白质的合成量。
此外,核糖体还可以调控细胞的新陈代谢和生长。
它使得细胞可以根据环境的变化来调整自身的生长和代谢。
接下来,我们来了解一下核糖体的合成。
核糖体的合成主要通过核糖体RNA的转录合成。
核糖体RNA是由基因转录合成的一种RNA,它与蛋白质组成了核糖体的结构。
在核糖体RNA的合成过程中,DNA上的核糖体RNA基因会被RNA聚合酶依据DNA模板合成核糖体RNA前体。
之后,核糖体RNA前体会经过一系列的加工和修饰,最终形成成熟的核糖体RNA。
最后,我们来看一下核糖体在生物学中的意义。
核糖体是构成细胞的一种重要的结构,它参与了蛋白质的合成和细胞代谢的调控。
在细胞的正常功能中,核糖体是不可缺少的。
例如,在感染病毒的过程中,核糖体可以成为潜在的治疗靶点。
通过抑制核糖体的正常功能,可以有效地阻断病毒的蛋白质合成,从而达到抑制病毒复制的目的。
总的来说,核糖体是一个细胞中非常重要的结构,它不仅参与了蛋白质的合成,还参与了细胞的调控和信号传导。
高一生物核糖体知识点生物学中,核糖体是一种位于细胞质内的细胞器,其主要功能是参与蛋白质合成。
核糖体由RNA和蛋白质组成,其中RNA占主导地位。
本文将针对高一生物核糖体的知识点进行详细阐述。
1. 核糖体的结构核糖体由大、小两个亚基组成。
大亚基是较大的亚单位,通常由28S rRNA、5.8S rRNA和5S rRNA以及多个蛋白质组成,而小亚基是较小的亚单位,由18S rRNA和多个蛋白质组成。
两个亚基结合后形成完整的核糖体结构。
核糖体大小亚基之间的结合是通过一些蛋白质桥连接在一起的。
2. 核糖体的功能核糖体是蛋白质合成的主要场所,它参与翻译mRNA上的遗传信息,将其转化为具体的氨基酸序列。
核糖体通过结合mRNA的起始密码子,并沿着mRNA链逐个读取密码子,利用tRNA将特定的氨基酸送到合适的位置上,最终完成蛋白质的合成。
3. 核糖体的组成核糖体主要由rRNA和蛋白质组成。
rRNA(核糖体RNA)是核糖体的主要构成部分,其作用是提供支架结构和催化蛋白质合成的活性中心。
蛋白质则充当核糖体结构的支持者和辅助因子,确保核糖体能够正常运作。
4. 核糖体的生物合成核糖体的生物合成包括转录、加工和组装三个过程。
首先,rRNA基因在细胞核中经过转录产生初级rRNA转录产物,经过后续加工,获得成熟的rRNA分子。
随后,rRNA分子结合蛋白质,形成核糖体的前体颗粒。
这些前体颗粒进一步经过加工和核糖体成熟反应,最终形成功能完整的核糖体。
5. 核糖体的种类核糖体在不同的生物中存在一定的差异,通常通过对rRNA和蛋白质的序列分析可进行分类。
细菌核糖体相对简单,由两个亚基组成,一般表示为70S(50S + 30S)。
真核生物核糖体较为复杂,由四个亚基组成,一般表示为80S(60S + 40S)。
6. 核糖体与生物进化的关系核糖体在生物进化过程中具有高度保守性。
rRNA和蛋白质在不同物种中均具有相似的序列和结构,这表明核糖体在进化中起到了重要的功能和结构保持作用。
高中生物核糖体知识点一、核糖体的定义与结构核糖体是细胞内的蛋白质合成机器,由核糖核酸(rRNA)和蛋白质组成。
它位于细胞质中,通过翻译mRNA上的密码子,将其转化为蛋白质。
核糖体由两个亚基组成:大亚基和小亚基。
大亚基上有A位点(接受适应体位点)和P位点(多肽转移位点),小亚基上有E位点(出口位点)。
核糖体的结构复杂,包括多个rRNA分子和许多蛋白质,不同生物体中核糖体的组成略有差异。
二、核糖体的功能核糖体的主要功能是参与蛋白质的合成。
在转录过程中,DNA的信息被转录成mRNA,然后通过核糖体的翻译作用,将mRNA上的密码子翻译成氨基酸序列,从而合成蛋白质。
核糖体的功能分为三个阶段:启动、延伸和终止。
启动阶段是指核糖体识别mRNA的起始密码子,并将起始tRNA带入A位点。
延伸阶段是指核糖体按照mRNA上的密码子顺序,将tRNA上的氨基酸逐个加入到多肽链上。
终止阶段是指核糖体识别到终止密码子时,释放多肽链并分离。
三、核糖体的合成与调控核糖体的合成过程涉及到rRNA的合成和与蛋白质的结合。
rRNA 通过基因转录合成,然后经过剪切和修饰,形成成熟的rRNA分子。
rRNA与蛋白质结合后形成核糖体的亚基。
核糖体的合成受到细胞内外环境的调控。
在细胞处于正常生长状态时,核糖体合成速度与蛋白质合成速度相匹配。
而在细胞处于压力或缺乏营养的环境下,细胞会通过调控核糖体合成的速度来适应环境。
四、核糖体的变异与抗生素作用核糖体的结构和功能在不同生物体中存在一定的变异。
这种变异是由于核糖体上的rRNA序列差异和蛋白质组成的差异所导致的。
这些差异使得不同生物体对抗生素的敏感性不同。
抗生素通过与细菌的核糖体结合来抑制蛋白质的合成。
由于细菌的核糖体与人类的核糖体有差异,因此抗生素对细菌的作用更强,而对人类的影响较小。
这也是抗生素被广泛应用于治疗细菌感染的原因之一。
总结:核糖体是细胞中蛋白质合成的重要机器,其结构复杂,由rRNA和蛋白质组成。