第十四章油墨的流变特性
- 格式:ppt
- 大小:858.50 KB
- 文档页数:25
油墨的流变性对印刷品质量的影响油墨是印刷的重要材料,它的性能直接影响着产品的印刷质量和生产效率。
在进行印刷工作时,油墨的流变性对于印刷产品的质量和水平都有着一定的影响。
本文将对油墨的各种流变性能的属性进行解析。
流变学流变学,是研究物质变形和流动的科学。
理想的弹性体和理想的粘性物质实际上是不存在的,许多物质,如纸张、油墨等,其变形规律是复杂的。
油墨是在印刷机上被压匀到墨辊上,转移到印版上,再转移到橡皮布上,最后转移到纸张上。
在这个过程中,有种种的变形和流动,当油墨受力变形时,既会呈现弹性变形的某些特征,又会呈现流体的粘性,这种现象称为粘弹现象。
这种粘弹性物体的受力变形不仅与应力大小有关,而且与这些形变的发展速度有关。
印刷油墨的流变性质对印刷适性具有重要的作用。
油墨的流变性能包括油墨的黏度、黏着性、屈服值、触变性、流动度和流动性、转移性等性能。
01、黏度粘度是指流体流动时的粘滞程度,是流体分子之间相互吸收而产生的阻碍分子之间相对运动能力的量度,是表征流体流动的阻力(或内摩擦力)大小的指标。
流体在流动过程中,根据流体的结构与性质会出现流体呈黏稠状态时流动困难、流体呈稀薄状态时流动舒畅的现象,流体出现这种现象的原因是在流动中存在着流体分子间的相互吸引而导致的运动阻力,称为内摩擦力。
流体的这种性质称为黏度。
黏度是表明油墨流变性的一个重要指标,在印刷过程中一定的黏度是保证油墨支持传递和均匀转移的主要条件,因为它关系到印刷过程能否顺利进行,并直接影响到印迹墨色的均匀程度、清晰度及光泽度。
印刷中对油墨黏度控制不当,会给印刷带来多种故障。
如下:1)油墨的黏度过大时,黏性过大,拉丝性强。
油墨转移过程中,在墨辊之间分裂时丝头过长,断裂的丝头末端容易形成油墨飞散到空中,形成印刷中的飞墨现象,飞墨现象在高速印刷时表现更为明显。
2)油墨的黏度过大很容易造成纸张的脱粉、拉毛或分层剥离现象。
这是油墨的黏力在一定印刷条件下超过了纸张的表面强度所形成的,这种现象在印刷用纸的结构疏松,表面强度不高时,更为明显。
油墨、储存模量、损耗模量和流变1. 引言油墨是一种广泛应用于印刷、涂料和标识等领域的材料。
在实际应用中,油墨需要具备一定的物理特性,比如储存模量、损耗模量和流变特性。
本文将分别介绍油墨的储存模量、损耗模量和流变特性,并探讨它们之间的关系和影响因素。
2. 油墨的储存模量储存模量是衡量材料在储存变形能力方面的一个指标。
对于油墨来说,储存模量可以反映其在储存过程中的弹性特性。
储存模量越大,油墨在储存过程中的变形能力越小,其弹性特性越好。
油墨的储存模量受多种因素的影响,包括油墨的成分、溶剂的选择、固化剂的添加等。
其中,油墨的成分是决定储存模量的关键因素之一。
一般来说,含有高分子聚合物的油墨具有较高的储存模量,因为高分子聚合物具有较好的弹性特性。
此外,溶剂的选择也会对油墨的储存模量产生影响。
溶剂的选择应考虑到其与油墨成分的相容性,以及对油墨的溶解能力。
固化剂的添加可以提高油墨的储存模量,因为固化剂能够增加油墨的交联程度,从而增强其弹性特性。
3. 油墨的损耗模量损耗模量是衡量材料在储存过程中能量损耗的一个指标。
对于油墨来说,损耗模量可以反映其在储存过程中的粘弹性特性。
损耗模量越大,油墨在储存过程中的能量损耗越大,其粘性特性越明显。
油墨的损耗模量受多种因素的影响,包括油墨的成分、溶剂的选择、固化剂的添加等。
油墨的成分对损耗模量的影响与储存模量类似,高分子聚合物的含量越高,损耗模量越大。
溶剂的选择也会对油墨的损耗模量产生影响,不同的溶剂对油墨的粘性特性有不同的影响。
固化剂的添加可以增加油墨的交联程度,从而增大其损耗模量。
4. 油墨的流变特性流变特性是指材料在外力作用下的变形和流动特性。
对于油墨来说,流变特性可以反映其在印刷、涂料等应用中的可流动性和可变形性。
油墨的流变特性可以通过流变仪进行测试。
流变仪可以施加不同的剪切应力和剪切速率,以模拟实际应用中的外力作用。
通过测试,可以得到油墨的剪切应力-剪切速率曲线,从而了解油墨的流变特性。
油墨储存模量损耗模量流变油墨:从储存模量、损耗模量和流变的角度探讨一、引言油墨在印刷行业中起着至关重要的作用,对图文印刷品的质量和效果有着直接的影响。
而要了解和掌握油墨的特性,就需要从储存模量、损耗模量和流变等方面进行综合评估和分析。
二、油墨的储存模量储存模量是指油墨在静态条件下的弹性模量,也可以理解为油墨在储存能量的能力。
对于油墨来说,储存模量的大小直接影响着油墨在印刷过程中的稳定性和均匀性。
当储存模量较高时,油墨具有较好的稳定性,能够在长时间内保持良好的印刷效果,而当储存模量较低时,油墨则容易出现流动性过大、墨水移动不均匀等问题。
三、油墨的损耗模量损耗模量是指油墨在印刷过程中消耗能量的能力,也可以理解为油墨在动态条件下的粘性特性。
损耗模量的大小与油墨的粘度密切相关,而粘度决定了油墨在印刷机构中的流动性和传递性。
要确保油墨在印刷过程中的稳定性和均匀性,就需要合理控制损耗模量的大小,保持油墨的粘度在一个适宜的范围内。
四、油墨的流变特性流变是指物质在外力作用下发生形状或流动状态改变的过程,而油墨作为一种特殊的液体材料,也具有其独特的流变特性。
在印刷过程中,油墨需要在印刷机构中完成各种复杂的流动和传递操作,因此其流变特性的稳定性和可控性尤为重要。
通过对油墨的流变特性进行深入研究和分析,可以更好地把握油墨在印刷过程中的行为规律,从而有效地提高印刷品的质量和效果。
五、总结回顾通过对油墨的储存模量、损耗模量和流变特性的综合分析,可以更全面地了解和把握油墨的特性和行为规律。
在实际印刷生产中,要根据具体的印刷要求和条件,合理控制油墨的储存模量和损耗模量,并充分利用其流变特性,以实现印刷品的高质量和高效率。
六、个人观点和理解作为文章写手,我深刻理解油墨的储存模量、损耗模量和流变特性对印刷品质量的重要影响。
在撰写本文过程中,我不断突破自己的认知边界,深入挖掘油墨背后的科学机理和技术特性,希望能够为读者提供更丰富的知识和更深刻的理解。
丝网印刷油墨的性能一、黏度黏度,又称内摩擦,是一层流体对另一层流体作相对移动时所产生的阻力。
它是流体内部阻碍其流动的一种特性。
油墨黏度一般用"泊"、"厘泊"来表示。
丝印油墨黏度约在4000~12000厘泊之间。
黏度过大油墨对承印物润湿性差,不易通过丝网转移到承印物上。
造成印刷困难,印迹缺墨。
黏度过小,会造成印迹扩大,致使印刷品线条合并,成为废品。
黏度指标可以使用黏度计进行测量。
黏度变化与印刷适性的关系是:油墨在印版上,黏度愈稳定愈好,但转移到印件上后,黏度变大愈快愈好。
触变性则对前者不利,对后者有利,因此适当的触变性是可取的,而剪切变稠对印刷有害无益。
加溶剂、稀释剂或增塑剂,可降低黏度;加填料、颜料、硅化物,能提高黏度。
二、触变性触变性是指液体由于应力黏度降低而后又恢复其原来黏度的能力。
在丝印过程中,表现为油墨在静止一定时间后变稠,黏度变大,搅动后又变稀,黏度也变小的一种可逆现象。
因为,油墨中颜料颗粒的外形是不规则的,尽管吸附了一层连结料,也是﹣种不规则的圆球。
所以,在静止一定时间后,颜料颗粒就会接触或相距很近,造成相互吸引,阻碍颗粒的自由活动,油墨就变稠、变黏。
然而,这种暂时稳定的结构,被外力搅动后,很快被破坏,解除了颗粒之间的相互吸引力,颗粒的自由运动又得到恢复,流动性提高了,油墨变稀,黏度下降。
丝网印刷油墨的触变性越小越好。
为消除这种不利因素,在印刷之前,要充分搅拌油墨,使之恢复常态,然后进行印刷。
油墨中的颜料颗粒越不规则,多角多孔,如黑墨,其触变性就大。
反之,如黄墨,其触变性就小。
油墨中连结料多,颜料少,触变性也小,反之则触变性大。
另外连结料的不同对触变性影响也很大,如聚合植物油所制作的油墨,其触变性小,如高分子树脂作连结料,其触变性大。
三、屈服值屈服值是指对流体加一定外力,从弹性变形到流动变形的界限应力,也是油墨开始层流时必须施加的最低应力。
屈服值太大,油墨发硬,不易打开,输墨不便,流平性差;屈服值太小,印刷细线和网点再现性差。
油墨储存模量损耗模量流变
摘要:
1.油墨的概述
2.储存模量和损耗模量的定义与作用
3.流变的概念及其与油墨的关系
4.储存模量、损耗模量和流变在油墨性能评估中的应用
正文:
一、油墨的概述
油墨是一种用于印刷的颜料和粘合剂的混合物,通常用于书籍、报纸、杂志等印刷品。
油墨的性能对于印刷质量和印刷效果至关重要,因此在油墨的研发和生产过程中,需要对其各项性能指标进行严格的把控。
二、储存模量和损耗模量的定义与作用
1.储存模量:储存模量是指油墨在静止状态下,其形变与所产生的应力之比。
储存模量越大,说明油墨的形变恢复能力越强,印刷过程中油墨的流动性能越好。
2.损耗模量:损耗模量是指油墨在振动状态下,其损耗能量与振动能量之比。
损耗模量越小,说明油墨在印刷过程中的损耗能量越少,印刷效果越好。
三、流变的概念及其与油墨的关系
流变是指物质在受到剪切力作用下,其流动特性的变化。
油墨的流变性能直接影响到印刷过程中的油墨流动性、油墨分布均匀性等,是评价油墨性能的重要指标。
四、储存模量、损耗模量和流变在油墨性能评估中的应用
在油墨性能评估中,储存模量和损耗模量是衡量油墨流变性能的重要参数。
通过测量和分析油墨的储存模量和损耗模量,可以有效地评估油墨的印刷性能,为油墨的研发和生产提供科学依据。
同时,流变性能的评估也有助于优化油墨的配方设计,提高油墨的印刷质量。
综上所述,油墨的储存模量、损耗模量和流变性能对于印刷质量具有重要影响。
油墨和流变学二、粘度仪和粘性仪粘度仪和粘性仪的种类是很多的,几乎可以这样认为:油墨行业是应用粘度仪最多的一个行业。
至于粘性仪,则已成了油墨行业的主要仪器,目前是油墨制造中必不可少的仪器之一。
因之,这里想尽可能多地来讨论关于这方面的仪器,尤其是有代表性的类型。
(一)、粘度仪粘度仪的设计原理几乎都是以牛顿流体为基础的,所以,不管它们有多少种类型,它们的基本原理还是同出共因。
1、毛细管式粘度仪(Capillary Viscosimeter)。
设有一根毛细管,它的内部半径为R,使牛顿流体以一致的滞流形式通过这根毛细管,作用在管子长度为I上的压力为。
假设有一个与管子同心的液体圆壳,其半径为r,厚度为dr,长度为L。
从这些薄圆先的对称排列来看,在壳外部的每一个流体颗粒,以速度v运动,而在它的内部,则速度稍大一些;为v+dv。
故通过壳厚为dr的速度梯度(剪切速率)是-dv/dr,负的符号表示:半径增大则速度减小。
作用在被壳包围的液体圆筒上的力F,相当于作用在壳的长度上的压力P乘以圆壳的横断面πr2。
这些力可通过壳的内表面而像剪切应力一样地分配,其面积相当于2πrL。
为了得到流过管子的体积的比例,可将管子中的所有同心圆壳(半径从r=0到r=R)的流动情况汇总起来。
这可将在单位时间(t)内通过管子的一定断面(距离)的液体体积(v)记录下来,其形状就像一个回转抛物面。
实际上,作用在毛细管长度为L上的压力P,可以通过在(进入)毛细管上面的流体的静压高差(头)而得到。
可以看出,毛细管粘度仪一般适用于牛顿流体,常用以测定溶剂、油脂等透明类物质。
对非牛顿流体而言,临界雷诺指数与剪切速率以及物质的分子大小、形状有关。
大而较长的分子会明显地降低雷诺指数。
所以毛细管粘度仪又叫运动粘度仪。
一种代表性的毛细管粘度仪,叫凯能-芬斯克粘度仪。
另一种常用的毛细管粘度仪叫乌氏(Ubbelohde)粘度仪。
还有一种赛包特(Saybolt)型粘度仪,是一种测定60厘米。