双目立体视觉
- 格式:ppt
- 大小:3.23 MB
- 文档页数:24
双目立体视觉,在百度百科里的解释是这样解释的:双目立体视觉(Bin ocular Stereo Visio n )是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。
我相信未来的世界一定是三维感知的世界,毕竟二维世界很多情况下不能满足要求的。
一视差Dis parity 与深度图那么提到双目视觉就不得不提视差图:双目立体视觉融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity) 图像。
对于视差的理解自己可以体验一下:将手指头放在离眼睛不同距离的位置,并轮换睁、闭左右眼,可以发现手指在不同距离的位置,视觉差也不同,且距离越近,视差越大。
那么提到视差图,就有深度图,深度图像也叫距离影像,是指将从图像采集器到场景中各点的距离(深度)值作为像素值的图像。
获取方法有:激光雷达深度成像法、计算机立体视觉成像、坐标测量机法、莫尔条纹法、结构光法。
那么这里引申一下深度图与点云的区别,点云:当一束激光照射到物体表面时,所反射的激光会携带方位、距离等信息。
若将激光束按照某种轨迹进行扫描,便会边扫描边记录到反射的激光点信息,由于扫描极为精细,则能够得到大量的激光点,因而就可形成激光点云。
深度图像经过坐标转换可以计算为点云数据;有规则及必要信息的点云数据可以反算为深度图像。
两者在一定条件下是可以相互转化的,之前的博客里,有使用PCL库实现过点云提取深度图,当然给出相机参数也是可以由深度图转为点云的。
截图一个深度图:h 也JrruK"■arru举所以深度与视差的关系如下比如绝对差值法D=| L-R|式中,L、R和D分别代表左视图、右视图和对应的绝对差值图的亮度值。
绝对差值图并不是严格意义上的视差图,但是它的计算方法最为简单,速度快,它给出的结果可以作为参考。
双目立体视觉原理双目立体视觉是指人类通过两只眼睛同时观察同一物体时产生的立体效果。
这种视觉原理是人类视觉系统中非常重要的一部分,它使我们能够感知到物体的深度和距离,为我们的日常生活和工作提供了重要的信息。
在本文中,我们将深入探讨双目立体视觉的原理和应用。
首先,双目立体视觉的原理是基于人类两只眼睛的位置差异而产生的。
由于两只眼睛分别位于头部的两侧,它们所看到的同一物体会有微小的差异。
这种差异包括视差、视角和视线方向等,这些差异为我们的大脑提供了丰富的信息,使我们能够感知到物体的深度和距离。
其次,双目立体视觉的原理还涉及到视觉系统的处理过程。
当两只眼睛同时观察同一物体时,它们所接收到的图像会被传送到大脑的视觉皮层进行处理。
在这个过程中,大脑会将两只眼睛接收到的信息进行比对和整合,从而产生立体效果。
这种比对和整合的过程是非常复杂的,它涉及到大脑的神经元网络和神经递质的作用,是一个高度精密的生物信息处理过程。
另外,双目立体视觉的原理还与人类的视觉经验和学习有关。
通过长期的视觉训练和经验积累,人类能够更加准确地感知物体的深度和距离。
这种经验和学习会影响到我们的视觉系统的发育和功能,使我们能够更加灵活地应对各种复杂的立体环境。
在实际应用中,双目立体视觉原理被广泛应用于计算机视觉、虚拟现实、医学影像等领域。
通过模拟人类的双目立体视觉原理,计算机可以实现立体图像的获取、处理和显示,从而实现立体视觉效果。
在虚拟现实技术中,双目立体视觉原理可以为用户提供更加逼真的虚拟体验,增强沉浸感和真实感。
在医学影像领域,双目立体视觉原理可以帮助医生更加准确地诊断疾病,提高医疗水平。
总之,双目立体视觉原理是人类视觉系统中非常重要的一部分,它使我们能够感知物体的深度和距离,为我们的日常生活和工作提供了重要的信息。
通过深入研究双目立体视觉的原理和应用,我们可以更好地理解人类视觉系统的工作机制,推动计算机视觉、虚拟现实、医学影像等领域的发展和创新。
《基于双目立体视觉定位和识别技术的研究》篇一一、引言随着科技的飞速发展,计算机视觉技术在许多领域中得到了广泛的应用。
其中,双目立体视觉定位和识别技术以其高精度、高效率的特点,在机器人导航、工业检测、无人驾驶等领域展现出巨大的应用潜力。
本文将围绕双目立体视觉定位和识别技术进行深入的研究和探讨。
二、双目立体视觉技术概述双目立体视觉技术是一种模拟人类双眼视觉的计算机视觉技术。
通过模拟人眼的视差感知原理,双目立体视觉技术利用两个相机从不同角度获取场景的图像信息,然后通过图像处理和算法分析,得到场景中物体的三维信息。
双目立体视觉技术主要包括相机标定、图像获取、图像预处理、特征提取、立体匹配、三维重建等步骤。
三、双目立体视觉定位技术双目立体视觉定位技术是双目立体视觉技术的核心部分,它通过计算左右相机获取的图像间的视差信息,实现场景中物体的三维定位。
具体而言,双目立体视觉定位技术首先需要对相机进行精确的标定,以获取相机的内外参数。
然后通过图像预处理和特征提取,获取场景中的特征点或特征线。
接着,利用立体匹配算法,将左右相机获取的图像进行匹配,得到视差图。
最后,根据视差信息和相机的内外参数,计算得到场景中物体的三维坐标信息。
四、双目立体视觉识别技术双目立体视觉识别技术是在定位技术的基础上,进一步对场景中的物体进行分类和识别。
通过分析物体的形状、大小、纹理等特征信息,结合机器学习、深度学习等算法,实现对物体的识别和分类。
双目立体视觉识别技术可以广泛应用于无人驾驶、机器人导航、工业检测等领域。
五、双目立体视觉技术的应用双目立体视觉技术在许多领域都得到了广泛的应用。
在无人驾驶领域,双目立体视觉技术可以实现车辆的定位和障碍物识别,提高车辆的行驶安全性和自动驾驶的准确性。
在机器人导航领域,双目立体视觉技术可以帮助机器人实现精准的路径规划和导航。
在工业检测领域,双目立体视觉技术可以实现对产品的快速检测和质量控制。
六、研究展望随着计算机视觉技术的不断发展,双目立体视觉定位和识别技术将会有更广泛的应用前景。
双目立体视觉匹配双目立体视觉匹配是一种计算机视觉技术,用于在双目摄像头中获取的图像中,找到对应的目标点,从而实现立体深度感知。
双目立体视觉匹配的原理是基于两个前提假设:一是视差概念,即两个相同的场景在左右两个眼睛中的图像位置差异;二是视差和深度之间的关系。
根据这两个基本假设,我们可以通过比较左右两个图像中的像素值来确定两个图像中的对应关系,从而计算出立体深度信息。
双目视觉匹配的过程通常包括以下几个步骤:1. 图像预处理:双目图像首先需要进行预处理,包括去噪、图像校正、颜色校正等。
这些步骤旨在提高图像质量和减少噪声对匹配结果的影响。
2. 特征提取:在预处理之后,需要从图像中提取出一些能够反映目标结构和纹理信息的特征点。
常用的特征包括角点、边缘、区域等。
3. 特征匹配:在这一步中,通过比较特征点之间的相似性来确定它们之间的对应关系。
常用的匹配算法有最近邻匹配、迭代最近点算法、随机抽样一致性算法等。
4. 视差计算:特征匹配之后,我们可以根据特征点之间的位置差异来计算出视差信息,即目标点在左右图像中的位置差异。
一般来说,视差越大,深度越小。
5. 深度计算:视差和深度之间的具体关系取决于相机的内外参数、基线长度等因素。
通过根据相机标定信息和经验参数,可以将视差转换为具体的深度值。
双目立体视觉匹配在机器人导航、三维重建、虚拟现实等领域具有广泛的应用。
通过获取场景的三维深度信息,可以使机器人在复杂环境中进行精确的定位和避障;在三维重建中,双目立体视觉匹配可以用于获取物体或场景的精确几何结构;在虚拟现实中,双目立体视觉匹配可以为用户提供更加真实的交互体验。
双目立体视觉匹配也面临着一些挑战和限制。
双目视觉匹配对于光照变化、纹理缺失等问题比较敏感,这会导致匹配结果的不稳定性;相机标定是双目视觉匹配中的重要一步,需要准确地测量相机参数和关联参数,否则会影响深度计算结果的精度;双目视觉匹配在处理大场景、纹理一致的区域等情况下会面临困难。
双目立体视觉在工业中有很多应用例子,以下是一些常见的应用场景:
1.零件识别与定位:双目立体视觉可以通过对物体进行三维测量和重构,实现零件的精确识别和定位。
在生产线中,机器人可以使用双目立体视觉
系统来识别零件的位置和姿态,从而精确地拾取和操作零件。
2.质量检测:双目立体视觉可以用于检测产品的外观质量和尺寸精度。
通过获取产品的三维模型,可以对产品进行全方位的检测和分析,如检测产
品表面的缺陷、尺寸偏差、对称性等。
3.机器人导航:双目立体视觉可以用于机器人的自主导航和定位。
通过获取环境的三维信息,机器人可以精确地识别障碍物和路径,并进行避障和
路径规划。
4.增强现实:双目立体视觉可以与增强现实技术结合,将虚拟物体与现实场景进行融合。
通过获取现实场景的三维信息,可以将虚拟物体精确地放
置在场景中,从而实现更加逼真的增强效果。
5.自动化装配:在制造业中,装配过程需要很高的精度和准确性。
双目立体视觉可以通过对零件进行精确的定位和操作,实现自动化装配。
机器人
可以使用双目立体视觉系统来识别零件的位置和姿态,从而精确地装配零件。
总之,双目立体视觉在工业中具有广泛的应用前景,可以提高生产效率、降低成本、提高产品质量等。
随着技术的不断发展,双目立体视觉将会在更多的领域得到应用。
双目立体视觉匹配双目立体视觉匹配是指利用人类双眼在空间中略微不同的视角,联合大脑进行视觉信息的处理和匹配,从而获得空间的深度和立体感。
在现代科技中,利用双目立体视觉匹配可以实现很多实用的应用,比如立体影像、立体游戏、机器人视觉导航等。
双目立体视觉匹配技术是计算机视觉和人工智能领域的一个重要研究方向,具有广泛的应用前景。
一、双目立体视觉原理人类通过双眼获取的两幅视觉图像,实际上是同一个物体在不同视角下的投影。
这两幅图像之间存在视差,也就是物体在不同视角下的位置差异。
大脑通过对这些视差的处理,得出了深度信息,使我们能够感知到物体的三维空间位置。
双目立体视觉匹配主要涉及视差的计算和匹配。
在数字图像处理中,利用计算机对双眼获取的两幅图像进行处理和匹配,从而获取深度信息。
通常采用的方法包括视差计算、视差匹配和深度图生成等步骤。
1. 视差计算:通过一系列像素级的图像处理方法,计算出两幅图像之间的视差。
常见的计算方法包括半全局匹配(Semi-Global Matching, SGM)、立体匹配算法(Stereo Matching)、视差图像传感器(Depth Sensing Image Sensor)等。
2. 视差匹配:将两幅图像中对应的像素进行匹配,找到它们之间的视差值。
通常采用的方法包括基于特征点的匹配、基于像素级的匹配等。
3. 深度图生成:根据计算得出的视差信息,生成目标物体的深度图,从而实现三维空间中物体位置的感知。
双目立体视觉匹配的原理是基于人类视觉的工作原理,通过模拟人类双眼的工作方式,从而实现数字图像的深度感知和立体视觉效果。
二、双目立体视觉应用双目立体视觉匹配技术在现代科技中应用广泛,涉及到多个领域,包括计算机视觉、人工智能、机器人技术等。
以下将介绍一些典型的双目立体视觉应用。
1. 立体影像:利用双目立体视觉匹配技术,可以实现立体影像的拍摄和显示。
通过双目相机拍摄的图像以及虚拟现实(Virtual Reality, VR)或增强现实(Augmented Reality, AR)技术,可以实现逼真的立体影像体验。
双目立体视觉匹配双目立体视觉匹配是指通过两个视觉传感器(眼睛)同时获取的视觉信息,进行图像的匹配与处理,从而实现对三维空间中物体位置、形状和深度的感知。
在人类视觉系统中,我们的两只眼睛分别观察到不同的景象,这两个视角的差异被大脑处理后,使我们能够感知到三维世界。
双目立体视觉匹配的核心就是模拟人类视觉系统的工作原理,通过计算机对不同眼睛拍摄到的图像进行处理,提取出深度信息,从而实现对三维空间的感知。
双目立体视觉匹配的基本原理是寻找两个图像之间的对应点。
当两个图像的视角或位置发生变化时,同一物体在两个图像中的像素值可能会发生变化。
通过分析这种变化,可以计算出物体的深度信息。
1. 图像获取:使用两个摄像机同时获取两幅图像,这两个摄像机应具有一定的基线距离,即两个摄像机之间的距离。
2. 校准:对两个摄像机进行标定和校准,确定两个摄像机之间的位置关系和相机参数。
3. 特征提取:从图像中提取出能够用于匹配的特征点,常用的特征点包括角点、边缘等。
4. 特征描述:对提取出的特征点进行描述,通常使用局部特征描述方法,如SIFT、SURF等。
5. 特征匹配:将一个图像中的特征点与另一个图像中的特征点进行匹配,通常使用特征向量的距离度量方法,如欧氏距离、余弦相似度等。
6. 匹配剔除:对匹配点进行剔除,以排除误匹配和无效匹配。
7. 深度计算:根据匹配点的位置信息以及两个摄像机之间的位置关系,计算出物体的深度信息。
8. 三维重建:根据深度信息和摄像机参数,将匹配点重建为三维空间中的点云,从而得到三维物体模型。
双目立体视觉匹配在计算机视觉领域有重要的应用,例如机器人导航、三维重建、物体跟踪等。
由于双目立体视觉匹配能够提供精确的深度信息,因此在许多应用中可以取得比单目视觉更好的效果。
双目立体视觉匹配也存在一些挑战和限制。
对于低纹理区域或者高度相似的物体,匹配点的提取和匹配可能会受到干扰。
摄像机的标定和校准是一个关键的步骤,如果标定不准确或者摄像机之间的位置关系发生变化,都会影响匹配的准确性。
双目立体视觉原理双目立体视觉是人类视觉系统利用双眼获取深度信息的一种视觉方式。
在日常生活中,我们常常利用双眼来感知物体的位置、距离和深度,这得益于双目立体视觉原理的作用。
双目立体视觉原理是指人类通过左右两只眼睛同时观察同一物体,由于左右眼之间存在一定的视差,从而产生了深度信息,使我们能够感知到物体的立体形状和位置。
双目立体视觉原理的实现基于人类双眼之间的视差。
当我们观察远处的物体时,左右眼所看到的图像几乎是一样的,视差较小;而当观察近处的物体时,左右眼所看到的图像会有较大的差异,视差较大。
通过比较左右眼的视差,人类大脑能够计算出物体的距离和深度信息。
双目立体视觉原理在人类视觉系统中扮演着重要的角色。
首先,双目立体视觉使我们能够更准确地感知物体的位置和距离,这对于日常生活中的行走、操纵物体等活动至关重要。
其次,双目立体视觉也为我们提供了更加生动和真实的视觉体验,使我们能够感受到物体的立体形状和空间位置,这对于艺术、设计和娱乐等领域具有重要意义。
在工程应用中,双目立体视觉原理也被广泛应用于计算机视觉、机器人技术等领域。
通过模拟人类双目视觉系统,计算机可以实现对物体的三维重建和深度感知,从而实现对环境的理解和感知。
在机器人领域,双目立体视觉也被用于实现机器人的自主导航、避障和抓取等任务,为机器人赋予了更加灵活和智能的能力。
总的来说,双目立体视觉原理是人类视觉系统中一项重要的功能,它使我们能够感知物体的立体形状和位置,为我们的日常生活、艺术创作和工程应用提供了重要的支持。
随着科学技术的不断发展,双目立体视觉原理也将继续发挥着重要的作用,并为人类带来更加丰富和多彩的视觉体验。
双目立体视觉1. 定义人的立体感是这样建立的:双眼同时注视某物体,双眼视线交叉于一点,叫注视点,从注视点反射回到视网膜上的光点是对应的,这两点将信号转入大脑视中枢合成一个物体完整的像。
不但看清了这一点,而且这一点与周围物体间的距离、深度、凸凹等等都能辨别出来,这样成的像就是立体的像,这种视觉也叫立体视觉。
立体视觉是人眼在观察事物时所具有的立体感。
再进一步讲,人眼对获取的景象有相当的深度感知能力(Depth Perception),而这些感知能力又源自人眼可以提取出景象中的深度要素(Depth Cue)。
之所以可以具备这些能力,主要依靠人眼的如下几种机能:1. 双目视差2. 运动视差3. 眼睛的适应性调节4. 视差图像在人脑的融合除了以上的几种机能外,研究表明人的经验和心理作用也对景象的深度感知能力有影响,比如说图像的颜色差异、对比度差异、景物阴影甚至是所观看显示器的尺寸和观察者所处的环境,但这些要素相对上述机能来讲,在建立立体感上是微不足道的。
双目立体视觉理论建立在对人类视觉系统研究的基础上,通过双目立体图象的处理,获取场景的三维信息,其结果表现为深度图,再经过进一步处理就可得到三维空间中的景物,实现二维图象到三维空间的重构。
Marr-Poggio-Grimson最早提出并实现了一种基于人类视觉系统的计算视觉模型及算法。
双目立体视觉系统中,获取深度信息的方法比其它方式(如由影到形方法)较为直接,它是被动方式的,因而较主动方式(如程距法)适用面宽,这是它的突出特点。
原理双目立体视觉三维测量是基于视差原理。
图1 双目立体成像原理其中基线距B=两摄像机的投影中心连线的距离;相机焦距为f。
设两摄像机在同一时刻观看空间物体的同一特征点(,,)c c c P x y z ,分别在“左眼”和“右眼”上获取了点P 的图像,它们的图像坐标分别为(,)left left left p X Y =,(,)right right right p X Y =。