人工合成抗菌药20010-5
- 格式:ppt
- 大小:722.50 KB
- 文档页数:35
药理学教材人工合成抗菌药人工合成抗菌药是药理学研究的重要内容之一。
随着抗生素耐药性的增加以及新型病原体的出现,人工合成抗菌药的研发和应用变得尤为重要。
本章将介绍人工合成抗菌药的分类、作用机制以及相关的临床应用。
人工合成抗菌药按照其化学结构的不同,可分为多个类别。
常见的有β-内酰胺类抗生素、氮杂菌素类抗生素、环酮类抗生素等等。
这些抗菌药物的合成过程包括了药物分子的设计合成、生物活性和药代动力学的研究等。
通过人工合成使得这些抗菌药物能够大规模制备,并且可以通过化学修饰来改变药物的活性和药理特性。
β-内酰胺类抗生素是人工合成抗菌药中应用最为广泛的一类。
它们通过抑制细菌细胞壁的合成来达到抗菌的效果。
β-内酰胺类抗生素的合成依赖于化学合成技术,其中包括活性组分的合成与赋形等步骤。
药物合成的选择性和产物的纯度直接关系到其抗菌活性和药代动力学效应。
通过人工合成,可以更好地控制药物的制备质量和量产能力,从而提高抗菌疗效和临床应用的效果。
氮杂菌素类抗生素是另外一类常见的人工合成抗菌药。
它们通过抑制细菌的蛋白质合成来达到抗菌的效果。
氮杂菌素类抗生素具有广谱的抗菌活性,可以用于治疗许多不同类型的感染。
人工合成氮杂菌素类抗生素通常包括了多步反应的合成过程,包括了催化剂的选择、反应物的研究和药物的活性评估等。
通过人工合成,可以提高药物的制备效率、纯度和稳定性,从而提高其在临床应用中的效果。
环酮类抗生素是另外一类重要的人工合成抗菌药。
它们通过抑制细菌的核酸合成来达到抗菌的效果。
环酮类抗生素具有广泛的抗菌活性,特别适用于治疗革兰阳性细菌感染。
人工合成环酮类抗生素的关键步骤包括了催化剂的筛选、底物的研究和中间体的合成等。
通过人工合成,可以提高环酮类抗生素的药物效位,改善其药代动力学特性,并且有助于开发更具活性的新型环酮类抗生素。
在临床应用中,人工合成抗菌药具有广泛的应用前景。
人工合成的抗菌药物可以通过对病原体的敏感性和病人的体质进行匹配,从而提高疗效和减少不良反应。
第43章人工合成抗菌药第一节喹诺酮类抗菌药一、概述人工合成的广谱抗菌药,发展分三个阶段:第一代产品:60年代初萘啶酸:抗G-菌作用弱,毒性大,已淘汰第二代产品:70年代初砒哌酸:强于第一代,仅用尿道、肠道感染第三代产品:79年后氟喹诺酮类:口服吸收好,广谱,杀菌强与其他药无交叉耐药,不良反应少。
药物:诺氟沙星、氧氟沙星(氟嗪酸)、环丙沙星(环丙氟哌酸)、司氟沙星、左氧氟沙星、洛美沙星、氟洛沙星等。
90年代:莫西沙星、吉米沙星已应用于临床。
【构效关系】以4-喹诺酮为基本结构,在N1、C3、C6、C7、C8引入不同的基团,形成各具特点的喹诺酮类。
1.增强抗菌活性;2.扩大抗菌谱;3.提高药物的脂溶性;4.光敏反应;5.中枢神经系统毒性。
【抗菌特点】1.抗菌谱广,杀菌。
抗G-菌强:大肠、痢疾、伤寒、变形、流感杆菌,淋球菌(环丙、氧氟沙星抗绿脓有效);抗G+菌有效:金葡菌、链球菌(环丙、氧氟沙星强).2.新品种:抗厌氧菌(脆弱类杆菌、梭杆菌属、消化链球菌属、厌氧芽孢梭菌属)、衣原体、支原体强(司氟沙星)、结核分支杆菌、军团菌增强。
【抗菌原理】(1)与DNA非配对碱基结合,抑制DNA回旋酶(切割与连接功能),阻止DNA复制(对人影响较小)。
(2)抑制拓扑异构酶IV;(3)抑制细菌RNA及蛋白质合成,诱导菌体DNA复制错误及抗菌后效应等等。
【耐药性】交叉耐药。
常见耐药菌:金葡菌、肠球菌、大肠埃希菌、铜绿假单胞菌等。
【体内过程】1.口服吸收良好,但富含Fe2+、Ca2+、或Mg2+的食物会降低其其生物利用度。
2.肺脏、肾脏、前列腺组织、尿液、胆汁、粪便、巨噬细胞和中性粒细胞中的药物含量均高于血浆。
脑脊液、前列腺、骨组织中的药物浓度低于血药浓度。
3.肝、肾消除均很重要。
【临床应用】1.泌尿生殖道感染环丙沙星、加替沙星、氧氟沙星与β-内酰类同为首选,用于单纯性淋病萘瑟菌性尿道炎或宫颈炎;环丙沙星是铜绿假单胞菌性尿道炎的首选药;对敏感菌所引起的前列腺炎均有较好疗效。