小学数学《抽屉原理》教案
- 格式:doc
- 大小:33.50 KB
- 文档页数:4
小学数学《抽屉原理》教案教学目标:1.了解抽屉原理的定义及相关概念;2.能够应用抽屉原理解决问题;3.培养学生的逻辑思维和推理能力。
教学重难点:1.掌握抽屉原理的概念和证明方法;2.培养学生运用抽屉原理解决问题的能力。
教学准备:1.教师准备好抽屉和球(或者其他小物体);2.黑板、彩色粉笔。
教学过程:Step 1 引入问题引入抽屉原理:同学们,你们有没有听过抽屉原理呢?它是数学中的一条非常重要的原理,广泛应用于各个领域。
今天我们就一起来学习一下抽屉原理。
Step2 导入示例教师在教室里摆放若干抽屉,并将一些球随意放在这些抽屉里。
然后请同学们观察这个情景,并思考一下,最少需要几个抽屉才能确保至少有一个抽屉里放有两个球?引导同学们思考之后,教师可以让同学们讨论并互相交流自己的想法。
然后,教师可以请同学们表达自己的观点,并给出答案。
教师可以解释抽屉原理的定义,并引导同学们理解。
Step3 抽屉原理的定义抽屉原理:如果有n+1个对象放进n个抽屉里,那么至少有一个抽屉里至少放了两个对象。
教师可以在黑板上列举一些例子,阐明抽屉原理的用法和意义。
Step4 抽屉原理的证明教师可以通过一个简单的证明过程来验证和解释抽屉原理。
例如,教师可以假设有6个抽屉,里面放有10个球。
假设每个抽屉里放的球的数量都不同,最多只能有1个球。
因为每个抽屉只能放最多1个球,所以只能放6个球。
但是实际上,我们有10个球。
所以,这个假设是错误的。
同理,假设每个抽屉里放的球的数量都不同,最少只能有0个球。
因为每个抽屉里放的球的数量都不同,所以最多只能放5个球。
但是实际上,我们有10个球。
所以,这个假设也是错误的。
通过这个简单的证明过程,我们可以得出结论:如果有n+1个对象放进n个抽屉里,那么至少有一个抽屉里至少放了两个对象。
Step5 拓展应用在日常生活中,抽屉原理的应用非常广泛。
尤其在数学、计算机科学和概率统计等领域有着重要的作用。
同学们可以思考一下抽屉原理在哪些实际问题中可以应用,并举例说明。
小学数学《抽屉原理》教案课时数:2课时教学目标:1.了解抽屉原理的概念和应用;2.能够运用抽屉原理解决问题;3.培养学生观察、归纳、推理和解决问题的能力;4.通过实例让学生体会数学在解决实际问题中的作用。
教学重点:1.抽屉原理的概念;2.抽屉原理的应用。
教学难点:1.如何运用抽屉原理解决问题;2.培养学生解决实际问题的能力。
教学准备:1.教师准备课件和教具;2.学生准备笔记本和铅笔。
教学过程:一、导入(10分钟)1.教师用一个实例引出抽屉原理的概念:“假设有10双袜子,颜色只有红、蓝、黄三种。
那么不论如何排列,一定有两双颜色一样的袜子放在同一个抽屉里。
请问为什么?”2.引导学生思考这个问题,鼓励他们发言讨论。
二、概念解释与引入(10分钟)1.教师向学生解释抽屉原理的概念:“抽屉原理又称为鸽巢原理,意思是:如果有n+1个对象,要放进n个盒子里,那么至少有一个盒子里放的对象个数一定多于1个。
”2.通过图示和具体例子向学生展示抽屉原理的应用。
三、教学示范与讲解(30分钟)1.教师通过几个简单的问题向学生展示抽屉原理的应用方法,并给予解答讲解。
示例问题1:抽屉原理在生活中的应用有哪些?示例问题2:在0到9这10个数字中,至少有两个数字的个位数字相同,你能找出这两个数字吗?2.让学生自己尝试解答一些问题,并请学生上台展示解答过程,让其他学生进行评价和补充。
四、拓展与应用(20分钟)1.让学生分组完成以下问题:问题1:甲乙两个班级的学生共有50人,这两个班级每个班至少有多少人?问题2:小区有100户居民,每户最多能养2只宠物,那么这个小区最多能养多少只宠物?问题3:一台机器每小时可以生产100件产品,要生产1000件产品至少需要多少时间?2.鼓励学生思考不同的解决方法和思路,并让每个小组展示他们的解答过程。
五、总结与反思(10分钟)1.教师进行知识总结,强调抽屉原理的应用方法和思维方式。
2.鼓励学生反思本节课学到的内容,提出问题和思考。
抽屉原理教学设计8篇作为一位杰出的老师,通常需要准备好一份教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么应当如何写教学设计呢?如下是勤劳的编辑帮大家收集整理的抽屉原理教学设计8篇,仅供借鉴,希望可以帮助到有需要的朋友。
六年级数学《抽屉原理》公开课教学设计篇一教学目标:1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重点:抽取问题。
教学难点:理解抽取问题的基本原理。
教学过程:一、创设情境,复习旧知1、出示复习题:师:老师这儿有一个问题,不知道哪位同学能帮助解答一下?2、课件出示:把3个苹果放进2个抽屉里,总有一个抽屉至少放2个苹果,为什么?3、学生自由回答。
二、教学例21、出示:盒子里有同样大小的红球和蓝球各4个。
要想摸出的球一定有2个同色的,最少要摸出几个球?(1)组织学生读题,理解题意。
教师:你们能猜出结果吗?组织学生猜一猜,并相互交流。
指名学生汇报。
学生汇报时可能会答出:只摸4个球就可以了,至少要摸出5个球……教师:能验证吗?教师拿出准备好的红球及蓝球,组织学生到讲台前来动手摸一摸,验证汇报结果的正确性。
(2)教师:刚才我们通过验证的方法得出了结论,联系前面所学的知识,这是一个什么问题?2、组织学生议一议,并相互交流。
再指名学生汇报。
教师:上面的问题是一个抽屉问题,请同学们找一找:“抽屉”是什么?“抽屉”有几个?组织学生议一议,并相互交流。
指名学生汇报,使学生明确:抽屉就是颜色数。
(板书)教师:能用例1的知识来解答吗?组织学生议一议,并相互交流。
指名学生汇报。
使学生明确:只要分的物体比抽屉多,就能保证总有一个抽屉至少放荡2个球,因此要保证摸出两个同色的球,摸出球的数量至少要比颜色的种数多一。
(3)组织学生对例题的解答过程议一议,相互交流,理解解决问题的方法。
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
抽屉原理教学设计(优秀4篇)《抽屉原理》教学设计篇一【教学内容】《义务教育课程标准实验教科书·数学》六年级下册第68页。
【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】每组都有相应数量的盒子、铅笔、书。
【教学过程】一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。
这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
下面我们开始上课,可以吗?【点评】教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0) (2,1)【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。
抽屉原理教案《抽屉原理》教学设计12篇作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。
优秀的教案都具备一些什么特点呢?又该怎么写呢?这里我给大家分享一些较新的教案范文,方便大家学习。
为了帮助大家更好的写作抽屉原理教案,作者整理分享了12篇《抽屉原理》教学设计。
《抽屉原理》教学设计篇一教材分析《抽屉原理的认识》是人教版数学六年级下册第五章内容。
在数学问题中有一类与“存在性”有关的问题。
在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。
这类问题依据的理论,我们称之为“抽屉原理”。
“抽屉原理”较先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。
、学情分析本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。
通过几个直观的例子,用假设法向学生介绍“抽屉原理”,学生难以理解,感觉抽象。
在教学时,我结合本班实际,用学生熟悉的吸管和杯子贯穿整个课堂,让学生通过动手操作,在活动中真正去认识、理解“抽屉原理”学生学得轻松也容易接受。
教学目标1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过操作发展的类推能力,形成抽象的数学思维。
3、通过“抽屉原理”的灵活应用,感受数学的魅力。
教学重点和难点【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
抽屉原理优质课教案篇二“数学广角”是人教版六年级下册第五单元的内容。
在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。
在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。
数学广角《抽屉原理》教案一、教学目标1. 让学生经历探索物体分类的过程,体会“抽屉原理”在生活中的应用。
2. 培养学生运用“抽屉原理”解决实际问题的能力。
3. 渗透分类、集合的初步思想,发展学生的抽象思维能力。
二、教学重点与难点1. 教学重点:理解“抽屉原理”,并能应用于实际问题中。
2. 教学难点:灵活运用“抽屉原理”解决生活中的问题。
三、教学准备1. 物质准备:教具、学具。
2. 经验准备:学生已有分类的经验。
四、教学过程1. 导入:a. 创设情境,引发思考。
出示情境图片,让学生观察并思考:停车场里停了几辆不同的车?b. 交流讨论,得出结论。
学生交流讨论,得出停车场里停了3辆不同的车。
2. 探究“抽屉原理”a. 初步感知“抽屉原理”。
出示问题:如果有4辆车停在这里,最多能停几种不同的车?学生思考并尝试解答,得出结论:最多能停2种不同的车。
b. 进一步探究“抽屉原理”。
出示问题:如果有5辆车停在这里,最多能停几种不同的车?学生思考并尝试解答,得出结论:最多能停3种不同的车。
3. 总结“抽屉原理”a. 引导学生总结“抽屉原理”。
学生总结出:如果有n辆车停在这里,最多能停的不同的车的种类数是n-1。
b. 讲解“抽屉原理”。
讲解“抽屉原理”的含义:如果把n辆车看做n个元素,把不同的车的种类看做抽屉,n辆车最多能停的不同的车的种类数就是n-1。
4. 应用“抽屉原理”a. 出示问题:一个抽屉里放了4个不同的玩具,如果再往里放一个玩具,最多还能放几种不同的玩具?学生应用“抽屉原理”解答,得出结论:最多还能放3种不同的玩具。
b. 出示问题:一个抽屉里放了5个不同的衣物,如果再往里放一件衣物,最多还能放几种不同的衣物?学生应用“抽屉原理”解答,得出结论:最多还能放4种不同的衣物。
5. 课堂小结a. 回顾本节课的学习内容。
学生总结出:我们学习了“抽屉原理”,并应用它解决了一些实际问题。
b. 强调“抽屉原理”在生活中的应用。
六年级数学《抽屉原理》公开课教学设计六年级数学《抽屉原理》公开课教学设计(精选5篇)抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。
它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。
它是组合数学中一个重要的原理。
接下来我们一起来看看六年级数学《抽屉原理》公开课教学设计(精选5篇)。
六年级数学《抽屉原理》公开课教学设计篇1教学内容:六年级数学下册70页、71页例1、例2。
教学目标:1、理解“抽屉原理”的一般形式。
2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。
4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。
教学重点:经历“抽屉原理”探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”的一般规律。
教学准备:相应数量的杯子、铅笔、课件。
教学过程:一、情景引入让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。
师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。
二、探究新知1、探究3根铅笔放到2个杯子里的问题。
师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。
2、教学例1(1)师:依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?让学生动手操作,做好记录,认真观察,看看有什么发现?(2)、学生汇报放结果,结合学具操作解释。
教师作相应记录。
(4,0,0) (3,1,0) (2,2,0) (2,1,1)(学生通过操作观察、比较不难发现有与上个问题同样结论。
)(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。
抽屉原理小学数学教案
教学内容:抽屉原理
年级:小学四年级
教学目标:
1. 理解抽屉原理的概念和基本原理。
2. 能够应用抽屉原理解决实际问题。
3. 培养学生的逻辑思维和解决问题的能力。
教学准备:
1. 教师准备教材《小学数学》四年级教材相关内容。
2. 准备黑板、彩色粉笔和教具。
3. 预先准备好相关的练习题和考题。
教学过程:
第一步:导入(5分钟)
教师引导学生回顾前几节课所学的内容,提出一个问题:“如果有5只猴子,只有4只马桶,那么至少有一只猴子会用同一只马桶吗?”让学生思考并讨论。
第二步:概念讲解(10分钟)
教师向学生解释抽屉原理的概念:“抽屉原理是指如果有n+1个物品放进n个抽屉里,至少会有一个抽屉里有两个或两个以上的物品。
”让学生理解这个概念。
第三步:例题演练(15分钟)
教师给学生举例:“如果有7个苹果,只有6个篮子,那么至少会有一个篮子里会有两个或两个以上的苹果。
”让学生根据这个例子自己尝试解答其他类似问题。
第四步:练习巩固(10分钟)
教师发放练习题让学生独立完成,并在课堂上讲解答案,让学生自行纠正并加强记忆。
第五步:拓展应用(10分钟)
教师引导学生思考如何在不同的问题中应用抽屉原理来解决,让学生举一些例子并进行讨论。
第六步:课堂总结(5分钟)
教师总结本节课的内容,强调抽屉原理的重要性,并鼓励学生多加练习,加深理解。
教学反思:本节课主要通过例题演练和练习巩固的方式,让学生对抽屉原理有一个初步的理解,并能够灵活运用。
教学中要注重引导学生思考和探索,培养其解决问题的能力。
抽屉原理教案范文一、教学目标:1. 让学生理解并掌握抽屉原理的基本概念和运用方法。
2. 培养学生运用抽屉原理解决实际问题的能力。
3. 培养学生逻辑思维能力和团队合作精神。
二、教学内容:1. 抽屉原理的基本概念和定义。
2. 抽屉原理的应用方法和解题步骤。
3. 典型例题解析和练习。
三、教学重点与难点:1. 抽屉原理的基本概念和定义。
2. 运用抽屉原理解决实际问题的方法。
3. 典型例题的分析和解答。
四、教学方法:1. 讲授法:讲解抽屉原理的基本概念和定义,阐述应用方法和解题步骤。
2. 案例分析法:分析典型例题,引导学生运用抽屉原理解决问题。
3. 小组讨论法:分组讨论,培养团队合作精神和逻辑思维能力。
五、教学准备:1. 教案、PPT和教学素材。
2. 练习题和答案。
3. 投影仪和白板。
教学过程:1. 导入:引入抽屉原理的基本概念,激发学生兴趣。
2. 讲解:讲解抽屉原理的定义和应用方法,阐述解题步骤。
3. 案例分析:分析典型例题,引导学生运用抽屉原理解决问题。
4. 小组讨论:分组讨论,让学生自主探索和解决问题。
5. 总结:总结抽屉原理的关键点和注意事项。
6. 练习:布置练习题,巩固所学知识。
7. 反馈:检查学生作业,了解掌握情况。
8. 课后辅导:针对学生疑问进行解答和辅导。
教学评价:1. 学生作业完成情况。
2. 课堂表现和参与度。
3. 小组讨论成果。
教学反思:1. 反思教学内容和方法,确保学生掌握抽屉原理。
2. 关注学生个体差异,调整教学节奏和难度。
3. 提高学生逻辑思维能力和团队合作精神。
六、教学拓展:1. 引导学生思考抽屉原理在其他数学问题中的应用。
2. 探讨抽屉原理与集合论、逻辑学等学科的联系。
3. 介绍抽屉原理在现实生活中的应用案例。
七、课堂小结:1. 回顾本节课所学内容,让学生总结抽屉原理的基本概念和应用方法。
2. 强调抽屉原理在解决实际问题中的重要性。
3. 提醒学生注意抽屉原理在生活中的应用。
八、课后作业:1. 完成课后练习题,巩固抽屉原理的知识。
抽屉原理优秀教学设计抽屉原理优秀教学设计抽屉原理优秀教学设计1教学内容:教材简析:《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。
这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。
“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。
教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。
学情分析:六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。
激趣是新课导入的抓手,喜欢和好奇心比什么都重要,游戏,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。
通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。
特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
教学目标:1、使学生初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2、使学生经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。
3、使学生通过“抽屉原理”的灵活应用感受数学的魅力;提高解决问题的能力和兴趣。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程:一、课前游戏,导入新课。
游戏请5名同学到前面来,老师这有4张凳子,老师喊123开始,要求每位同学都必须坐在凳子上,引导:5位同学坐在4张椅子上,不管怎么坐,总有一把凳子上至少坐两个同学。
我们刚才做了个小游戏,但小游戏蕴含着一个有趣的数学原理。
今天我们就来研究这个有趣的数学原理――抽屉原理。
抽屉原理教学设计及反思
一、教学设计
1.教材分析
《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。
这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。
2.学情分析
“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。
教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。
六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。
3.教学理念
激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。
通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。
特别是对教材中的结论“总有、至少”
等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
4.教学目标
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
5.教学重难点
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
6.教学过程
一、课前游戏引入。
上课前,我们先来热身一下,一起来玩抢椅子的游戏。
请3位同学上来参加游戏,第三位同学是请女生还是男生呢?老师认为,不管是请男生还是女生,都一定至少有两位同学的性别是相同的。
同意我的说法吗?
游戏规则是:在老师说开始时,3位同学绕着椅子走,当老师说停的,三位同学都要坐在椅子上。
为什么总有一张椅子至少坐两个同学?
在这个游戏中蕴含着一个有趣的数学原理叫做抽屉理原,这节课我们就一起来研究抽屉理原。
(板书课题)
二、通过操作,探究新知
(一)探究例1
1、研究3枝铅笔放进2个文具盒。
(1)要把3枝铅笔放进2个文具盒,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。
(2)反馈:两种放法:(3,0)和(2,1)。
(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)
(4)“总有”什么意思?(一定有)
(5)“至少”有2枝什么意思?(不少于2枝)
小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔)
2、研究4枝铅笔放进3个文具盒。
(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)
(4)你是怎么发现的?
(5)大家通过枚举出四种放法,能清楚地发现“总有一个文具盒放进2枝铅笔”。
如果要让每个文具盒里放的笔尽可能的少,你觉得应该要怎样放?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。
)(6)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)
(7)谁能用算式来表示这位同学的想法?(5÷4=1…1)商1表示什么?余数1表示什么?怎么办?
(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?
3、类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
4、从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。
)
5、如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。
”
6、小结:刚才我们分析了把铅笔放进文具盒的情况,只要铅笔数量多于文具盒数量时,总有一个文具盒至少放进2枝铅笔。
这就是今天我们要学习的抽屉原理。
既然叫“抽屉原理”是不是应该和抽屉有联系吧?铅笔相当于我们要准备放进抽屉的物体,那么文具盒就相当于抽屉了。
如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。
”
7、在我们的生活中,常常会遇到抽屉原理,你能不能举个例子?在课前我们玩的游戏中,有没有抽屉原理?
过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。
同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。
(二)探究例2
1、研究把5本书放进2个抽屉。
(1)把5本书放进2个抽屉会有几种情况?(5,0)、(4,1)和(3,2)
(2)从三种情况中,我们可以得到怎样的结论呢?(总有一个抽屉至少放进了3本书)(3)还可以怎样理解这个结论?先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。
(4)可以把我们的想法用算式表示出来:5÷2=2…1(商2表示什么,余数1表示什么)2+1=3表示什么?
2、类推:如果把7本书放进2个抽屉中,至少有一个抽屉放进4本书。
如果把9本书放进2个抽屉中。
至少有一个抽屉放进5本书。
如果把11本书放进3个抽屉中。
至少有一个抽屉放进4本书。
你是怎样想的?
(11÷3=3…2)商3表示什么?余数2表示什么?3+1=4表示什么?
3、小结:从以上的学习中,你有什么发现?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。
)
4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。
“ 抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。
这一原理在解决实际问题中有着广泛的应用。
“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
5、做一做:
7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。
为什么?
8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。
为什么?
(先让学生独立思考,在小组里讨论,再全班反馈)
三、迁移与拓展
下面我们一起来放松一下,做个小游戏。
我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。
请大家猜测一下,同种花色的至少有几张?为什么?
四、总结全课
这节课,你有什么收获?
二、教学反思
本节课是通过几个直观例子,借助实际操作,引导学生探究“抽屉原理”,初步经历“数学证明“的过程,并有意识的培养学生的“模型思想。
1、借助直观操作,经历探究过程。
教师注重让学生在操作中,经历探究过程,感知、理解抽屉原理。
2、教师注重培养学生的“模型”思想。
通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决抽屉原理的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。
3、在活动中引导学生感受数学的魅力。
本节课的“抽屉原理”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。
特别以游戏引入,又以游戏结束,既调动了学生学习的积极性,又学到了抽屉原理的知识,同时锻炼了学生的思维。
在整节课的教学活动中使学生感受了数学的魅力。