聚合物成型加工原理
- 格式:pptx
- 大小:2.23 MB
- 文档页数:62
聚合物加工原理聚合物是一种常见的材料,广泛用于各个领域,如塑料制品、纺织品、医用材料等。
聚合物加工是将聚合物材料通过热、力、机械等加工方式,将其改变为需要的形状和结构的过程。
本文将介绍聚合物加工的原理及常见的加工方法。
一、聚合物本质上是由大量单体分子通过共价键连接而成的高分子化合物。
聚合物加工的原理是通过加热和加压来改变聚合物分子链的排列方式,从而改变聚合物的形状和性能。
聚合物材料通常以树脂的形态存在,树脂在加工过程中会经历熔融、流动、固化等阶段。
在加工中,将聚合物树脂加热到足够的温度使其熔化,然后将熔化的聚合物注入模具中,通过机械力或其他手段使其形成所需的形状,随后冷却固化。
聚合物加工的主要原理包括:1. 熔融:将聚合物加热至其熔点以上,使其转变为可流动的液体状态。
在熔融状态下,聚合物分子链之间的相互作用力减弱,分子链可以通过流动重新排列。
2. 流动:将熔融的聚合物注入到模具中,通过施加压力或其他力量使其形成所需的形状。
在流动过程中,聚合物分子链在施加的力下发生位移和变形。
3. 固化:冷却并固化聚合物,将其固定在所需的形状和结构中。
聚合物冷却后,分子链重新排列,形成固态结构,从而保持所需的形状。
二、聚合物加工方法聚合物加工有多种方法,常见的包括注塑、挤出、吹塑、压延、成型等。
1. 注塑:注塑是将熔融状态的聚合物注入到模具中,通过压力使其填充模腔并冷却固化。
注塑广泛应用于塑料制品的生产,如塑料盒、塑料椅等。
2. 挤出:挤出是将熔融的聚合物通过挤压机挤出成连续的均匀断面形状,然后通过冷却固化。
挤出常用于生产塑料管材、薄膜等。
3. 吹塑:吹塑是将熔融的聚合物注入到模具中,在模具内吹气使其膨胀成空心形状,并冷却固化。
吹塑常用于生产塑料瓶、塑料容器等。
4. 压延:压延是将熔融的聚合物放置在两个辊子之间,通过压力使其变薄并冷却固化。
压延广泛应用于塑料薄膜的制备。
5. 成型:成型是将熔融的聚合物材料倒入开放式模具中,通过压力或其他手段使其形成所需的形状,并冷却固化。
聚合物流体在加工过程中的受力比较复杂,因此相对应的应变也比较复杂,其实际的应变往往是二种或多种简单应变的叠加,然而以剪切应力造成的剪切应变起主要作用。
拉伸应力造成的拉伸应变也有相当重要的作用,而静压力对流体流动性质的作用主要体现在对粘度的影响上。
聚合物流体(熔融状聚合物和聚合物溶液或悬浮液)的流变性质主要表现为粘度的变化,根据粘度与应力或应变速率的关系,可将流体分为以下两类:牛顿流体和非牛顿流体。
拉伸流动:质点速度沿着流动方向发生变化;剪切流动:质点速度仅沿着与流动方向垂直的方向发生变化。
由边界的运动而产生的流动,如运转滚筒表面对流体的剪切摩擦而产生流动,即为拖曳流动。
而边界固定,由外压力作用于流体而产生的流动,称为压力流动。
聚合物熔体注射成型时,在流道内的流动属于压力梯度引起的压力流动。
聚合物在挤出机螺槽中的流动为另一种剪切流动,即拖曳流动。
对于小分子流体该粘度为常数,称为牛顿粘度。
而对于聚合物流体,由于大分子的长链结构和缠结,剪切力和剪切速率不成比例,流体的剪切粘度不是常数,依赖于剪切作用。
具有这种行为的流体称为非牛顿流体,非牛顿流体的粘度定义为非牛顿粘度或表观粘度。
切力变稀原因(假塑性流体)假塑性流体的粘度随剪切应力或剪切速率的增加而下降的原因与流体分子的结构有关。
对聚合物熔体来说,造成粘度下降的原因在于其中大分子彼此之间的缠结。
当缠结的大分子承受应力时,其缠结点就会被解开,同时还沿着流动的方向规则排列,因此就降低了粘度。
缠结点被解开和大分子规则排列的程度是随应力的增加而加大的。
对聚合物溶液来说,当它承受应力时,原来由溶剂化作用而被封闭在粒子或大分子盘绕空穴内的小分子就会被挤出,这样,粒子或盘绕大分子的有效直径即随应力的增加而相应地缩小,从而使流体粘度下降。
因为粘度大小与粒子或大分子的平均大小成正比,但不一定是线性关系。
切力变稠原因(膨胀性流体):当悬浮液处于静态时,体系中由固体粒子构成的空隙最小,其中流体只能勉强充满这些空间。
聚合物成型加工原理聚合物成型加工是一种通过加工工艺将原料转化为所需形状的方法。
在这个过程中,聚合物材料会经历一系列的物理和化学变化,最终形成我们所需要的成型产品。
本文将介绍聚合物成型加工的原理,包括热塑性聚合物和热固性聚合物的成型原理,以及常见的成型方法。
热塑性聚合物是一类在一定温度范围内可软化、可塑性较好的聚合物材料。
在成型加工过程中,热塑性聚合物首先需要加热至其软化温度,然后通过模具或挤出机等设备将其加工成所需形状。
热塑性聚合物的成型原理主要是利用温度的变化来改变材料的物理状态,从而实现加工成型。
常见的热塑性聚合物成型方法包括注塑、挤出、吹塑等。
而热固性聚合物则是一类在加工过程中通过化学反应形成三维网络结构的聚合物材料。
在成型加工过程中,热固性聚合物首先需要在一定温度下发生固化反应,形成不可逆的化学键,然后再进行成型加工。
热固性聚合物的成型原理主要是利用化学反应来实现材料的固化和成型。
常见的热固性聚合物成型方法包括压缩成型、注塑成型等。
除了热塑性和热固性聚合物的成型原理外,还有一些其他的成型方法,如挤压成型、发泡成型、旋转成型等。
这些成型方法都是根据聚合物材料的特性和加工要求来选择的,每种方法都有其独特的成型原理和适用范围。
总的来说,聚合物成型加工的原理是通过控制温度、压力、化学反应等因素,将聚合物材料加工成所需形状的过程。
不同类型的聚合物材料和不同的成型方法都有其特定的成型原理,只有深入理解这些原理,才能更好地掌握聚合物成型加工技术,实现高质量的成型产品。
在实际应用中,我们需要根据具体的产品要求和材料特性来选择合适的成型方法,并且合理控制加工参数,以确保成型产品的质量和性能。
同时,还需要不断探索和创新,不断改进成型工艺,以适应不断变化的市场需求和技术发展。
通过深入研究聚合物成型加工的原理,不断提高我们的技术水平和创新能力,为聚合物成型加工行业的发展做出贡献。
一,名词解释:1:假塑性流体:假塑性流体是指无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体.由于曲线在弯曲的起始阶段有类似塑性流动的行为,所以称这种流动为假塑性流动,具有假塑性流动行为(切力变稀)的流体称为假塑性流体。
2:宾汉塑性流体:流体的流动只有当剪切应力高至一定值后才发生塑性流动。
表观粘度不随剪切速率变化3:膨胀性流体:在外力作用下,其粘度会因剪切速率的增大而上升的流体,但在静置时,能逐渐恢复原来流动较好的状态8:拖曳流动:聚合物液体的流动性为除受压力因素的影响外,还要受到管道运动部分的影响,这种影响表现在粘滞性很大的聚合物液体能随管道的运动部分移动,所以称这种流动为拖拽流动。
15:收敛角:结构单元排列方向与流动方向或拉伸方向之间形成一定的角度。
16:膨胀比:流化床的膨胀比R=某流速下密相流化床高度Lf/最小流化速度时床高Lmf17:螺杆压缩比:螺杆加料段最初一个螺槽容积与均化段最后一个螺槽容积之比。
21:冷料井:冷料井又称冷料穴,是在塑料注射成型模具中用来储存注射间隔期间产生的冷料头,防止冷料进入型腔而影响塑件质量,并使熔料能顺利地充满型腔的一个结构22:浇铸成型(静态浇注):浇铸是在常压下将液态单体或预聚物注入模具内,经聚合而固化成型,变成与模具内腔形状相同的制品27:吹胀比:1)中空吹塑时,吹塑模腔横向最大直径和管状型坯外径之比.(2)吹塑薄膜时,吹胀管膜直径和口模直径之比33:压延效应:在高分子材料成型加工过程中,若进行压延成型,则物料在压延过程中,在通过压延辊筒间隙时会受到很大的剪切力和一些拉伸应力,因此高聚物大分子会沿着压延方向做定向排列,以致制品在物料机械性能上出现各向异性,这种现象在压延成型中称为压延效应34:收敛流动:当聚合物在截面尺寸变小的管道中流动或粘弹性流体从管道中流出,流体中的流线不能保持相互平行的关系。
36.端末效应:聚合物流体经贮槽或大管进入小管时,在入口端需先经一段长L e的不稳定流动的过渡区域,才进入稳流区Ls,称此现象称为入口效应也成为端末效应。
聚合物加工实验报告实验五天然橡胶开炼机混炼姓名:张涵学号:1514171034 班级:2班年级:2015级专业:高分子材料与工程实验时间:2018年5月31日目录一、实验目的 (3)二、实验原理 (3)(一)胶料的混炼 (3)(二)橡胶配合剂 (4)(三)开炼机混炼的工艺方法 (4)(四)开炼机混炼的工艺条件 (5)三、主要设备及原料 (6)四、注意事项 (9)五、实验步骤、现象及分析 (9)(一)实验准备工作 (9)(二)实验步骤 (9)六、实验结果及分析 (12)七、思考题 (13)2一、实验目的(1)掌握橡胶制品配方设计的基本知识,熟悉开炼机进行橡胶混炼工艺;(2)了解开炼机基本结构及操作方法;(3)掌握橡胶物理机械性能测试试样制备工艺及性能测试方法。
二、实验原理(一)胶料的混炼混炼就是将各种配合剂与塑炼胶在机械作用下混合均匀,制成混炼胶的过程。
混炼过程的关键是使各种配合剂能完全均匀地分散在橡胶中,保证胶料的组成和各种性能均匀一。
对混炼胶的质量要求主要有两个方面:一是胶料能保证制品具有良好的物理机械性能;二是胶料本身要具有良好的工艺加工性能。
为了获得配合剂在生胶中的均勿混合分散,必须借助炼胶机的强烈机械作用进行混炼。
混炼胶的质量控制对保持橡胶半成品和成品性能有着重要意义。
混炼胶组分比较复杂,不同性质的组分对混炼过程、分散程度以及混炼胶的结构响很大的影响。
本实验混炼是在开炼机上进行的。
当胶料加到辊筒上时,由于两个辊筒以不同的线速度相对回转,胶料在被辊筒挤压的同时,在摩擦力和粘附力的作用下,被拉入辊隙中。
形成楔形断面的胶条。
在辊隙中由于速度梯度和辊筒温度的作用致使胶料受到强烈的碾压、撕裂,同时伴随着橡胶分子链的氧化断裂作用。
从辊隙中排出的胶片,由于两个辊筒表面速度和温度的差异而包覆在一个辊筒上,又重新返回两滚筒间,这样多次反复,完成炼胶作业。
为了取得具有一定的可塑度且性能均匀的混炼胶,除了控制辊距的大小、适宜的辊温小于90℃之外,必须按一定的加料混合程序操作。
华北科技学院环境工程学院材料科学与工程系《聚合物成型加工》实验报告
姓名
学号
班级
指导教师
实验一:热塑性聚合物成型物料配制及双辊混炼
同组学生姓名:
实验时间:年月日节
一、实验目的:
二、实验原理:
三、实验设备及材料:
四、实验步骤:
五、实验过程原始数据记录与处理:
六、结论及对本次实验的建议与设想
实验二:热塑性聚合物挤出成型同组学生姓名:
实验时间:年月日节
一、实验目的:
二、实验原理:
三、实验设备及材料:
四、实验步骤:
五、实验过程原始数据记录与处理:
六、结论及对本次实验的建议与设想
实验三:橡胶制品的成型加工同组学生姓名:
实验时间:年月日节一、实验目的:
二、实验原理:
三、实验设备及材料:
四、实验步骤:
五、实验过程原始数据记录与处理:
六、结论及对本次实验的建议与设想
实验四:聚合物力学性能测试试样制备
同组学生姓名:
实验时间:年月日节
一、实验目的:
二、实验原理:
三、实验设备及材料:
四、实验步骤:
五、实验过程原始数据记录与处理:
六、结论及对本次实验的建议与设想。
聚合物成型加工原理聚合物成型加工是一种将熔融或软化的聚合物通过模具加工成所需形状的工艺过程。
在现代工业生产中,聚合物成型加工已经成为了一种非常重要的生产方式,广泛应用于塑料制品、橡胶制品、纤维制品等领域。
本文将重点介绍聚合物成型加工的原理及相关知识。
首先,聚合物成型加工的原理是基于聚合物材料的熔融特性。
通常情况下,聚合物材料在一定温度范围内会软化甚至熔化,这为其加工提供了可能。
在加工过程中,首先需要将固态的聚合物颗粒或块状材料加热至其软化或熔化温度,然后通过模具或挤出机等设备将其塑造成所需的形状。
这种加工方式可以实现对聚合物材料的成型和加工,生产出各种塑料制品、橡胶制品等。
其次,聚合物成型加工的原理还涉及到模具设计和成型工艺。
模具设计是影响成型加工质量和效率的关键因素之一。
不同形状、尺寸和结构的制品需要设计不同的模具,而模具的设计又需要考虑到材料的流动性、收缩率、成型压力等因素。
另外,成型工艺也是影响成型加工质量的重要因素,包括加热温度、冷却速度、压力控制等。
通过合理的模具设计和成型工艺,可以实现对聚合物材料的精确成型,确保制品的质量和稳定性。
最后,聚合物成型加工的原理还包括了原料的选择和配比。
不同的聚合物材料具有不同的熔化温度、流动性和硬度,因此在成型加工前需要对原料进行选择和配比。
通常情况下,原料的选择需要考虑到制品的使用环境、机械性能要求、成本等因素,以及原料的熔化特性和流动性。
通过合理的原料选择和配比,可以有效地控制成型加工过程中的材料流动性和成型质量。
综上所述,聚合物成型加工的原理涉及到聚合物材料的熔化特性、模具设计和成型工艺、原料选择和配比等多个方面。
通过对这些原理的深入理解和掌握,可以实现对聚合物材料的精确成型,生产出高质量的塑料制品、橡胶制品等。
同时,也可以为相关行业的技术改进和产品创新提供重要的理论支持和技术指导。
希望本文所介绍的内容能够对聚合物成型加工的相关人员有所帮助,促进该领域的发展和进步。
②注塑-高分子聚合物成型加工实验报告注塑是一种常见的高分子聚合物成型加工方法,其原理是通过加热并熔化高分子物料,然后将熔融物料通过高压注射到模具中进行形状固化。
本实验报告旨在研究注塑过程中的影响因素,并分析其对成型品质量的影响。
一、实验目的1.了解注塑过程中的材料熔融和模具冷却过程。
2.研究注塑工艺参数对成型品质量的影响。
3.掌握利用注塑成型方法制备高分子聚合物制品的技术要点。
二、实验原理1.材料熔融过程:将固态高分子物料放入注塑机的料斗中,通过加热和搅拌使其熔化,并保持一定的熔融温度。
2.熔融物料的注射过程:熔融物料通过加压送入注射缸中,并通过射嘴注入模具腔中,填充整个腔道。
3.模具冷却过程:填充完毕后,模具中的冷却系统开始起到作用,使熔融物料迅速冷却定型。
4.成品脱模:冷却完毕后,打开模具,取出成型品。
三、实验步骤1.准备高分子物料:根据实验要求选择合适的高分子物料,并将其切成小块或颗粒。
2.配置注塑机:将注塑机以及模具进行调试配置,保证其正常工作。
3.设置工艺参数:根据实验要求,设置合适的注塑工艺参数,如注射速度、压力、温度等。
4.开始注塑:按下启动按钮,开始注塑过程,观察熔融过程、注射过程以及模具冷却过程。
5.脱模和检验:冷却完毕后,打开模具,取出成型品,并进行检验。
四、实验结果及数据分析对不同工艺参数下的注塑成型品进行外观质量检验,如表面平整度、尺寸精度、色泽等方面进行评估和分析。
五、实验结论根据实验结果可总结出不同工艺参数对注塑成型品质量的影响,如注射速度对表面平整度的影响、熔融温度对尺寸精度的影响等。
六、实验总结通过本次实验,我们深入了解了注塑的工艺流程及其影响因素,并掌握了注塑成型技术的要点。
同时,实验结果也为我们提供了参考,以便在实际应用中选择合适的工艺参数,提高成型品质量。
第一章1.聚合物材料的加工性质:可模塑性、可挤压性、可纺性、可延性。
2.什么是可挤压性?答:可挤压性是指聚合物经过挤压作用形变时获得形状和保持形状的能力。
发生地点:主要有挤出机、注塑机料筒、压延机辊筒用、模具中等聚合物力学的状态:粘流态。
表征参数:熔融指数3.什么是可模塑性?答:可模塑性是指材料在温度和压力作用下形变和在模具中模制成型的能力。
发生地点:主要有挤出机、注塑机、模具中等聚合物力学状态:高弹态、粘流态表征方法:螺旋流动试验在成型加工过程中,聚合物的可模塑性常用在一定温度、压力下熔体的流动长度来表示。
4.什么是可纺性?答:可纺性是聚合物材料经过加工形成连续的固态纤维的能力。
发生地点:主要有熔融纺丝聚合物力学状态:粘流态表征方法:纺丝实验5.什么是可延性?答:可延性表示无定型或半结晶聚合物在一个或两个方向上受到压延或拉伸时变形的能力。
发生地点:压延或拉伸工艺聚合物力学状态:高弹态、或玻璃态。
表征方法:拉伸试验(速率快慢、式样)可延性源于:1)大分子结构非晶高聚物单个分子空间形态:无规线团:结晶高聚物:折叠链状细而长的长链结构和巨大的长径比2)大分子链的柔性。
6.什么是粘弹性?答:粘弹性是纯弹性和纯粘性的有机组合。
A,粘性:物体受力后,形变随时间发生变化,除去外边后,形变不能回复。
B,弹性:物全受力后,发生形变,除去外力后,形变能回复1)普弹性:物体受力后,瞬时发生形变,除去外力能迅速回复,与时间无关。
(符合胡克定律)2)高弹性:物体受力后,瞬时发生形变,除去外力能回复,与时间有关。
(不符合胡克定律)7.什么是滞后效应?答:在外作用力下,聚合物分子链由于跟不上外力作用速度而造成的形变总是落后于外力作用速度的效应。
形成原因:长链结构和大分子的运动具有步性,存在松弛过程,需要松弛时间。
聚合物的可挤压性:粘度---流动性---MFR表征、表征意义及使用意义聚合物的可模塑性:可模塑性的影响因素聚合物的可延性:冷拉伸、热拉伸、滞后效应线型高聚合物的聚集态与成型加工:力学三态的特征(分子运动状态、宏观力学状态)及适应的成型加工方法重要的成型加工特征温度:Tb /Tg/Tm/Tf/Td习题:1.请用粘弹性的滞后效应相关理论解说塑料注射成型制品的变形收缩现象以及热处理的作用。
聚合物在成型过程中的物理化学变化是什么
聚合物是由重复单元组成的大分子化合物,广泛应用于各个领域,比如塑料制品、纤维材料、涂料等。
在聚合物制品的生产中,成型过程是其中一个关键的阶段,涉及到聚合物在物理和化学上的变化。
在成型过程中,聚合物会经历一系列复杂的物理化学变化,这些变化直接影响着最终制品的性能和品质。
首先,在成型过程中,聚合物会发生熔融或溶解。
对于热塑性聚合物来说,成型过程通常是将聚合物加热至熔融状态,随后通过模具冷却成型。
在这个过程中,聚合物链之间的相互作用会发生改变,从而改变了聚合物的结构和性质。
而对于热固性聚合物来说,成型过程通常是将聚合物加热至可塑化状态,通过化学交联反应形成永久性的结构。
其次,在成型过程中,聚合物会发生流变行为。
流变是指聚合物在受力作用下表现出的变形特性,包括黏弹性和塑性等。
在成型过程中,聚合物会受到外力的作用,导致分子链的流动和排列,从而改变了聚合物的结构和形态。
这种流变行为直接影响着聚合物制品的成型性能和工艺条件的选择。
此外,在成型过程中,聚合物会发生氧化或降解反应。
由于聚合物长期暴露在高温、高湿、紫外线等环境下,会引起聚合物分子链的氧化或断裂,从而降低了聚合物的性能和寿命。
因此,在成型过程中需要控制好成型温度、湿度和光照等条件,以减少聚合物的氧化和降解反应。
总的来说,在聚合物的成型过程中,物理化学变化是不可避免的。
了解聚合物在成型过程中的变化规律,可以帮助生产者优化工艺参数,提高产品质量,满足市场需求。
因此,在聚合物制品生产中,需要不断探索聚合物物理化学变化的规律,以推动行业发展和技术创新。
1。
1.高分子材料加工:把高分子原材料经过一定的工艺手段转变成某种高分子材料制品的过程。
2.功能高分子材料:与常规高分子材料相比具有明显不同的物理化学性质,并具有某些特殊功能的高分子材料。
3.智能高分子材料:能随着外部条件的变化,而进行相应动作的高分子。
必须具备能感应外部刺激的感应器功能、能进行实际动作的动作器功能以及得到感应器的信号后而使动作器动作的过程器功能。
4.可挤压性:聚合物通过挤压作用形变时获得形状和保持形状的能力。
5.可模塑性:聚合物在一定温度和外力作用下形变并在模具中模制成型的能力。
6.可纺性:聚合物流体在拉伸作用下形成连续细长丝条的能力。
7.可延性:无定形或部分结晶固体聚合物在一个或两个方向上受到压延或拉伸时变形的能力。
8.复合材料:是将金属材料、高分子材料、无机非金属材料等具有不同结构和性能的材料,经特殊工艺复合成一体,而制得的综合性能更优异的新型材料。
9.耗散:力学的能量损耗,即机械能转化为热能的现象。
在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能。
10.离子液体:是在室温及相邻温度范围内完全由离子组成的有机液体。
离子液体具有极性强、不挥发、不易氧化、不易燃易爆、对无机和有机化合物有良好的溶解性和对绝大部分试剂稳定等优良特性,因此被称为绿色溶剂。
11.混合的定义:混合是一种趋向于混合物均匀性的操作,是一种在整个系统的全部体积内,各组分在其基本单元没有本质变化的情况下的细化和分布的过程。
12.均一性:均一性指混得是否均匀,即分散相浓度分布是否均匀。
13.分散度:指被分散物质的破碎程度如何。
破碎程度大,粒径小,分散度就高。
14.非分散混合:通过重复地排列少组分增加其在混合物中空间分布的均匀性而不减小粒子初始尺寸的过程。
15.分散混合:将呈现出屈服点的物料混合在一起时,要将它们分散,应使结块和液滴破裂,这种混合称为分散混合。