整理人工智能简答题
- 格式:doc
- 大小:39.50 KB
- 文档页数:8
人工智能考试题及答案一、选择题(每题2分,共20分)1. 人工智能的英文缩写是:A. AIB. IAC. IID. AII答案:A2. 下列哪项不是人工智能的主要分支?A. 机器学习B. 计算机视觉C. 神经网络D. 电子工程答案:D3. 深度学习是人工智能领域中的一种:A. 算法B. 编程语言C. 硬件D. 操作系统答案:A4. 以下哪个是人工智能的典型应用?A. 搜索引擎B. 电子邮件C. 社交网络D. 以上都是答案:D5. 以下哪个不是人工智能的关键技术?A. 自然语言处理B. 语音识别C. 量子计算D. 图像识别答案:C6. 人工智能之父是:A. 艾伦·图灵B. 约翰·麦卡锡C. 马文·明斯基D. 以上都是答案:B7. 人工智能中的“机器学习”主要指的是:A. 机器自己编写代码B. 机器通过经验改善性能C. 机器进行自我复制D. 机器执行预设任务答案:B8. 以下哪个不是人工智能的伦理问题?A. 数据隐私B. 自动化失业C. 机器歧视D. 机器自我意识答案:D9. 人工智能在医疗领域的应用不包括:A. 辅助诊断B. 药物研发C. 手术治疗D. 心理治疗答案:D10. 以下哪个是人工智能的发展趋势?A. 单一任务执行B. 通用人工智能C. 人工情感D. 人工意识答案:B二、简答题(每题10分,共30分)1. 请简述人工智能的定义及其主要应用领域。
答案:人工智能是指使机器模拟人类智能行为的科学,包括学习、推理、感知、语言理解和创造力等。
其主要应用领域包括医疗、教育、交通、金融、制造业等。
2. 描述一下人工智能在自动驾驶汽车中的应用。
答案:在自动驾驶汽车中,人工智能技术通过机器学习和计算机视觉等技术,使汽车能够识别道路、交通信号、行人和其他车辆,实现自动导航、避障和决策,提高驾驶安全性和效率。
3. 人工智能在教育领域的应用有哪些?答案:人工智能在教育领域的应用包括个性化学习推荐、智能辅导、自动评分、学习行为分析等,可以提高教学效率,实现个性化教学,促进学生全面发展。
人工智能试题及答案# 人工智能基础试题及答案## 一、选择题1. 人工智能(AI)的起源可以追溯到哪个年代?A. 1940年代B. 1950年代C. 1960年代D. 1970年代答案:B2. 以下哪个不是人工智能的分支?A. 机器学习B. 深度学习C. 量子计算D. 自然语言处理答案:C3. 神经网络是以下哪个领域的核心技术?A. 计算机视觉B. 语音识别C. 机器人技术D. 所有以上答案:D## 二、判断题1. 人工智能可以完全替代人类的工作。
()答案:错误2. 机器学习是人工智能的一种实现方式。
()答案:正确3. 深度学习不需要大量的数据进行训练。
()答案:错误## 三、简答题1. 简述人工智能的定义。
答案:人工智能(Artificial Intelligence, AI)是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
2. 什么是机器学习?答案:机器学习是人工智能的一个分支,它使计算机系统能够从经验中学习并改进性能,而无需进行明确的编程。
机器学习算法可以基于数据进行预测或决策,无需人类干预。
3. 描述深度学习的基本原理。
答案:深度学习是一种机器学习方法,它使用类似于人脑的神经网络结构来模拟复杂的模式识别和数据表示。
这些网络由多层神经元组成,能够从原始数据中自动学习特征,从而实现图像识别、语音识别等高级任务。
## 四、论述题1. 论述人工智能在医疗领域的应用及其潜在影响。
答案:人工智能在医疗领域的应用包括辅助诊断、患者监护、药物研发和个性化治疗等。
AI技术可以帮助医生分析医学影像,提高诊断的准确性和效率。
在药物研发方面,AI可以加速新药的发现过程,降低研发成本。
此外,AI还可以通过分析大量患者数据,为患者提供个性化的治疗方案。
然而,人工智能在医疗领域的应用也引发了隐私保护、伦理和法律责任等问题,需要在技术发展的同时,制定相应的法规和标准。
一:单选题1。
人工智能的目的是让机器能够(D),以实现某些脑力劳动的机械化。
A. 具有完全的智能B。
和人脑一样考虑问题C。
完全代替人 D. 模拟、延伸和扩展人的智能2. 下列关于人工智能的叙述不正确的有(C)。
A。
人工智能技术它与其他科学技术相结合极大地提高了应用技术的智能化水平。
B. 人工智能是科学技术发展的趋势。
C. 因为人工智能的系统研究是从上世纪五十年代才开始的,非常新,所以十分重要。
D。
人工智能有力地促进了社会的发展。
3。
自然语言理解是人工智能的重要应用领域,下面列举中的(C)不是它要实现的目标.A. 理解别人讲的话. B。
对自然语言表示的信息进行分析概括或编辑.C. 欣赏音乐.D. 机器翻译。
4。
下列不是知识表示法的是(A)。
A。
计算机表示法 B. 谓词表示法C。
框架表示法D。
产生式规则表示法5。
关于“与/或”图表示知识的叙述,错误的有(D)。
A。
用“与/或”图表示知识方便使用程序设计语言表达,也便于计算机存储处理。
B. “与/或”图表示知识时一定同时有“与结点”和“或结点".C. “与/或”图能方便地表示陈述性知识和过程性知识。
D. 能用“与/或”图表示的知识不适宜用其他方法表示。
6。
一般来讲,下列语言属于人工智能语言的是(D)。
A。
VJ B. C# C. Foxpro D。
LISP7. 专家系统是一个复杂的智能软件,它处理的对象是用符号表示的知识,处理的过程是(C)的过程。
A。
思考B。
回溯C。
推理 D. 递归8。
确定性知识是指(A)知识.A. 可以精确表示的B。
正确的C. 在大学中学到的知识D。
能够解决问题的9。
下列关于不精确推理过程的叙述错误的是(B)。
A. 不精确推理过程是从不确定的事实出发B. 不精确推理过程最终能够推出确定的结论C. 不精确推理过程是运用不确定的知识D。
不精确推理过程最终推出不确定性的结论10。
我国学者吴文俊院士在人工智能的(A)领域作出了贡献。
人工智能的试题及答案一、选择题1. 人工智能的英文缩写是什么?A. AIB. IAC. IID. AII答案:A2. 以下哪个是人工智能的分支领域?A. 机器学习B. 深度学习C. 神经网络D. 所有选项答案:D3. 人工智能的发展历程中,第一个人工智能程序是什么?A. AlphaGoB. Deep BlueC. ElizaD. SHRDLU答案:D二、填空题4. 人工智能之父是________。
答案:艾伦·图灵5. 人工智能的三大支柱包括数据、算法和________。
答案:计算能力三、简答题6. 请简述人工智能在医疗领域的应用。
答案:人工智能在医疗领域主要应用于辅助诊断、患者监护、药物研发、手术机器人等方面,通过数据分析和模式识别提高诊断的准确性和效率。
四、论述题7. 论述人工智能对教育行业的影响。
答案:人工智能对教育行业的影响主要体现在个性化教学、智能辅导、教学资源的智能化管理等方面。
AI可以根据学生的学习习惯和能力提供定制化的学习计划,智能辅导系统可以辅助教师进行作业批改和学习进度跟踪,同时,教学资源的智能化管理可以提高资源的利用效率和教学质量。
五、案例分析题8. 某公司开发了一款基于人工智能的客服机器人,请分析其可能面临的挑战及应对策略。
答案:该客服机器人可能面临的挑战包括理解复杂用户需求的能力、处理多轮对话的连贯性、以及在特定情境下的适应性等。
应对策略可以是不断优化自然语言处理算法,增加机器学习的训练数据,以及通过用户反馈进行持续的系统迭代和优化。
六、计算题9. 如果一个人工智能系统在训练集上的准确率为95%,在测试集上的准确率为90%,请计算其准确率的平均值。
答案:(95% + 90%) / 2 = 92.5%七、判断题10. 人工智能可以完全替代人类进行创造性工作。
答案:错误。
人工智能在某些创造性工作中可以辅助人类,但不能完全替代人类的创造性思维和情感表达。
1.在什么情况下需要采用不确定推理或非单调推理?
2.规则演绎系统和产生式系统有哪几种推理方式?各自特点为何?
3.算法A*直到一个目标节点被选择扩展才会终止。
然而,到达目标节点的一条路经可能在那个节点被选择扩展前早就找到了。
一旦目标节点被发现,为什么不终止搜索呢?用一个例子说明你的答案。
4.结合你的研究方向,论述哪些人工智能技术可以得到应用?解决什么问题?
5.在选择知识表示的方法时,应该考虑哪些因素?
6.什么是语义网络知识表示?给出这种表示方法的优缺点。
7.什么是产生式知识表示?给出这种表示方法的优缺点。
8.写出利用归结原理求解问题答案的步骤。
9.什么是不确定性推理?不确定推理中需要解决的基本问题有哪些?
10.同传统的计算机程序相比,人工智能程序有哪些特点?
11.谓词逻辑表示法为什么是应用最广泛的表示方法之一?
12.什么是过程性知识表示?给出它的优缺点。
13.简述人工智能的研究目标。
14.简述人工智能的新进展。
15.试述机器学习系统的基本结构,并说明各部分的作用。
16.什么是专家系统?专家系统的基本结构?。
17.什么是Agent?什么是多Agent系统?
18.什么是本体?设计本体的准则是什么?
19.什么是自然语言理解?自然语言理解的准则是什么?
20.简述自然语言理解的层次划分及对应的技术。
21.什么是遗传算法?如何用神经网络求解优化问题?
22.什么是神经网络?试举例说明二种神经网络模型的结构?。
人工智能相关知识点考试题及答案一、单选题(每题2分,共20分)1. 人工智能的英文缩写是什么?A. AIB. MLC. NLPD. DL答案:A2. 下列哪个选项不是人工智能的主要应用领域?A. 自动驾驶B. 语音识别C. 机器翻译D. 会计审计答案:D3. 深度学习在人工智能中主要解决的问题是什么?A. 数据存储B. 特征提取C. 数据传输D. 数据加密答案:B4. 以下哪个算法不是机器学习算法?A. 决策树B. 支持向量机C. 神经网络D. 快速排序答案:D5. 下列哪个不是人工智能的核心技术?A. 机器学习B. 知识图谱C. 云计算D. 自然语言处理答案:C6. 人工智能的发展历程中,哪个阶段被称为“黄金时代”?A. 1950sB. 1960sC. 1970sD. 1980s答案:B7. 以下哪个是人工智能的伦理问题?A. 数据隐私B. 网络安全C. 系统稳定性D. 软件兼容性答案:A8. 以下哪个不是人工智能的发展趋势?A. 自主化B. 个性化C. 去中心化D. 集中化答案:D9. 人工智能的“感知”能力主要依赖于哪种技术?A. 机器学习B. 深度学习C. 神经网络D. 以上都是答案:D10. 下列哪个是人工智能的挑战?A. 算法复杂性B. 数据质量C. 计算资源D. 以上都是答案:D二、多选题(每题3分,共15分)1. 人工智能的主要应用领域包括哪些?A. 医疗健康B. 金融服务C. 教育D. 娱乐答案:ABCD2. 人工智能的核心技术包括哪些?A. 机器学习B. 深度学习C. 知识图谱D. 云计算答案:ABC3. 人工智能的伦理问题主要涉及哪些方面?A. 数据隐私B. 算法偏见C. 责任归属D. 就业影响答案:ABCD4. 人工智能的发展趋势包括哪些?A. 自主化B. 个性化C. 去中心化D. 集中化答案:ABC5. 人工智能面临的挑战包括哪些?A. 算法复杂性B. 数据质量C. 计算资源D. 伦理问题答案:ABCD三、判断题(每题1分,共10分)1. 人工智能可以完全替代人类工作。
人工智能概论简答题
1. 什么是人工智能?
人工智能(Artificial Intelligence)是指通过计算机程序和机器
学习等技术手段,实现人类智能的某些方面,使计算机系统能够表现出人类的思维和行为的能力。
2. 人工智能的发展历程是什么?
人工智能的发展历程可以分为三个阶段:
第一阶段是符号推理,主要是基于规则和逻辑,用于解决一些特定的问题。
第二阶段是基于知识的系统,因为知识的描述比规则更加灵活,更适合复杂的应用场景。
第三阶段是数据驱动的人工智能,主要是基于大数据和机器学习技术,能够自动学习并提高系统的精度和准确度。
3. 人工智能的分类有哪些?
人工智能的分类可以分为以下几类:
符号推理:基于规则和逻辑,将问题转化为符号形式进行处理。
机器学习:通过算法让计算机自动识别和学习特定模型。
自然语言处理:用计算机处理人类语言,例如语音识别、自然语言理解等。
计算机视觉:让计算机识别图像和视频,并进行语义解析。
智能控制:通过机器人等智能设备实现自主决策和控制。
4. 人工智能的应用领域有哪些?
人工智能的应用领域广泛,包括但不限于:
智能家居、自动驾驶、智能医疗、智能金融、智能客服、智能安防、智能教育、智能物流等领域。
1.人工智能是何时何地怎样诞生的?1956年夏季,来自数学,心理学,神经生理学,信息论和计算机方面的十位专家,在美国达特莫斯大学召开一次历时两个月的研讨会,讨论了关于机器智能的有关问题,会上达特莫斯大学的麦卡锡提议正式采用“人工智能”一词,标志人工智能学科的正式诞生。
2.什么是人工智能?试从学科和能力两方面加以说明。
人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智能功能,并开发相关理论和技术。
人工智能(能力)是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动。
3.人工智能的一般研究目标是什么?答:更好的理解人类智能,通过编写程序模仿和检验有关人类智能的理论。
创造有用的灵巧程序,该程序能够执行一般需要人类专家才能实现的任务。
近期目标人工智能的近期目标是实现机器智能。
即先部分地或某种程度地实现机器智能,从而使现有的计算机更灵活好用和更聪明有用。
远期目标人工智能的远期目标是要制造智能机器。
具体讲就是使计算机具有看、听、说、写等感知和交互能力,具有联想、学习、推理、理解、学习等高级思维能力,还要有分析问题解决问题和发明创造的能力。
4.人工智能的基本技术是什么?(1)知识表示技术:研究各种知识的形式化方法,并要求所采用的形式化方法能够便于知识在计算机中进行存贮、组织,便于问题求解中的检索、推理等操作。
(2)知识推理、计算和搜索技术:研究各种问题的求解规律,设计可机械执行的智能算子,用以实现问题求解过程。
(3)系统实现技术:它研究如何实现相关知识的计算机内部表示,将各种智能算子或求解过程转换为程序,对智能应用系统,还要特别考虑人机交互及界面的实现。
5.人工智能的应用领域博弈、自动定理证明、专家系统、模式识别、机器学习、计算智能、自然语言处理分布式人工智能、机器人6.什么是遗传算法,主要遗传操作有哪些?答:遗传算法是仿真生物遗传学和自然选择机理,通过人工方式所构造的一类搜索算法,从某种程度上说遗传算法是对生物进化过程进行的数学方式仿真。
简答题:一、什么是知识表示?请介绍3种您所熟悉的知识表示方法?并比较它们的优缺点。
(10分) 答:知识表示是对知识的描述,即用一组约定的符号把知识编码成一组可以被计算机接收,并便于系统使用的数据结构。
(2分)方法:一阶逻辑表示、产生式表示、语义框架表示(2分)优缺点:(每点1分)一阶逻辑表示:优点:自然、明确、精确?。
缺点:知识表示能力差、知识库管理困难?产生式:优点:自然性、模块性?。
缺点:效率低、不便于表示结构性知识框架表示:优点:结构性、自然性?。
缺点:缺乏形式理论、缺乏过程性知识表示二、设有如下图所示的博弈树,其中最下面的数字是假设的估值,请对该博弈树作如下工作:(1) 计算各节点的倒推值;(2) 利用α-β剪枝技术剪去不必要的分枝,并说明剪枝的条件。
(10分)剪枝方法(1) MAX节点(或节点)的α值为当前子节点的最大到推值; (2)MIN节点(与节点)的β值为当前子节点的最小倒推值; (3) α-β剪枝的规则如下:任何MAX节点n的α值大于或等于它先辈节点的β值,则n以下的分枝可停止搜索,并令节点n的倒推值为α。
这种剪枝称为β剪枝。
任何MIN节点n的α值小于或等于它先辈节点的α值,则n以下的分枝可停止搜索,并令节点n的倒推值为β。
这种剪枝称为α剪枝。
三、什么是机器学习?机器学习的主要策略有哪些?答:机器学习就是让机器(计算机)来模拟和实现人类的学习功能。
按学习策略来分类即按学习中所使用的推理方法来分,可分为记忆学习、传授学习、演绎学习、归纳学习等。
按应用领域分类专家系统学习、机器人学习、自然语言理解学习等。
按对人类学习的模拟方式符号主义学习、连接主义学习等。
四、. 什么是人工智能?他的研究目标有哪些?(10分)答:综合各种不同观点,可从能力和学科两个方面讨论,从能力方面角度看,人工智能就是用人工的方法在机器(计算机)上实现的智能,或称机器智能。
从学科方面角度看,人工智能是一门研究如何构造智能机器或智能系统,以模拟、延伸和扩展人类智能的学科。
1.请至少列举3位20世纪图灵奖获得者中的人工智能学者。
,简述图灵测试的过程。
批判地用图灵测试来判定非人机器是否能思考进行评价,至少提出一种不同观点。
答(1):Marvin Minsky, John McCarthy ,Herbert Simon, Allen Newell, Raj Reddy(2)人工智能之父:John McCarthy(3)国际人工智能联合会议的英文全称与简称:International Joint Conference on AI:IJCAI是一种测试机器是不是具备人类智能的方法。
被测试的有一个人,另一个是声称自己有人类智力的机器。
一种测试机器是不是具备人类智能的方法。
写出图搜索过程的A算法。
分别指出一般情况下A*和AO*算法是否可采纳,若不是,给出可采纳的条件。
答:对于某些问题,我们可以使用与问题有关的信息帮助减少搜索量,这种信息叫做启发信息。
A算法(GraphSearch图搜索算法):1.G←{s},OPEN ←(s).2.CLOSED ←NIL.3.LOOP:IF OPEN=NIL,THEN FAIL.4.n ← FIRST(OPEN),OPEN ←TAIL(OPEN),CONS(n, CLOSED) .5.IF TERM(n),THEN 成功结束(解路径可通过追溯G中从n到s的指针获得)。
6.扩展节点n,令M={m︱m是n的子节点,且m不是n的祖先} ,G ←G ∪M7.(设置指针,调整指针)对于m∈M,(1)若m∉CLOSED, m∉OPEN, 建立m到n的指针,并CONS(m, OPEN).(2)(a)m∈OPEN, 考虑是否修改m的指针.(b)m∈CLOSED,考虑是否修改m及在G中后裔的指针。
8.重排OPEN表中的节点(按某一任意确定的方式或者根据探索信息)。
9.GO LOOP一般情况下,A*算法可采纳的,即如果解路径存在,A*算法一定能找到最佳解路径而终止;AO*算法:如果一个与或图存在解图,如果对于图中所有的节点n都有h(n)<=h*(n),并且启发函数h满足单调限制,则AO*算法必然终止于找出最佳解图。
一.简答题1.在什么情况下需要采用不确定推理或非单调推理答:一般推理方法在许多情况下,往往无法解决面临的现实问题,因而需要应用不确定性推理等高级知识推理方法,包括非单调推理、时序推理和不确定性推理等。
例如,当一个人打开电灯的开关而发现灯泡未亮时,就会根据以往的经验而觉得“停电了”。
但当他打开另外一只灯的开关发现灯亮时,就否定了先前“停电了”的结论,想到也许是开关或者灯具出问题了。
这个改变原先推导结论的过程其实就是一个非单调推理。
即,随着信息与知识的增加,并没有在肯定原来的结论基础上,增加了更多并立的知识与结论,而是否定了原先结论并有了新的看法。
以下情况需要采用不确定推理:所需知识不完备,不精确所需知识描述模糊,多种原因导致同一结论,问题的背景知识不足,解题方案不唯一。
不确定性推理,是指其推理过程中,由于各种偶然性误差、干扰以及证据的不确定性等因素,导致所获得的结果或结论本身具有未置可否的不确定性。
一般来说,出现不精确推理的原因和特征可能有:①证据不足或称为证据的不确定性;②规则的不确定性;③研究方法的不确定性。
由于以上“三性”的存在,决定了推理的最后结果具有不确定但却近乎合理的特性,人们把这种性质的推理及其理论和方法总称为不确定推理2.产生式系统有哪几种推理方式各自特点为何答:(1)正向推理(正向链接推理):从一组表示事实的谓词或命题出发,使用一组产生式规则,用以证明该谓词公式或命题是否成立。
(2)逆向推理(后向链接推理):从表示目标的谓词或命题出发,使用一组产生式规则证明事实谓词或命题成立,即首先提出一批假设目标,然后逐一验证这些假设。
(其基本原理是从表示目标的谓词或命题出发,使用一组规则证明事实谓词或命题成立,即提出一批假设(目标),然后逐一验证这些假设。
(3)双向推理:又称为正反向混合推理,它综合了正向推理和逆向推理的长处,克服了两者的短处。
双向推理的推理策略是同时从目标向事实推理和从事实向目标推理,并在推理过程中的某个步骤,实现事实与目标的匹配。
3.算法A*直到一个目标节点被选择扩展才会终止。
然而,到达目标节点的一条路经可能在那个节点被选择扩展前早就找到了。
一旦目标节点被发现,为什么不终止搜索呢用一个例子说明你的答案。
4.结合你的研究方向,论述哪些人工智能技术可以得到应用解决什么问题答:人工智能目前总结出了对实现人工智能系统来说具有普遍意义的核心课题:知识的模型化和表示方法,启发式搜索理论,各种推理方法,人工智能系统结构和语言。
主要研究和应用领域:机器学习,知识表示和推理,智能搜索,模糊逻辑,人工神经网络,遗传算法,自然语言理解,博弈论,知识发现和数据挖掘等。
5.在选择知识表示的方法时,应该考虑哪些因素答:表示能力:能够将问题求解所需的知识正确有效地表达出来,可理解性:所表达的知识简单、明了、易于理解,可访问性:能够有效地利用所表达的知识,可扩充性:能够方便灵活地对知识进行扩充。
表示范围是否广泛、是否适于推理、是否适于计算机处理、是否有高效的算法、能否表示不精确知识、能否模块化、知识和元知识能否用统一的形式表示、是否加入启发信息、过程性表示还是说明性表示、表示方法是否自然。
总之,人工智能问题的求解是以知识表示为基础的,如何将已获取的有关知识以计算机内部代码形式加以合理地描述、存储、有效利用便是知识表示所应解决的问题。
6.什么是语义网络知识表示给出这种表示方法的优缺点。
答:语义网络是一种用实体及其语义关系来表达知识的有向图。
结点代表实体,表示各种事物、概念、情况、属性、状态、事件、动作等;弧代表语义关系,表示它所连结的两个实体之间的语义联系,它必须带有标识。
主要优点:结构性:把事物的属性以及事物间的各种语义联系显式地表示出来,是一种结构化的知识表示方法。
在这种方法中,下层结点可以继承、新增、变异上层结点的属性。
联想性:本来是作为人类联想记忆模型提出来的,它着重强调事物间的语义联系,体现了人类的联想思维过程。
自索引性:把各接点之间的联系以明确、简洁的方式表示出来,通过与某一结点连结的弧可以很容易的找出与该结点有关的信息,而不必查找整个知识库。
这种自索引能力有效的避免搜索时所遇到的组合爆炸问题。
自然性:这种带有标识的有向图,可比较直观地把知识表示出来,符合人们表达事物间关系的习惯,并且与自然语言语义网络之间的转换也比较容易实现。
主要缺点:非严格性:没有象谓词那样严格的形式表示体系,一个给定语义网络的含义完全依赖于处理程序对它所进行的解释,通过语义网络所实现的推理能保证其正确性。
复杂性:语义网络表示知识的手段是多种多样的,这虽然对其表示带来了灵活性,但同时也由于表示形式的不一致,使得它的处理增加了复杂性。
组合爆炸问题和不充分性。
7.什么是产生式知识表示给出这种表示方法的优缺点。
答:早期产生式知识表示是一种计算形式体系里所使用的术语,主要是使用类似文法的规则,对符号串做替换运算。
一般用三元组(对象,属性,值)或(关系,对象1,对象2)产生式的基本形式:P→Q或者IF P THEN Q ,P是产生式的前提,也称为前件,它给出了该产生式可否使用的先决条件,由事实的逻辑组合来构成;Q 是一组结论或操作,也称为产生式的后件,它指出当前题 P满足时,应该推出的结论或应该执行的动作。
产生式的含义:如果前提P满足,则可推出结论 Q或执行Q所规定的操作优点:(1)模块性:规则与规则之间相互独立。
(2)灵活性:知识库易于增加、修改、删除。
(3)自然性:方便地表示专家的启发性知识与经验。
(4)透明性:易于保留动作所产生的变化、轨迹。
缺点:知识库维护难,效率低,理解难。
8.写出利用归结原理求解问题答案的步骤。
答:(1)写出谓词关系公式。
(2)用反演法写出谓词表达式。
(3)SKOLEM标准形式。
(4)命题表示成合取范式并求子句集S。
(5)将结论否定并加入S中,对S中可归结的子句做归结。
(6)归结式仍放入S中,反复归结过程。
(7)得到空子句。
(8)得证。
9.什么是不确定性推理不确定推理中需要解决的基本问题有哪些答:不确定性推理是一种建立在非经典逻辑基础上的基于不确定性知识的推理,它从不确定性的初始证据出发,通过运用不确定性知识,推出具有一定程度的不确定性的和合理的或近乎合理的结论。
基本问题:不确定性的表示与度量,不确定性的匹配,不确定性的传播和更新,不确定性的合成。
10.同传统的计算机程序相比,人工智能程序有哪些特点答:(1)人工智能首先研究的是以符号表示的知识,而不是数值数据为研究对象(2)人工智能采用的是启发式推理方法,而不是常规算法(3)人工智能的控制结构与知识领域是分离的,并允许出现不正确的解答11.谓词逻辑表示法为什么是应用最广泛的表示方法之一答:(1)谓词逻辑与数据库,特别是关系数据库就有密切的关系。
在关系数据库中,逻辑代数表达式是谓词表达式之一。
因此,如果采用谓词逻辑作为系统的理论背景,则可将数据库系统扩展改造成知识库。
(2)一阶谓词逻辑具有完备的逻辑推理算法。
如果对逻辑的某些外延扩展后,则可把大部分的知识表达成一阶谓词逻辑的形式。
(3)谓词逻辑本身具有比较扎实的数据基础,知识的表达方式决定了系统的主要结构。
因此,对知识表达方式的严密科学性要求就比较容易得到满足。
这样对形式理论的扩展导致了整个系统框架的发展。
(4)逻辑推理是公理集合中演绎而得出结论的过程。
由于逻辑及形式系统具有的重要性质,可以保证知识库中新旧知识在逻辑上的一致性(或通过相应的一套处理过程检验)和所演绎出来的结论的正确性。
而其它的表示方法在这点上还不能与其相比。
12.什么是过程性知识表示给出它的优缺点。
答:过程性知识是将有关某一问题领域的知识,连同如何使用这些知识的方法,均隐式地表示为一个求解问题的过程。
其包含两个含义:(1)把解决一个问题的过程描述出来。
可以称它为解题知识的过程表示。
(2)把客观事物的发展过程用某种方式表示出来。
优点:控制系统就比较容易设计,过程表示用程序来描述问题,具有很高的问题求解效率。
缺点:复杂、不直观、容易出错、不便于修改。
由于知识隐含在程序中,难于添加新的知识和扩充功能,所以适用范围较窄。
13.简述人工智能的研究目标。
答:可分为两个阶段:(1)近期目标:近期目标的中心任务是研究如何使计算机去做那些过去只有靠人的智力才能完成的工作。
主要研究依赖于现有计算机去模拟人类某些智力行为的基本理论、基本方法。
(2)远期目标:探讨智能的基本机理,研究如何利用自动机去模拟人的某些思维过程和智能行为,甚至做的比人还要好。
九个最终目标(从研究内容出发):理解人类的认识、有效的自动化、有效的智能拓展、超人的智力、通用问题求解、连贯性交谈、自治、学习、储存信息。
14.简述人工智能的新进展。
答:多学科基础理论交叉研究,多学派融合研究,集成智能研究,智能机器人研究。
(脑科学为人工智能研究提供人脑神经系统功能的本质和机理;认知科学为人工智能研究提供感知、思维、学习和语言等基本原理心理学为人工智能研究提供认知、情感、意识等心理过程及联系。
生物学为人工智能研究提供自然界生物运行的机制;逻辑学为人工智能研究提供思维规律描述的理论和方法;)人工智能从以往的追求自主的系统,改变为人机结合的系统。
现在是直觉、形象思维与模式识别的结合、Situated AI,Sensing and Acting的结合,并引入概率论、遗传算法等理论。
计算机的定量与人的定性信息处理相结合,取长补短。
15.什么是遗传算法解释遗传算法中的个体和种群的含义答:遗传算法思想来源于生物进化过程,它是基于进化过程中的信息遗传机制和优胜劣汰的自然选择原则的搜索算法。
遗传算法用概率搜索过程在该状态空间中搜索,产生新的样本。
遗传算法是模仿生物遗传学和自然选择机理,通过人工方式构造一类优化搜索算法,是对生物进化过程的一个数学仿真,属于进化计算中的一类方法。
个体:个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼,一个个体也就是搜索空间中的一个点。
遗传算法先将搜索结构编码为字符串形式,每个字符串结构被称为个体。
种群:就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。
一组字符串结构,被称为一个群体。
16.人工智能研究主要有哪三大学派,其特点是什么答:(1)符号主义:又称为功能模拟学派,主要观点认为智能活动的基础是物理符号系统,思维过程是符号模式的处理过程。
其特点:(a)立足于逻辑运算和符号操作,适合于模拟人的逻辑思维过程,解决需要逻辑推理的复杂问题。
(b)知识可用显示的符号表示,在已知基本规则的情况下,无需输入大量的细节知识。
(c)便于模块化,当个别事实发生变化时,易于修改。
(d)能与传统的符号数据库进行连接。