微地震监测【精选】
- 格式:ppt
- 大小:17.26 MB
- 文档页数:50
微地震监测方案地震是地球表面因地壳断裂导致的振动现象,对人类生命和财产造成了巨大的威胁。
而微地震作为地震研究中的一个重要分支,被广泛应用于地震的监测与预警工作中。
本文将介绍一种可行的微地震监测方案。
一、引言地震是一种破坏性极大的自然灾害,而微地震监测则是通过监测和研究微小地震信号,以了解地壳的活动状况,更好地预测和防范大规模地震事件的发生。
因此,制定一套有效的微地震监测方案至关重要。
二、设备和技术1. 声波传感器声波传感器是一种用于检测地震信号的关键设备。
它能够测量地壳中微小地震波的振幅、频率和持续时间,从而判断地壳的活动情况。
2. 数据采集系统数据采集系统是用于收集和记录声波传感器所感知到的地震信号的设备。
采集系统应具备高灵敏度、高采样率和较大存储容量,以确保数据的准确性和完整性。
3. 数据处理软件数据处理软件用于对采集到的地震数据进行处理和分析。
它能够提取出地震信号的关键特征,并进行相关性分析,有助于判断地震的发生原因和趋势。
三、监测范围与布点微地震监测的范围应根据地震活动频率和地理位置进行合理确定。
选择地震频繁的地区进行监测,可以提高监测的准确性和有效性。
布点方面,应充分考虑地震监测站之间的辐射覆盖范围,布设足够数量的监测站点,并确保各监测站点之间的距离适当,以便有效监测地震信号的传播路径。
四、数据分析与处理1. 地震事件识别通过数据处理软件对采集到的地震数据进行分析,识别出地震事件的发生时间、震级和震源位置等关键信息。
这有助于及时了解地震活动的情况,并采取相应的应对措施。
2. 地震波形分析地震波形分析是对地震信号的振幅、频率和持续时间等进行详细分析的过程。
通过对地震波形的分析,可以判断地震的来源、运动性质和可能对周边地区产生的影响。
3. 数据趋势分析通过长期对微地震监测数据的积累和分析,可以发现地震活动的趋势和规律。
这对于预测地震事件的发生概率和可能性有很大的帮助。
五、监测结果的意义与应用微地震监测的结果可以为地震学研究提供重要的数据支持,有助于科学家们对地震活动机制和震源构造的认识。
微地震监测技术矿山微地震监测技术共分为三类:第一类是矿井地震监测系统,用于监测矿震,特点是监测大震级破裂事件,定位精度500米左右,主要采用地震行业的技术和设备;第二类是分布式微地震监测系统,用于监测小型矿震,特点是可监测小震级破裂事件,定位精度50-100米左右。
一般适合采区尺度的震动监测。
第三类是高精度微地震监测系统,用于监测小震级冲击地压和岩层破裂,定位精度达到10米以内,适合采掘工程尺度。
微地震是一种小型的地震(mine tremor or microseismic)。
在地下矿井深部开采过程中发生岩石破裂和地震活动,常常是不可避免的现象。
由开采诱发的地震活动,通常定义为,在开采坑道附近的岩体内因应力场变化导致岩石破坏而引起的那些地震事件(Cook,1976)。
开采坑道周围的总的应力状态.是开采引起的附加应力和岩体内的环境应力的总和。
岩爆是岩石猛烈的破裂,造成开采坑道的破坏(Cook,1976;Ortlepp,1984),只有那些能够引起矿区附近的地区都受到破坏的地震事件才叫做冲击地压或煤爆、“岩爆”。
对地下开采诱发的地震活动性的研究表明,矿震不一定全都发生在开采的地点,且不同地区的最大震级也不相同,但矿震深度一般对应于开采挖掘的深度。
每年在一些矿区的地震台网能记录到几千个地震事件,只有几个是岩爆。
在由开采引起的地震事件的大的系列里,岩爆只是其中很小的一个分支。
对矿山地震、微地震及冲击地压的观测具有一致性,但应用到实际生产中必须区别对待。
第一个监测地震活动的台网,20年代末期建在上西里西亚(上西里西亚煤盆的德国一侧,现属于波兰)。
台网由四个子台组成,其中一个子台放在Rozbark煤矿的井下,装有Mainka水平向地震仪。
这个台网不断改进,坚持运转直到二战以后(Gibowicz,1963),直到60年代中期,被安装在地表和地下的现代化地震台站代替。
在南非,于1939年设计并布设了五个机械式地震仪,在地面组成台阵,主要为矿震定位(Gane等,1946)。
微地震监测与断层活动预测地震是一种自然现象,在地球的演化过程中,不断地发生。
地震活动的频率和强度对人类社会和环境造成了严重的破坏和危害。
因此,对于地震的准确预测和有效监测具有重要意义。
在这方面,微地震监测技术以其高精度和高效性逐渐受到广泛关注。
微地震是指震级小于3.0的地震活动。
虽然这些微地震的能量较小,但它们是地壳运动的重要表现。
通过对微地震的监测和分析,我们可以更好地了解地壳运动的情况,并对断层活动进行预测。
微地震监测技术主要依靠地震仪器以及数据采集和处理系统。
地震仪器可以通过测量地震波的传播和振幅变化来记录地震活动。
通过大规模的地震观测和分析,我们可以获得足够的微地震数据以进行更准确的预测。
数据的采集和处理系统则负责将地震仪器收集到的数据进行整理和分析。
这些系统通常由高性能计算机支持,可以处理庞大的地震数据,并生成有用的预测结果。
微地震监测的一个重要应用是断层活动预测。
断层是地球内部的应力积聚导致的地壳断裂带。
地震活动通常发生在断层附近,因此通过监测微地震活动,我们可以获得一些关于断层活动的重要信息。
例如,当微地震的频率和能量增加时,可能意味着断层即将发生地震活动。
这种预测信息可以帮助我们采取必要的预防措施,减少地震对人类社会的危害。
此外,微地震监测还可以用于研究地壳的动态变化。
地壳是地球表面的外部岩石层,它随着地震活动的变化而发生形变和变化。
通过监测微地震,我们可以获取地壳的变形数据,并进一步研究地壳的运动机制和地壳运动对环境的影响。
例如,在地壳运动相对频繁的地区,我们可以预测地质灾害的发生,并采取相应的措施来减轻其影响。
然而,微地震监测技术仍然存在一些挑战和限制。
首先,需要大规模的数据采集和处理系统来支持准确的预测和监测。
这需要投入大量的资源和资金。
此外,数据分析和解释也需要专业的技术和知识。
对于许多地区而言,缺乏专业人才和设备成为限制微地震监测应用的主要因素。
尽管存在一些挑战,微地震监测技术仍然具有广阔的应用前景。
微震监测技术在地下工程中的应用摘要:微震监测技术是一种高科技信息化的地下工程动力监测技术。
随着设备硬件技术、信号处理技术和数字化技术的快速发展,微震监测技术的应用在国际上也越来越多,目前国内出现了对该技术的应用研究热。
本文介绍了微震技术的特点及微震技术在地下工程安全监测中的作用。
根据微震监测技术在国内外的应用,概括了该技术在地下工程安全监测和防灾减灾监测的若干方面的应用。
0 引言微地震监测技术(Microseismic Monitoring Technique,简称MS)基于声发射学和地震学,现已发展成为一种新型的高科技监控技术。
它是通过观测、分析生产活动中产生的微小地震事件,来监测其对生产活动的影响、效果及地下状态的地球物理技术。
当地下岩石由于人为因素或自然因素发生破裂、移动时,产生一种微弱的地震波向周围传播,通过在破裂区周围的空间内布置多组检波器并实时采集微震数据,经过数据处理后,采用震动定位原理,可确定破裂发生的位置,并在三维空间上显示出来。
1 微震监测在工程中的应用历史[2]微地震监测技术在地下工程中的应用最早始于上世纪初的南非约翰内斯堡地区的金矿开采诱发的地震监测。
南非对微地震的早期监测是采用常用的地震监测仪器,20多年后,60年代大规模的矿山微震研究在南非各主要金矿山展开,并随之在l970-1980年代以来各采金矿山先后建立了矿山微震监测台站。
到上世纪中叶,在波兰、美国、前苏联、加拿大等采矿大国都先后开展了矿山地震研究,且随着电子技术和信号处理技术的发展,多通道的微地震监测技术也开始得到应用,最突出的有以美国斯波坎的Electrolab公司为代表研制和生产多通道微震监测技术和设备,并在美国的金属矿山得到应用,微震监测技术在非矿山行业之外的核能、地下油气存储库、地下隧道工程等领域也得到应用,如加拿大原子能地下实验室就采用了微震监测系统口。
近年来,利用微震监测技术进行地下灾害救助等方面,也得到应用。
微地震监测方案1. 简介微地震是指地震震级小于2.0的小型地震活动,这种地震活动虽然震级较低,但是对地下结构的变化可以有敏感的反应。
微地震监测方案旨在通过监测和分析微地震活动,了解地下构造的变化和相关地质过程,为地质灾害预测、资源勘探和地下工程提供依据。
2. 微地震监测原理微地震监测基于地震学原理,主要利用地震仪器记录微量地震活动。
地震仪器一般包括三个主要组件:地震传感器、数据记录仪和数据通信系统。
地震传感器用于感知地面的微动,将地震信号转化为电信号,并传送至数据记录仪。
数据记录仪负责记录和存储地震事件的数据,通常以数字形式进行存储。
数据通信系统用于传输地震数据到地震监测中心,以便后续的数据处理和分析。
3. 微地震监测流程微地震监测流程主要包括地震台网布置、数据采集和处理、数据分析和解释等步骤。
3.1 地震台网布置地震台网布置是微地震监测的第一步,合理的台网布置可以最大程度地提高监测效果。
布置地震台网时需要考虑以下因素:•台站间距:合理的台站间距可以确保覆盖监测区域的地震活动;•台位选择:选择地形开阔、地质稳定的地点,避免干扰;•台网密度:根据监测需求和地质背景确定台网密度。
3.2 数据采集和处理数据采集和处理是微地震监测的核心环节,包括数据收集、数据预处理和数据质量控制等步骤。
•数据收集:通过地震传感器采集地震事件的数据,并传送至数据记录仪;•数据预处理:对原始数据进行滤波、去噪、分段等预处理步骤,确保后续分析的准确性;•数据质量控制:检查数据质量,剔除采集过程中可能产生的异常数据。
3.3 数据分析和解释数据分析和解释是微地震监测的最终目标,通过对数据进行分析和解释,得出地下结构的变化和相关地质过程。
•数据分析:利用地震学理论和分析方法对数据进行分析,获取地震活动的震级、震源参数等重要信息;•数据解释:根据分析结果,结合地质背景和相关资料,解释地震活动与地下构造的关系,深入了解地下构造和相关地质过程。
微震监测综述1. 引言北美页岩气革命改变了全球能源市场格局,非常规油气勘探开发成为全球油气资源领域的新热点,水平井技术、大型压裂技术、微地震监测技术等三项核心技术的应用,加快了世界其他地区致密气、页岩气、煤层气等非常规油气资源的勘探开发。
全球非常规油气产量快速增长,在全球能源供应中的地位日益凸显,2008年全球非常规石油资源规模达449.5Gt,与常规石油资源基本相当;全球非常规天然气资源规模达3921Tm3,是常规天然气资源的8倍,非常规天然气产量快速上升,已占到天然气产量的18%。
油气资源类型特征三角图2.非常规天然气勘探对微震监测技术的需求非常规油气指成藏机理、赋存状态、分布规律及勘探开发方式等不同于现今的常规油气藏勘探的烃类资源。
全球非常规油气资源十分丰富、种类也很多,非常规石油资源主要包括:致密油、页岩油、稠油、油砂、油页岩等,非常规天然气主要包括:页岩气、煤层气、致密气、甲烷水合物等。
其中资源潜力大、分布广、具有开发价值的是页岩气和致密油等。
而中国已经在致密油和页岩气等非常规资源勘探开发中见到良好效果。
我国致密油气层涵盖古生界、中生界、新生界沉积岩;油气藏类型包括:砂岩、碳酸盐、火山岩;分布范围如图所示:西部有准噶尔盆地、柴达木盆地、塔里木盆地等;中部有鄂尔多斯盆地、四川盆地、江汉盆地等;东部有辽海盆地、渤海湾盆地、东海盆地、台西盆地等。
这些致密油气储层具有低孔、低渗特点,极难形成自然产能。
由于成藏特点与北美页岩气类似,可以借助国外经验,实施水平井压裂、多级压裂改造,有效扩大渗流通道,并通过微震监测技术求取裂缝的空间展布范围特征、提取岩石力学参数,为进一步储层改造及开发井位部署提供技术支持。
中国主要致密油分布3. 微震监测技术微震监测技术主要指在油气藏压裂、注水开采等生产过程中,利用压裂、注水诱发的类似天然地震、烈度很低的微地震现象,监测裂隙活动、油气生产层类流体的流动情况,为优化油气藏管理、致密储层勘探开发提供决策依据的微震技术。
微地震监测方案范文微地震监测是指对地震发生前、期间和发生后微小地震事件进行观测和记录的一种地震监测手段。
这些微小地震事件被认为是地震发生前的地壳变形和地下应力释放的微观表现,通过对微地震的监测可以提前预警大地震的可能性,并为地震研究提供重要的数据。
下面是一个关于微地震监测方案的详细介绍:1.建立监测网络:首先,需要在地震活动频繁的地区建立一个微地震监测网络。
这个网络应该由多个监测站点组成,每个站点配备微地震探测设备,如地震仪和加速度计等。
这些设备应该能够记录地震事件的时刻、震级和震源位置等信息。
2.校准和校验设备:所有的微地震设备都需要进行校准,确保其记录的地震信息准确无误。
在监测过程中,还需要定期进行设备的校验,以确保其正常工作并保持高质量的监测。
3.数据采集和存储:监测网络应该能够实时采集地震事件的数据,并将其存储到一个中央数据服务器中。
对于每个微地震事件,应该记录其时刻、震级、震源位置、震源机制等信息。
此外,还可以将地震事件的波形数据进行存储,以便后续的地震波形处理和分析。
4.数据处理和分析:收集到的微地震事件数据需要进行处理和分析,以获取更多的地震信息。
其中,包括对地震事件的定位和震级的估计,以及对地震活动的模式和特征进行研究。
此外,还可以对地震事件的波形数据进行处理,进行地震波传播路径的反演和模拟等。
5.数据解释和应用:根据对微地震监测数据的分析结果,可以对地震活动进行解释和预测。
通过分析微地震活动的变化趋势和特征,可以预测大地震的可能性和概率,并提供预警信息。
此外,通过对地震事件的模式和特征进行研究,可以增进对地震机制和地震活动规律的认识。
6.提高监测精度和可靠性:为了提高微地震监测的精度和可靠性,可以采用多种手段,如增加监测站点的数量、提高设备的灵敏度和分辨率、改进数据处理和分析算法等。
此外,也可以利用其他地震监测手段的数据,如地表形变观测、重力观测和地电观测等,进行多参数的联合监测和分析。
GNT International Inc.微地震监测技术北京阳光杰科科技有限公司2012年6月⏹微地震技术三种数据采集方法⏹微地震数据处理⏹微地震解释与应用⏹微地震应用实例微地震监测技术是采集地下岩石破裂所产生的地震波,通过处理、解释以了解地下岩石破裂的位置、破裂程度、破裂的几何形态等的技术;可用于石油工业的压裂监测,以及矿山、大坝、地下结构等的长期监测•由客户数据建立速度模型•标定速度模型•事件可能发生区域的数据叠加•在叠加数据中搜寻裂缝事件•按时间和空间输出事件位置•地震检波器串•径向排列系统, 8-16 臂, 1000 道•灵活和快速的探测用于短期微地震震监测的灵活技术系统设计(平坦地形)系统设计(多山地形)用于调配的四轮摩托为直升机调配准备的地震检波器和电缆录音舱直升机调配用于系统部署的直升机•井筒中储层段放置10-50个3-C 地震检波器•采取初至处理•监测井距压裂井距小于200米•可用于观测多井压裂•用于标定地表系统在靠近作业井较近距离内,井下监测具有较高的精度井下系统探测装置准备井下系统3C 井下地震检波器•埋于100-300英尺(约30-90米)的3-C 检波器•每个排列配备80 –100个检波器•大面积覆盖•长期监测的最佳商业和技术选择用于长期和大范围监测的最具经济有效的方法进行中的浅孔钻探埋入式3C 地震检波器站埋入式3C 地震检波器站预备埋入的3C 地震检波器井下探测区域地表系统探测区域预警系统监测区域大面积油藏监测系统•井筒中靠近储层段放置10-20个3-C 地震检波器•采取初至处理•监测井距压裂井距小于200•可用于观测多井压裂•用于优化地表排列系统•地震检波器串•径向排列系统, 8-16 臂,1000 道•灵活和快速的探测用于短期微地震监测的灵活技术地面排列Typical WellNumber of Wells Monitored1Days of Data Recording2Total Frac Stages4 Average Hours per Stage2 Hours of Frac Data Processed8 (estimated) Depth of Imaging623 m Length of Horizontal Section(s)395 m Number of Geophone Channels801 Number of Arms in Array10 Length of Longest Arm in Array1350 m的3-C 检波器•每个排列配备80 –100个检波器•PSET®数据处理•大面积覆盖•长期监测的最佳商业和技术选择用于长期和大面积监测的最经济有效的方法布设原则:•约1000-2000m左右的圆环内。
微地震监测技术及应用摘要微地震监测工艺包括近震研究的定位与地壳构架成像,微地震监测各类定位手段需创建不同目标函数,地震定位情况的实质为求得目标函数的极小值。
NA拥有不依靠于模型初始值选用,不会收敛与部分极小值,比以往线性近似手段有更大的精度与稳定性。
经过地震信息的震相研究,走时拾取反演能够得到地震干扰区的地震波速度系统,当前已推行使用在石油、气田勘察开发和页岩开发领域;矿山开挖中矿震、岩爆,煤和瓦斯突出,承压水突水检测;水利项目施工坝址、边坡可靠性以及天然滑坡检测等诸多方面。
关键词微地震;监测方法;运用;研究1 微地震具体定位手段微震监测方法是在地震监测方法的前提下发展起来的,其在原理上和地震监测、声发射监测方法一样,是依靠岩体受力损坏阶段破裂的声、能原理。
近震3D空间微地震定位忽视深度后能视为平面微地震定位情况,使用三点定位几何手段,在已知三个测量点坐标与地层介质传递速度基础上,经过三点到时就能够明确震源部位[1]。
O0是坐标原点,以R,R+ΔR1,R+ΔR2分别是半径作圆,三圆交点就是震源,如图1所示。
天然微地震出现频率相对偏低,地震震相容易区别,常体现出单事件特点。
精确的定位手段均是创建在3D空间前提下,常见的微地震震源定位基本手段包括Geiger法、网格检索手段等线性优化途径;还有遗传算法、模拟退火以及邻近算法等非线性优化手段[2]。
2 微地震监测运用2.1 矿山安全开挖微地震监测伴随开挖深度增大,地压、瓦斯以及地下承压水等安全情况突出,微地震监测技术起到关键的作用。
冲击地压属于矿山内损坏行最大的地压问题,出现时大小不同的煤块以较大的速度飞向巷道,对矿山设备以及人员生命的威胁较大,因此对其研究具有重要作用[3]。
统计结构显示,大概50%的矿震是因为沙砾岩等重点层损害造成的,僅有少数矿震造成了冲击地压情况,表示矿震和冲击地压的差异。
冲击地压与地震一样均是和地球中物理损坏相关联的岩体可靠性现象,其出现时均表现为较短时间内散发大量的应变能。
微震监测:弥补岩石声发射到天然地震间的空白微震监测:弥补岩石声发射到天然地震间的空白温燕林1,2)方国庆1)赵文舟1,3)于海英1)马钦忠1)1)上海市地震局,上海 2000622)同济大学海洋地质国家重点实验室,上海 2000923)中国科技大学地球与空间科学学院,合肥 230026通常把岩体微小破裂会伴随产生强度较弱的地震波称为微地震(Microseismic)。
大多数微地震事件震动能量一般为102~1010J,频率范围介于50~1500 Hz之间,持续时间通常小于1 s,微震的地震矩震级M W介于0~4之间。
地震具有非线性多尺度特性。
实验室岩石压裂试验产生的声发射(AE)为微尺度现象(微米-毫米级),频段达到超声波频率(MHz),能量换算成震级范围为M-12~-6;微震为小尺度岩石破裂(米级),频率几百至上千赫兹(声波频段),震级范围M-4~0;天然构造地震为中尺度到大尺度岩石破裂现象(千米级,几千米到几百千米),产生的地震波频率低(10-3Hz~102 Hz),震级范围M 0~9。
微震波是地下岩层微破裂产生的声波,其频段已属于可听声频段,可称之为“微弱地声”。
微震与实验室岩石破裂声发射及天然地震波的频率范围、对应的震级关系见图1。
实验室岩石声发射研究成果已用于矿震和油田压裂裂缝监测,但很多无法应用到天然地震观测结果。
天然地震监测领域需要打通实验室岩石声发射(AE)实验到构声,低频为地震波),填补100 Hz-1 KHz观测的空隙,以弥补现有宽频带地震观测范围空白。
大量实验研究和生产实践发现,高应力作用下岩石出现“微小破裂萌生(微尺度、微能量)-裂缝扩展、贯通(小尺度、小能量的破裂)-岩体局部失稳(中尺度、中能量的冲击)-岩体结构破坏、大范围失稳(大尺度、大能量的矿震)”的发展过程。
利用微震监测能够实时观察岩石破裂形成的裂缝延伸情况,对矿山图1 不同地震观测系统的频段(A. Baig,2010)和隧道岩爆进行有效监测预警。