3-4大样本区间估计
- 格式:ppt
- 大小:1.35 MB
- 文档页数:21
统计学》课程教学大纲课程编号:×××××××× 课程类别:学科基础课授课对象:经济管理类各专业、社会学专业、档案学专业、新闻学专业等开课学期:第3、4、5、6 学期学分:3~4 学分主讲教师:⋯⋯等指定教材:贾俊平、何晓群、金勇进编著,《统计学》(第7 版),中国人民大学出版社,2018 年教学目的:《统计学》是为非统计专业本科生开设的一门基础必修课,总课时约54 学时。
设置本课程的目的在于培养学生有关统计知识方面的基本技能,培养学生应用统计方法分析和解决问题的实际能力。
教学应达到的总体目标是:使学生能系统地掌握各种统计方法,并理解各种统计方法中所包含的统计思想。
使学生掌握各种统计方法的不同特点、应用条件及适用场合。
使学生能使用SPSS或Excel 等软件分析数据。
培养学生运用统计方法分析和解决实际问题的能力。
第 1 章导论课时:1 周,共3 课时教学内容第一节统计及其应用领域一、什么是统计学统计学的概念。
描述统计。
推断统计。
二、统计的应用领域统计在公共管理中的应用。
统计在其他领域的应用。
第二节统计数据的类型一、分类数据、顺序数据、数值型数据。
分类数据。
顺序数据。
数值型数据。
二、观测数据和实验数据观测数据。
实验数据。
三、截面数据和时间序列数据截面数据。
时间序列数据。
第三节统计中的几个基本概念一、总体和样本总体。
有限总体和无限总体。
样本。
样本量。
二、参数和统计量参数。
统计量。
三、变量变量。
变量的类型。
第 2 章数据的收集课时:1 周,共3 课时教学内容第一节数据来源一、数据的间接来源二手数据。
二、数据的直接来源调查数据。
实验数据。
第二节调查方法一、概率抽样和非概率抽样概率抽样方法。
非概率抽样方法。
二、搜集数据的基本方法自填式。
面访式。
电话式。
数据搜集方法的选择。
第三节实验方法一、实验组和对照组二、实验中的若干问题三、实验中的统计第三节数据的误差一、抽样误差二、非抽样误差三、误差的控制第 3 章数据的图表展示课时:1 周,共3 课时教学内容第一节数据的预处理一、数据审核原始数据的审核。
中国科学院大学硕士研究生入学考试
《概率论与数理统计》考试大纲
本《概率论与数理统计》考试大纲适用于中国科学院大学非数学类的硕士研究生入学考试。
概率统计是现代数学的重要分支,在物理、化学、生物、计算机科学等学科有着广泛的应用。
考试的主要内容有以下几个部分:
概率统计中的基本概念
随机变量及其分布
随机变量的数学特征及特征函数
独立随机变量和的中心极限定理及大数定律
假设检验
点估计及区间估计
简单线性回归模型
要求考生对基本概念有深入的理解,能计算一些常见分布的期望、方差,了解假设检验、点估计及区间估计的统计意义,能解决一些经典模型的检验问题、区间估计及点估计。
最后,能理解大数定律及中心极限定理。
一、考试内容
(一)基本概念
1.样本、样本观测值
2.统计数据的直观描述方法:如干叶法、直方图
3.统计数据的数字描述:样本均值、样本方差、中位数事件的独立性、样本空间、事件
4.概率、条件概率、Bayes公式
5.古典概型
(二)离散随机变量
1.离散随机变量的定义
2.经典的离散随机变量的分布
a.二项分布
b.几何分布
c.泊松分布
d.超几何分布
3.离散随机变量的期望、公差
4.离散随机变量的特征函数
5.离散随机变量相互独立的概念
6.二维离散随机变量的联合分布、条件分布、边缘分布及二个离散随机变量的相关系数
(三)连续随机变量
1.连续随机变量的概念
2.密度函数
3.分布函数
4.常见的连续分布
a.正态分布。
区间估计公式区间估计公式是指一种统计方法,用于估计未知参数的范围。
它是根据给定的数据集以及其参数的极限均值推断出的。
这样可以对参数的正确取值作出一个初步的估算。
一、经典区间估计公式1、样本均值估计法根据“大数定律”,当一个随机变量X的抽样样本个数n(→∞)时,X的样本均值的分布收敛到N(μ,σ2/n),可使用样本均值估计法来估计参数μ的值,即令μ = X的样本均数。
2、样本标准差估计法根据中心极限定理,当样本量趋于无穷的时候,样本标准差的分布符合t分布。
令特定的置信度α代替t值,可求得标准差的估计值,即σ^2 '= n·D / (tα/2)^2二、偏态分布估计量偏态分布估计量是一种分布估计法,它采用具备偏态分布特征的数值来估算参数μ和σ。
偏态分布是所有概率分布中最广泛应用的分布之一,它把参数μ和σ拆分成三部分:偏态参数γ,偏度参数ω和尾部形状参数λ。
从而可以从偏态分布中估计出μ、σ和γ、ω、λ的参数值。
三、无偏估计量无偏估计量是另一种用于估算量的分布。
它使用极值法,即按照某种规则,从一系列有限但不受限制的抽样样本中挑选某个值作为未知数的无偏估计值。
最常用的无偏估计量有方差法和方差除以样本数法。
方差估计量是一种比较简单的无偏估计量,它可用以下公式计算:σ^2 = 1 / n*Σ(xi - X)^2其中n是样本量,xi代表每个样本取值,X表示样本均值。
而另一种常用的无偏估计量就是方差除以样本数的方法,它的公式为:σ^2 = Σ(xi - X)^2 / n - 1四、交叉验证法交叉验证是一种分布估计法,它可以用来预测参数μ和σ,以便获得更准确的估算结果。
交叉验证首先将样本随机分为若干组,然后在每一组中利用其他组的信息来估计参数。
估计出的参数值在另外一组中进行验证,以期往复进行,直到每个组都意义数次验证。
然后再求出每次验证的参数的平均值以求得参数的最终估计值。
五、bootstrap法bootstrap是一种分布估计的方法,它可以用来估计三种不同的参数:均值、标准差和相关系数等。
总体参数的区间估计公式在进行区间估计时,我们首先需要收集到一个样本,并根据样本对总体参数进行估计。
然后根据样本的统计量,结合分布的性质和抽样方法,建立置信区间。
设总体参数为θ,我们希望得到它的置信水平为1-α的置信区间。
置信水平表示我们对总体参数的估计的可信程度,一般常用的置信水平有90%、95%和99%等。
参数估计的方法有很多,具体的方法选择取决于总体参数的性质、样本的大小以及其他假设条件。
常见的参数估计方法有:1.总体均值的区间估计:假设总体呈正态分布,样本大小为n,则总体均值的区间估计公式为:[样本均值-Z值(α/2)*总体标准差/√(n),样本均值+Z值(α/2)*总体标准差/√(n)]其中Z值(α/2)为标准正态分布的分位数,可以从标准正态分布表中查得。
2.总体比例的区间估计:假设总体为二项分布,样本大小为n,成功的次数为x,则总体比例的区间估计公式为:[样本比例-Z值(α/2)*√(样本比例*(1-样本比例)/n),样本比例+Z值(α/2)*√(样本比例*(1-样本比例)/n)]其中Z值(α/2)为标准正态分布的分位数,可以从标准正态分布表中查得。
3.总体方差的区间估计:假设总体呈正态分布,样本大小为n,则总体方差的区间估计公式为:[(n-1)*样本方差/卡方分布(α/2),(n-1)*样本方差/卡方分布(1-α/2])]其中卡方分布是用于描述自由度为n-1的卡方随机变量的概率分布,可以从卡方分布表中查得。
以上是常见的总体参数区间估计公式,这些公式是根据统计学理论推导而来的,适用于不同情况下的参数估计。
在实际应用中,我们根据具体问题和假设条件选择适当的参数估计方法,计算置信水平的区间估计,从而对总体参数进行估计和推断。
总体方差的区间估计例题以下是5道关于总体方差区间估计的例题及其解析:例题1:从某总体中随机抽取一个容量为10的样本,得到样本方差为4。
要求以95%的置信水平估计总体方差的置信区间。
解析:根据卡方分布的性质,当样本容量足够大时,样本方差与总体方差之比服从卡方分布。
因此,我们可以使用卡方分布的分位数来计算置信区间。
对于95%的置信水平,卡方分布的分位数为0.025和0.975。
计算得到置信区间为[2.04, 7.96]。
例题2:从某总体中随机抽取一个容量为15的样本,得到样本方差为9。
要求以90%的置信水平估计总体方差的置信区间。
解析:同样使用卡方分布的性质,计算得到90%置信水平下的卡方分布分位数为0.05和0.95。
计算得到置信区间为[4.78, 18.46]。
例题3:从某总体中随机抽取一个容量为20的样本,得到样本方差为16。
要求以99%的置信水平估计总体方差的置信区间。
解析:对于99%的置信水平,卡方分布的分位数为0.005和0.995。
计算得到置信区间为[8.42, 31.84]。
例题4:从某总体中随机抽取一个容量为30的样本,得到样本方差为25。
要求以95%的置信水平估计总体方差的置信区间。
解析:对于95%的置信水平和样本容量为30的情况,卡方分布的分位数为0.025和0.975。
计算得到置信区间为[17.67, 36.76]。
例题5:从某总体中随机抽取一个容量为50的样本,得到样本方差为100。
要求以90%的置信水平估计总体方差的置信区间。
解析:对于90%的置信水平和样本容量为50的情况,卡方分布的分位数为0.05和0.95。
计算得到置信区间为[73.82, 131.72]。
区间估计的名词解释区间估计是统计学中一种常用的推断方法,用于根据样本数据对总体参数进行估计,给出一个包含真实参数值可能范围的区间。
区间估计的目的是在不完全了解总体参数的情况下,通过样本数据来推断总体参数的值范围。
在进行区间估计时,首先需要选择一个适当的置信水平(confidence level),通常选择的置信水平为95%或99%。
置信水平代表了对总体参数估计的可信程度,例如95%的置信水平意味着有95%的可能性真实参数位于构建的区间内。
区间估计的步骤如下:1. 收集样本数据。
从总体中随机抽取样本,获取样本数据。
2. 选择合适的估计方法。
根据问题的具体情况,选择适合的估计方法,如均值估计、比例估计、标准差估计等。
3. 计算样本统计量。
使用选择的估计方法,计算得到样本的统计量,如样本均值、样本比例、样本标准差等。
4. 确定置信水平。
选择适当的置信水平,通常选择95%或99%。
5. 确定临界值。
根据置信水平和样本量,查找临界值。
临界值以正态分布或t分布的分位数形式给出。
6. 计算估计区间。
使用样本统计量和临界值,计算得到估计区间。
估计区间的计算公式根据不同的估计方法而定。
7. 解释估计结果。
根据计算得到的估计区间,给出估计结果的解释。
例如,可以说在95%置信水平下,总体参数的真实值有95%的可能性位于估计区间内。
区间估计的优点是可以提供对总体参数的估计范围,以及估计结果的可信程度。
通过给出一个区间,可以更全面地理解总体参数的不确定性。
但区间估计也存在一定的局限性,例如需要大样本量才能得到较窄的估计区间,对总体分布的假设要求较高等。
因此,区间估计只能提供对总体参数的近似估计,而无法给出准确的参数值。
区间估计的基本原理和步骤区间估计是统计推断中的一种方法,用于估计总体参数的区间范围。
其基本原理和步骤如下:一、基本原理:二、步骤:1.确定参数类型和样本分布:在进行区间估计之前,需要明确要估计的总体参数类型,例如均值、方差、比例等。
同时,需要确保样本数据来自一个合理的总体分布,通常假设样本数据满足正态分布。
2.选择置信水平:置信水平表示对于重复抽样所得的区间估计,其中包含总体参数真实值的概率。
常用的置信水平有95%和99%。
选择置信水平时需要考虑实际应用需求和可接受的误差范围。
3.计算标准误差:标准误差是样本统计量与总体参数之间的标准差,可以用来度量估计量的精确程度。
常见的标准误差计算方式包括对均值的标准误、对比例的标准误和对方差的标准误。
4.确定抽样分布:根据中心极限定理,当样本容量足够大时,样本统计量的抽样分布会接近正态分布。
可以利用这个性质来进行参数估计。
5.计算置信区间:根据所选择的置信水平和抽样分布中的临界值,计算出估计参数的上限和下限,形成估计的置信区间。
具体计算方法与总体参数类型相关,如均值的置信区间计算通常基于样本均值和标准误差。
6.解读结果:得到置信区间后,应根据具体情况对结果进行解读和分析。
通常,置信区间越窄,说明估计结果越准确;置信区间不包含需要估计的参数真实值,说明估计结果不准确。
7.检验假设:在一些情况下,需要通过检验假设来验证估计结果的可靠性。
例如,对于均值的区间估计,可以通过假设检验来判断区间估计是否显著不等于一些特定值。
总结:区间估计是统计推断中重要的一种方法,它能够通过样本数据给出总体参数的一个估计区间,并提供了对估计精确性的度量。
在实际应用中,选择合适的置信水平、计算标准误差、确定抽样分布以及解读结果都是关键步骤,需要结合具体问题进行合理的选择和判断。
区间估计的名词解释
一、什么是区间估计?
区间估计是统计学中一种常用的参数估计方法,用于根据样本数据来估计总体参数的范围。
在区间估计中,我们通过样本数据计算出一个区间,该区间通常包含总体参数的真实值。
区间估计的方法包括单侧区间估计和双侧区间估计。
二、区间估计的原理
区间估计的原理基于抽样分布理论。
根据中心极限定理,当样本容量足够大时,样本均值的分布近似于正态分布。
因此,我们可以利用样本均值和标准误差来估计总体均值的分布。
具体来说,我们首先根据样本数据计算出样本均值和标准误差。
然后,利用样本均值加减标准误差的倍数来计算出置信区间的上下限。
置信区间的置信度通常设置为 95% 或更高,这表示我们有 95% 的把握认为总体参数的真实值落在这个区间内。
三、区间估计的应用场景
区间估计在实际应用中具有广泛的应用价值,下面列举了一些常见的应用场景:
1. 估计总体均值:例如,通过对某批次产品进行抽样检测,计
算出样本均值和标准误差,然后用区间估计方法估计该批次产品的总体均值。
2. 估计总体比例:例如,通过对某人群进行抽样调查,计算出
样本比例和标准误差,然后用区间估计方法估计该人群的总体比例。
3. 估计总体标准差:例如,通过对某批次产品进行抽样检测,计算出样本标准差和样本容量,然后用区间估计方法估计该批次产品的总体标准差。
总之,区间估计是一种常用的参数估计方法,能够帮助我们在实际问题中对总体参数进行估计。
掌握区间估计的方法和原理,对于统计分析和决策具有重要意义。