光学零件加工
- 格式:ppt
- 大小:491.00 KB
- 文档页数:30
平面光学元件的加工技术浙江大学光电系曹天宁宁波华光精密仪器公司周柳云光学平面零件包括棱镜、平行平面板、平面反光镜、平晶、光楔、光盘片基、滤光片、波片、倍频器等等。
其大小从φ1mm到φ1000mm,材料主要是光学玻璃,有时是光学晶体,为了达到高精度与高效率,采用技术方法很多,有铣磨、精磨、研磨、抛光、分离器抛光、环抛、水中抛光、单点金刚石飞切(SPDFC)、计算机机控制小工具抛修(CCP) 、离子抛光等等。
从机理上考察,可以归纳为三类基本方法一、范成法形成平面特点是依靠机床的精确运动形成平面包络面,对机床精度要求高.如用筒状金刚石磨轮铣磨平面,按正弦公式当α=0时,R=∞范成了片面(生产上为了排屑排冷却液方便, α有一个小量,表面微凹)。
单点金刚石飞切也是依靠高速旋转的轴与飞刀作直线运动的工作台垂直而范成了平面.工具与工件的加工接触为线接触。
二、轮廓复印法或母板复制法这种复制法与光栅复制法不一样,在复制过程有磨削研磨、抛光过程。
采用精磨模、抛光模(固着磨料抛光模与柏油抛光磨)加工的均属于这一类.工具与工件的接触为面接触。
三、小工具修磨法计算机控制抛光(CCP)离子束抛光与手修属于这一类,逐点抛修,边检边修,精度可以很高,对局部修正非常方便.工具与工件的接触为点接触。
(一) 、铣磨成型光学平面元件我国QM30、PM500、XM260研磨机直到NVG-750THD型双轴超精密平面磨床等大型平面铣磨机利用范成法原理高效铣磨出平面,而且可以采用适当的金属夹具,将角度修磨变为平行平面的铣磨.机床磨轮轴与工件的平行度、轴向经向跳动影响棱镜的角度精度.铣磨成型是光学平面元件毛胚加工的主要技术方法之一。
图一就是PM500铣磨平面的范成运动,图二就是改进的QM30铣削平面的范成运动。
图三是大型的NVG-750THD型双轴超精密平面磨床。
图三. 大型双轴超精密平面磨床(二) 、光学平面的磨削、研磨与抛光重点在于加工出高精度光学表面面型(N、△N),磨削、研磨与抛光的运动形式很多,但其特点是一样的,光学平面精度的获得不主要依靠机床的精度,而主要依靠母板的精度的传递,应该重点研究与把握三个机理。
光学加工介绍
光学加工是一种利用光学原理进行材料加工的技术。
它利用激光或其他光源的能量来加工各种材料,如金属、塑料、玻璃等。
光学加工技术在工业生产中起着重要的作用,它能够实现高精度、高效率的加工,广泛应用于制造业各个领域。
光学加工技术的基本原理是利用光的特性进行加工。
光学加工过程中,首先需要选择合适的光源。
常用的光源包括激光器、LED等。
然后,通过透镜或光纤等光学元件对光进行控制和聚焦,使其能够准确地照射到被加工材料上。
接下来,通过调节光的能量和聚焦点的位置,可以实现不同形状和尺寸的加工效果。
最后,通过控制光的强度和时间,可以实现不同深度和精度的加工。
光学加工技术具有许多优点。
首先,它能够实现非接触式加工,不会对被加工材料产生物理损伤。
其次,光学加工技术具有高精度和高效率的特点,能够实现微米级的加工精度和高速的加工速度。
此外,光学加工技术还具有灵活性和可控性,可以根据不同的加工需求进行调整和优化。
光学加工技术在各个领域都有广泛的应用。
在制造业中,光学加工技术可以用于制造精密零件、模具、光学元件等。
在电子工业中,光学加工技术可以用于制造电路板、芯片等。
在医疗领域中,光学加工技术可以用于制造人工器官、医疗器械等。
此外,光学加工技术还可以用于材料表面的改性和涂层等。
光学加工技术的发展对于提高制造业的竞争力和推动科技进步具有重要意义。
随着光学加工技术的不断发展和创新,相信它将在未来的工业生产中发挥越来越重要的作用。
我们期待着光学加工技术能够为人类创造更加美好的未来。
光学零件加工流程光学零件加工是光学工程领域中非常重要的一环,它涉及到光学元器件的制造与加工。
本文将介绍光学零件加工的流程,并详细阐述每个环节的操作步骤。
一、零件设计与制作在光学零件加工流程中,首先需要进行零件的设计与制作。
设计师根据实际需要,使用CAD或其他相关软件进行光学元器件的三维建模。
在设计过程中,需要考虑到光学元器件的材料、形状、尺寸等因素,并确保其满足光学性能要求。
设计完成后,可以通过3D打印或数控机床等设备进行零件制作。
二、加工前准备在进行光学零件加工之前,需要进行加工前的准备工作。
首先是对加工设备进行检查和维护,确保设备能够正常运行。
其次是准备加工用的原材料,这些原材料通常是具有良好光学性能的材料,如光学玻璃、光学塑料等。
此外,还需要准备好加工过程中所需的工具、夹具等。
三、加工工艺选择光学零件加工有多种不同的工艺可供选择,根据具体的零件要求和加工难度,选择合适的加工工艺。
常见的光学零件加工工艺包括:切削加工、抛光加工、激光加工等。
对于形状复杂的光学零件,通常采用数控机床进行精密加工。
四、加工操作步骤1. 切削加工:首先,将加工原材料固定在夹具上,然后根据设计要求,使用切削工具对原材料进行加工。
切削加工可以通过车削、铣削、钻削等方式进行。
2. 抛光加工:在切削加工完成后,需要进行抛光加工,以提高光学零件的表面质量。
抛光加工可以通过机械抛光、化学抛光等方式进行。
抛光加工的目的是去除表面的瑕疵,使光学零件表面更加光滑。
3. 激光加工:对于一些特殊要求的光学零件,可以采用激光加工技术进行加工。
激光加工具有高精度、非接触等优点,能够实现对光学零件的高精度加工。
五、质量检验与调整在光学零件加工完成后,需要进行质量检验与调整。
质量检验包括对光学零件的尺寸、形状、表面质量等进行检查,以确保其符合设计要求。
如果发现问题,需要进行调整或重新加工,直到达到要求为止。
六、光学零件的组装与测试光学零件加工完成后,还需要进行组装与测试。
光学加工工作总结
光学加工是一项重要的制造工艺,广泛应用于光学元件、精密仪器等领域。
在光学加工工作中,我们需要掌握一定的技术和工艺,以确保产品的质量和精度。
以下是我对光学加工工作的总结和体会。
首先,光学加工需要精密的设备和工艺。
在加工光学元件时,我们需要使用高精度的机床和工具,以确保加工出的产品符合设计要求。
同时,我们还需要掌握精密的加工工艺,比如抛光、研磨等,以确保产品的表面质量和光学性能。
其次,光学加工需要严格的质量控制。
在加工过程中,我们需要对产品进行严格的质量检测和控制,以确保产品的精度和稳定性。
同时,我们还需要对加工工艺进行不断的改进和优化,以提高产品的质量和生产效率。
最后,光学加工需要团队合作和技术创新。
在光学加工工作中,我们需要与团队成员密切合作,共同解决加工过程中遇到的问题和挑战。
同时,我们还需要不断进行技术创新,引入新的加工设备和工艺,以提高产品的质量和竞争力。
总的来说,光学加工是一项复杂而重要的工作,需要我们具备精湛的技术和严格的工艺要求。
只有不断学习和改进,才能在光学加工领域取得更大的成就。
希望我们能够在光学加工工作中不断进步,为光学行业的发展做出更大的贡献。
武汉职业技术学院实训报告平凸透镜的加工及检测系、专业:电信学院光电系班级:光电10302班实训人:胡荣华指导教师:吴晓红彭卫国2011年10月17日摘要此次实训的项目是光学零件的加工,主要是球面零件的加工,此外还有平行平板机棱镜的加工。
球面零件的加工主要为粗磨下料、精磨抛光、镀膜,粗磨下料的工艺较为传统,但对手法也有一定的要求。
再就是精磨抛光,此部分主要看的是加工者的手法,手法直接影响到后面的定心以及镜片的好坏。
最后就是镀膜,镀膜的作用有很多,我们的实训中的镀膜主要是为了起到一种保护镜片的作用。
棱镜及平行平板的加工同样是对手法的考验。
本次实训中小组中的成员基本能够完成自己的镜片加工,其中存在的主要的问题在于球面镜的精磨抛光、粗磨下料部分。
粗磨下料部分主要在开球面环节,精磨抛光则主要是细磨手法不对等。
此类问题在后来的定心磨边的环节中都得到了充分的验证。
本报告的主要目标是:简述透镜的加工过程,分析加工过程中出现的问题,及此类问题的改进方法。
对比得出传统和现代加工的不同特点了解光学零件的镀膜过程、熟悉镀膜机的使用及其各项性能。
回顾整个实训过程中存在的操作方面的不足之处,进一步加深对整个零件加工环节的了解,加深自己对各个环节的印象。
关键词:球面零件加工环节加工手法主要内容1.1概述光学玻璃的加工分为传统加工和现代加工,我们的实训中主要是传统加工方法。
主要的加工零件为平凸透镜,它的主要操作流程是;粗磨下料、精磨抛光、定心磨边、镀膜等。
这次实训的内容还包括平行平板棱镜的加工,检验等。
1.2加工的特点传统加工的特点是加工出来的零件的精度高,质量好,因为它所使用的主要是手工为主,因此对操作人员的手法的要求很严格。
此类加工适用于少量、高精度的加工需求。
1.3加工生产流程1.4粗磨下料 1、切割:选取材料并把毛坯玻璃放入玻璃切割机(1-1图)里面。
2、去除直角:把切割好的毛坯玻璃按尺寸在简易切割机上切割,再把切割好的矩形的四个直角用简易切割机把四个直角切掉。
光学零件基本加工工艺规程设计一、材料选择在设计光学零件基本加工工艺规程之前,首先需要根据光学零件的要求和使用环境选择合适的材料。
一般情况下,光学零件常用的材料包括玻璃、晶体和塑料等。
不同的材料有不同的特性和加工难度,在选择材料时需要考虑光学性能、物理性能和耐久性等因素,并权衡其加工难度和成本等因素。
二、加工流程规划1.光学零件的加工主要分为粗加工和精加工两个阶段。
粗加工阶段主要是通过切削、研磨和抛光等工艺对原材料进行形状和尺寸的加工,以获得近似尺寸和粗糙度要求的加工零件。
精加工阶段主要是通过抛光、研磨和涂膜等工艺对粗加工后的零件进行微调和处理,以获得最终的光学性能和表面质量。
2.在粗加工阶段,常用的加工工艺包括切削、磨削、抛光和研磨等。
切削是指通过刀具对材料进行切削来获得所需形状和尺寸的工艺,常用的切削工具有铣刀、车刀和钻头等。
磨削是指通过磨轮对材料进行磨削来获得粗加工目标,常用的磨削工具有砂轮、磨粒和金刚石等。
抛光和研磨则是通过对材料表面进行机械处理来获得较好的表面质量,常用的工具有抛光布、研磨液和涂膜等。
3.在精加工阶段,主要采用的工艺有抛光、研磨和涂膜等。
抛光是通过抛光布和涂膏等工具对零件表面进行抛光处理,以提高表面质量和光学性能。
研磨是通过研磨片和涂膏等工具对零件进行平面研磨和修整,以达到更高的尺寸精度和表面光洁度。
涂膜是在零件表面涂覆一层光学膜以改善其光学性能和耐磨性,常用的涂膜有反射膜、透明膜和滤光膜等。
三、加工参数确定在光学零件基本加工工艺规程设计中,还需要确定加工参数,以保证加工精度和表面质量。
加工参数包括切削力、磨削速度、抛光布压力和涂膜厚度等。
这些参数的选择和调整需要根据加工材料的硬度、光学要求和设备性能等因素进行综合考虑。
一般情况下,需要通过试验和实践来不断调整和优化加工参数,以获得最佳的加工效果。
综上所述,光学零件基本加工工艺规程设计是基于光学要求和加工难度等因素来选择合适的材料、规划加工流程和确定加工参数等,以获得满足光学性能和表面质量的最终加工零件。