高二数学必修同步训练必修5
- 格式:doc
- 大小:14.00 KB
- 文档页数:3
3.5 第2课时简单的线性规划的概念基础巩固一、选择题1.设G是平面上以A(2,1)、B(-1,-4)、C(-2,2)三点为顶点的三角形区域(包括边界点),点(x,y)在G上变动,f(x,y)=4x-3y 的最大值为a,最小值为b,则a+b的值为()A.-1 B.-9C.13 D.-6[答案] D[解析]设4x-3y=c,则3y=4x-c,∴y=43x-c 3,-c3表示直线l:4x-3y=c在y轴上的截距,∵k AB=53,而k l=43,∴l过C(-2,2)时,-c3有最大值;-c3=2-43×(-2)=143,∴c min=b=-14,l过B(-1,-4)时,-c3有最小值;-c3=-4-43×(-1)=-83, ∴c max =a =8,∴a +b =-6. 2.若不等式组⎩⎪⎨⎪⎧x ≥0x +3y ≥43x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34[答案] A[解析] 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点(0,43).因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点M (12,52). 当y =kx +43过点(12,52)时,52=k 2+43,∴k =73.3.(2011·天津文)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43 D .4[答案] D[解析]⎩⎪⎨⎪⎧x ≥1,x +y -4≤0x -3y +4≤0,表示的平面区域如图所示.z =3x -y 在(2,2)取得最大值. z max =3×2-2=4.4.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,则z =2x +4y 的最小值为( )A .5B .-6C .10D .-10 [答案] B[解析] 可行域为图中△ABC 及其内部的平面区域,当直线y =-x 2+z4经过点B (3,-3)时,z 最小,z min =-6. 5.(2011·安徽文)设变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤1x -y ≤1x ≥0,则x +2y 的最大值和最小值分别为( )A .1,-1B .2,-2C .1,-2D .2,-1[答案] B [解析]画出可行域为图中阴影部分. 作直线l :x +2y =0,在可行域内平移l 当移至经过点A (0,1)时取最大值z max =x +2y =2当移至经过点B (0,-1)时取最大值z min =x +2y =-2. 6.(2009·浙江)若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥2,2x -y ≤4,x -y ≥0.则2x +3y 的最小值是( )A .13B .15C .15D .28 [答案] A [解析]作出可行域如图所示, 令z =3x +4y ∴y =-34x +z4求z 的最小值,即求直线y =-34x +z4截距的最小值.经讨论知点M 为最优解,即为直线x +2y -5=0与2x +y -7=0的交点,解之得M (3,1).∴z min =9+4=13. 二、填空题7.设a >0.点集S 内的点(x ,y )满足下列所有条件:①a 2≤x ≤2a ,②a2≤y ≤2a ,③x +y ≥a ,④x +a ≥y ,⑤y +a ≥x .那么S 的边界是一个________边形(填边数).[答案] 6[解析]首先由⎩⎪⎨⎪⎧a 2≤x ≤2aa2≤y ≤2a围成正方形ABCD ,又结合⎩⎪⎨⎪⎧x -y ≥-ax -y ≤a位于二平行直线l 1x -y =-a 和l 2x -y =a 之间.再结合,x +y ≥a 可知.围成的区域是多边形APQCRS .它是一个六边形.8.已知变量x 、y 满足条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,设z =2x +y ,取点(3,2)可求得z =8,取点(5,2)可求得z max =12,取点(1,1)可求得z min =3,取点(0,0)可求得z =0,点(3,2)叫做________,点(0,0)叫做________,点(5,2)和点(1,1)均叫做________.[答案] 可行解,非可行解,最优解. 三、解答题9.购买8角和2元的邮票若干张,并要求每种邮票至少有两张.如果小明带有10元钱,问有多少种买法?[解析] 设购买8角和2元邮票分别为x 张、y 张,则 ⎩⎪⎨⎪⎧0.8x +2y ≤10.x ,y ∈N x ≥2,y ≥2,即⎩⎪⎨⎪⎧2x +5y ≤25x ≥2y ≥2x ,y ∈N∴2≤x ≤12,2≤y ≤5,当y =2时,2x ≤15,∴2≤x ≤7,有6种; 当y =3时,2x ≤10,∴2≤x ≤5有4种; 当y =4时,2x ≤5,∴2≤x ≤2,∴x =2有一种; 当y =5时,由2x ≤0及x ≥0知x =0,故有一种. 综上可知,不同买法有:6+4+1+1=12种.[点评] 本题采用的解法是穷举法.也可以画出可行域.数出其中的整点数求解.10.(2011·衡阳高二检测)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≥0x -y ≥0x ≤a (a 为正常数)表示的平面区域的面积是4,求2x +y 的最大值.[解析] 由题意得:S =12×2a ×a =4,∴a =2.设z =2x +y ,∴y =-2x +z ,由⎩⎪⎨⎪⎧y =x ,x =2,得(2,2),即z 在(2,2)处取得最大值6. 能力提升一、选择题1.如图,目标函数z =ax -y 的可行域为四边形OACB (含边界),若C (23,45)是该目标函数z =ax -y 的最优解,则a 的取值范围是( )A .(-103,-512)B .(-125,-310)C .(310,125)D .(-125,310)[答案] B[解析] y =ax -z .在C 点取最优解,则一定是z 的最小值点,∴-125≤a ≤-310.结合选项可知选B. 2.(2011·安徽理)设变量x ,y 满足|x |+|y |≤1,则x +2y 的最大值和最小值分别为( )A .1,-1B .2,-2C .1,-2D .2,-1 [答案] B[解析] |x |+|y |≤1表示的平面区域如图阴影部分所示.设z =x +2y ,作l 0:x +2y =0,把l 0向右上和左下平移,易知: 当l 过点(0,1)时,z 有最大值z max =0+2×1=2; 当l 过点(0,-1)时,z 有最小值 z min =0+2×(-1)=-2. 二、填空题3.已知x 、y 满足条件⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤3,x +2y ≤8,则z =2x +5y 的最大值为________.[答案] 19[解析] 可行域如图.当直线y =-25x +z5经过直线y =3与x +2y =8交点(2,3)时,z 取最大值z max =19.4.(2010·陕西理)铁矿石A 和B 的含铁率为a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c ,如下表:22(万吨),则购买铁矿石的最少费用为________(百万元).[答案] 15[解析] 设购买铁矿石A 、B 分别为x ,y 万吨,购买铁矿石的费用为z(百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9x +0.5y ≤2x ≥0y ≥0,目标函数z =3x +6y ,由⎩⎪⎨⎪⎧ 0.5x +0.7y =1.9x +0.5y =2,得⎩⎪⎨⎪⎧x =1y =2. 可行域如图中阴影部分所示:设P (1,2),画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15.三、解答题5.已知⎩⎪⎨⎪⎧ x ≥1x -y +1≤02x -y -2≤0,求x 2+y 2的最小值.[解析] 画出可行域如下图所示,可见可行域中的点A (1,2)到原点距离最小为d =5,∴x 2+y 2≥5.即x 2+y 2的最小值为5.6.若x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y仅在点(1,0)处取得最小值,求a 的取值范围.[解析] 画出可行域如图,目标函数z =ax +2y 在点(1,0)处取最小值为直线ax +2y -z =0过点(1,0)时在y 轴上的截距最小,斜率应满足0<-a 2<2或-a 2>-1,即a ∈(-4,2).∴a的取值范围是(-4,2).。
人教A 高中数学必修5同步训练1.设数列{(-1)n -1·n }的前n 项和为S n ,则S 2011等于( )A .-2011B .-1006C .2011D .1006答案:D2.已知数列{1n (n +1)}的前n 项和为S n ,则S 9等于( ) A.910 B.710C.109D.107答案:A3.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数n 为__________. 答案:1204.求数列112,314,518,…,[(2n -1)+12n ]的前n 项和. 解:S n =112+314+518+…+[(2n -1)+12n ] =(1+3+5+…+2n -1)+(12+14+18+…+12n ) =(1+2n -1)·n 2+12[1-(12)n ]1-12=n 2+1-12n .一、选择题1.在等差数列{a n }中,已知a 1=2,a 9=10,则前9项和S 9=( )A .45B .52C .108D .54答案:D2.已知数列{a n }的前n 项和S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15=( )A .-29B .29C .30D .-30解析:选B.S 15=1-5+9-13+…+57=-4×7+57=29.3.数列9,99,999,9999,…,的前n 项和等于( )A .10n -1 B.10(10n -1)9-n C.109(10n -1) D.109(10n -1)+n 解析:选B.a n =10n -1,∴S n =a 1+a 2+…+a n=(10-1)+(102-1)+…+(10n -1)=(10+102+…+10n )-n =10(10n -1)9-n . 4.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .35 B .33C .31D .29解析:选C.设公比为q (q ≠0),则由a 2·a 3=2a 1知a 1q 3=2,∴a 4=2.又a 4+2a 7=52,∴a 7=14.∴a 1=16,q =12. ∴S 5=a 1(1-q 5)1-q =16[1-(12)5]1-12=31. 5.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9解析:选A.设等差数列的公差为d ,则由a 4+a 6=-6得2a 5=-6,∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36,故当n =6时S n 取最小值,故选A. 6.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列{b n }={1a n a n +1}前n 项的和为( )A .4(1-1n +1) B .4(12-1n +1) C .1-1n +1D.12-1n +1 解析:选A.∵a n =1+2+3+…+n n +1=n (n +1)2n +1=n 2, ∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1). ∴S n =4(1-1n +1). 二、填空题7.已知a n =n +13n ,则数列{a n }的前n 项和S n =__________. 解析:S n =(1+2+…+n )+(13+132+…+13n ) =12(n 2+n +1-13n ). 答案:12(n 2+n +1-13n ) 8.若数列{a n }的通项公式a n =1n 2+3n +2,则数列的前n 项和S n =__________.解析:a n =1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2, S n =(12-13)+(13-14)+…+(1n +1-1n +2) =12-1n +2=n 2n +4. 答案:n 2n +49.已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1 (n 为正奇数),2n -1 (n 为正偶数),则a 9=________(用数字作答),设数列{a n }的前n 项和为S n ,则S 9=________(用数字作答).解析:a 9=29-1=256.S 9=(a 1+a 3+a 5+a 7+a 9)+(a 2+a 4+a 6+a 8)=1-451-4+4×(3+15)2=377. 答案:256 377三、解答题10.已知数列{a n }的通项a n =2·3n ,求由其奇数项所组成的数列的前n 项和S n .解:由a n =2·3n 得a n +1a n =2·3n +12·3n=3,又a 1=6, ∴{a n }是等比数列,其公比为q =3,首项a 1=6,∴{a n }的奇数项也成等比数列,公比为q 2=9,首项为a 1=6,∴S n =6(1-9n )1-9=34(9n -1). 11.已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及前n 项和T n . 解:(1)∵{a n }是首项为a 1=19,公差为d =-2的等差数列,∴a n =19-2(n -1)=21-2n ,S n =19n +12n (n -1)×(-2)=20n -n 2. (2)由题意得b n -a n =3n -1,即b n =a n +3n -1,∴b n =3n -1-2n +21,T n =S n +(1+3+…+3n -1)=-n 2+20n +3n -12. 12.在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2n -1,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n .解:(1)证明:由a n +1=2a n +2n ,两边同除以2n ,得a n +12n =a n 2n -1+1.∴a n +12n -a n 2n -1=1,即b n +1-b n =1, ∴{b n }为等差数列.(2)由第(1)问得,a n 2n -1=120+(n -1)×1=n . ∴a n =n ·2n -1,∴S n =20+2×21+3×22+…+n ×2n -1.①∴2S n =21+2×22+…+(n -1)2n -1+n ·2n .②∴①-②得-S n =20+21+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n =(1-n )·2n -1. ∴S n =(n -1)·2n +1. 关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。
3.4 不等式的实际应用基础巩固一、选择题1.将进货单价为80元的商品按90元一个售出时,能卖出400个,每涨价1元,其销售量就减少20个,为获得最大利润,售价应定在( )A .每个95元B .每个100元C .每个105元D .每个110元[答案] A[解析] 设每个涨价x 元,则利润y =(x +10)(400-20x )=-20x 2+200x +4000,∴当x =20040=5时,y 取得最大值.故每个售价为95元时利润最大.2.在面积为S (S 为定值)的扇形中,当扇形中心角为θ,半径为r 时,扇形周长最小,这时θ、r 的值分别是( )A .θ=1,r =SB .θ=2,r =4S C .θ=2,r =3S D .θ=2,r =S[答案] D[解析] S =12θr 2⇒θ=2Sr2,又扇形周长P =2r +θr =2⎝ ⎛⎭⎪⎫r +S r ≥4S , 当P 最小时,r =Sr ⇒r =S ,此时θ=2.3.设计用32m 2的材料制造某种长方体车厢(无盖),按交通规定车厢宽为2m,则车厢的最大容积是()A.(38-373)m3B.16m3C.42m3D.14m3[答案] B[解析]设长方体长为a m,高为h m,则有2a+2(2h)+2(ah)=32,即a+2h+ah=16,∴16≥22ah+ah,即(ah)2+22·ah-16≤0,解得0<ah≤22,∴ah≤8,∴V=2ah≤16.4.做一个面积为1m2,形状为直角三角形的铁架框,在下面四种长度的铁管中,最合理(够用,又浪费最少)的是() A.4.6m B.4.8mC.5m D.5.2m[答案] C[解析]设直角三角形两直角边长分别为x,y,则12xy=1,即xy=2.周长l=x+y+x2+y2≥2xy+2xy=(1+2)×2≈4.83,当且仅当x=y时取等号.考虑到实际问题,故选C.二、填空题5.光线透过一块玻璃,其强度要减弱110.要使光线的强度减弱到原来的13以下,至少需这样的玻璃板________块.(参考数据:lg2=0.3010,lg3=0.4771)[答案]11[解析]设至少需要经过这样的n块玻璃板,则,(1-110)n<13,即n·lg910<lg13∴n>lg 1 3lg 910=-lg32lg3-1=-0.47712×0.4771-1≈10.45.又∵n∈N+,∴n=11.6.建造一个容积为8m3,深为2m的长方形无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低造价为__________元.[答案]1760[解析]设水池的底面长、宽分别为x m,y m,则2xy=8,xy=4.水池造价为z元.则z=120xy+2(2x+2y)×80=480+320(x+y)≥480+320×4=1760.三、解答题7.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧用砖墙,每米长造价45元,顶部每平方米造价20元.计算:(1)仓库底面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?[解析](1)设正面铁栅长x m,侧面长为y m,总造价为z元,则z=40x+2×45y+20xy=40x+90y+20xy,仓库面积S=yx.由条件知z≤3 200,即4x+9y+2xy≤320.∵x>0,y>0,∴4x+9y≥24x·9y=12xy.∴6S +S ≤160,即(S )2+6S -160≤0. ∴0<S ≤10,∴0<S ≤100. 故S 的最大允许值为100m 2.(2)当S =100m 2时,4x =9y ,且xy =100. 解之得x =15(m),y =203(m).答:仓库面积S 的最大允许值是100m 2,此时正面铁栅长15m. 8.某企业生产一种机器的固定成本(即固定投入)为0.5万元,但每生产1百台时又需可变成本(即需另增加投入)0.25万元,市场对此商品的需求量为5百台,销售的收入函数为R (x )=5x -12x 2(万元),(0≤x ≤5),其中x 是产品生产并售出的数量.(单位:百台)(1)把利润表示为年产量的函数.(2)年产量为多少时,企业所得利润最大? (3)年产量多少时,企业才不亏本.(不赔钱)? [解析] (1)设利润为y .则y =⎩⎪⎨⎪⎧R (x )-0.5-0.25x (0≤x ≤5)R (5)-0.5-0.25x (x >5),∴y =⎩⎨⎧-12x 2+4.75 x -0.5(0≤x ≤5)12-0.25x (x >5).(2)y =-12(x -4.75)2+10.78125∴x =4.75时即年产量为475台时企业所得利润最大.(3)要使企业不亏本,须y >0即⎩⎨⎧0≤x <5-12x 2+4.75 x -0.5>0或⎩⎪⎨⎪⎧12-0.25x >0x ≥5. 2.65<x <5或5≤x <48,即2.65<x <48. ∴年产量在265台至4800台时,企业才会不亏本.能力提升一、选择题1.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:的就业情况,则根据表中数据,就业形势一定是( )A .计算机行业好于化工行业B .建筑行业好于物流行业C .机械行业最紧张D .营销行业比贸易行业紧张 [答案] B[解析] 就业情况=应聘人数招聘人数,计算机就业形式=215830124620>1,化工业就业形式=应聘人数70436<6528070436<1,则A 不合适.同理,建筑行业就业形式=应聘人数76516<6528076516<1,物流业就业形式=74570招聘人数>7457070436>1.2.某公司从2006年起每人的年工资主要由三个项目组成并按下表规定实施:基础工资的25%,到2008年底这位职工的工龄至少是() A.2年B.3年C.4年D.5年[答案] C[解析]设这位职工工龄至少为x年,400x+1600>10000·(1+10%)2×25%,即400x+1600>3025,即x>3.5625,所以至少为4年.二、填空题3.现有含盐7%的食盐水200克,生产上需要含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x克,则x的取值范围是__________.[答案]100<x<400[解析]由题意可列式5%<7%×200+4%×x 200+x <6%,即5<1400+4x 200+x <6解得100<x <400.4.周长为2的直角三角形的面积的最大值为________. [答案] 3-2 2[解析] 设直角三角形的两直角边分别为a 、b ,斜边为c ,则直角三角形的面积S =12ab .由已知,得a +b +c =2,∴a +b +a 2+b 2=2, ∴2=a +b +a 2+b 2≥2ab +2ab =(2+2)ab , ∴ab ≤22+2=2-2,∴ab ≤(2-2)2=6-42, ∴S =12ab ≤3-22,当且仅当a =b =2-2时,S 取最大值3-2 2.三、解答题5.假设国家收购某种农副产品的价格是120元/担,其中征税标准是每100元征税8元(叫做税率是8个百分点,即8%),计划收购m 万担,为了减轻农民负担,决定税率降低x 个百分点,预计收购量可增加2x 个百分点,要使此项税收在税率降低后不低于原计划的78%,试确定x 的取值范围.[解析] 税率降低后是(8-x )%,收购量为m (1+2x %)万担,税收为120m(1+2x %)(8-x )%万元,原来的税收为120m·8%万元.根据题意可得120m(1+2x %)(8-x )%≥120m·8%·78% 即x 2+42x -88≤0解之得-44≤x ≤2,又x >0,∴0<x ≤2 ∴x 的取值范围是(0,2].6.某单位用木料制作如图所示的框架,框架的下部是边长分别为x 、y (单位:m)的矩形.上部是等腰直角三角形.要求框架围成的总面积8cm 2.问x 、y 分别为多少时用料最省?(精确到0.001m)[解析] 由题意得xy +14x 2=8,∴y =8-x 24x =8x -x4(0<x <42).于是,框架用料长度为l =2x +2y +2(22x ) =(32+2)x +16x ≥46+4 2. 当(32+2)x =16x ,即x =8-42时等号成立. 此时,x ≈2.343,y =22≈2.828.故当x 为2.343m ,y 为2.828m 时,用料最省.7.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年增加4万元,每年捕鱼收益50万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;②总纯收入获利最大时,以8万元出售该渔船.问哪种方案最合算?[解析] 由题设知每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数的关系为f(n),则f(n)=50n-[12+16+…+(8+4n)]-98=40n-2n2-98.(1)由f(n)>0得,n2-20n+49<0,∴10-51<n<10+51,又∵n∈N,∴n=3,4, (17)即从第3年开始获利;(2)①年平均收入=f(n)n=40-2(n+49n)≤40-2×14=12,当且仅当n=7时,渔船总收益为12×7+26=110(万元).②f(n)=-2(n-10)2+102.因此当n=10时,f(n)max=102,总收益为102+8=110万元,但7<10,所以第一种方案更合算.。
高二(2)部数学《线性规划》同步训练一班级____姓名_____1.点(1,1)在下面各不等式表示的哪个区域中 ( ) A 2≤-y x B 022>--y x C 0≤y D 2≥x2.不在3x+2y<6表示的平面区域内的点是 ( )A. (0 , 0)B. (1 , 1)C. (0 , 2)D. (2 , 0)3.不等式x -2y+6>0表示的平面区域在直线x -2y+6=0的 ( )A.右上方B. 左上方C. 右下方D. 左下方4.原点和点(1,1)在直线0=-+a y x 的同侧,则a 的取值范围是 ( ) A 0<a 或2>a B 0=a 或2=a C 20<<a D 20≤≤a5.已知直线l : x -y+a=0, 点P 1(1 , -2) , P 2(3 , 5)分别位于直线l 的两侧, 则a 的取值范围_____________ .6.若B>0 时, 不等式Ax+By+C>0表示的区域是直线Ax+By+C=0的__________ , 若B<0时,不等式Ax+By+C>0表示的区域是直线Ax+By+C=0的__________ .(填"上方"或"下方").7.画出下列不等式表示的平面区域(1)y>2x -3 (2)y ≤-x+2 (3)3x -2y+6≥0 (4) x>y+18.将下列各图中平面区域(阴影部分)用不等式表示出来.:(1) (2) (3)班级____姓名_____1.不等式组⎩⎨⎧≤≤≥++-300))(5(x y x y x 表示的平面区域是一个 ( )A.三角形B.直角梯形C.梯形D.矩形2.如图所示表示区域的不等式是( )A. y ≤xB. |y|≤|x|C. x(y -x)≤0D. y(y -x)≤03.二元一次不等式组⎪⎩⎪⎨⎧>++<<0300y x y x 表示的平面区域内整点坐标为_____________ .4.不等式⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域的面积为____________ .5.画出下列不等式组所表示的平面区域(1)⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+1125452053y x y x y x (2)⎪⎪⎩⎪⎪⎨⎧≤+≥+≤<≤<2004340300500y x y x y x6.用不等式组表示下列各图中阴影区域(1) (2)班级____姓名_____1.若⎪⎩⎪⎨⎧≥+≤≤222y x y x , 则目标函数Z=x+2y 的取值范围 ( )A. [2 , 6]B. [2 , 5]C. [3 , 6]D. [3 , 5]2.目标函数Z=2x -y , 将其看成直线方程时, Z 的意义是 ( ) A.该直线的截距 B.该直线的纵截距 C.该直线纵截距的相反数 D.该直线的横截距3.△ABC 中, A(2 , 4) , B(-1 , 2) , C(1 , 0), 点P 在△ABC 内部及其边界上运动, 则W=y -x的取值范围是 ( )A. [1 , 3]B. [-3 , 1]C. [-1 , 3]D. [-3 , -1] 4.不等式组⎩⎨⎧≤≤≥++-300))(5(x y x y x 表示的平面区域的确面积为________5.约束条件⎪⎩⎪⎨⎧≥≥≤+≤=4,0621052y x y x y x , 所表示的区域中, 整点其有________个.6.设变量,x y 满足约束条件2211x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩,则23z x y =+的最大值为7.若⎩⎨⎧≤-≤≤+≤4264y x y x , 则Z=2x+y 的最大值为___________ , 最小值为___________ .8.写出不等式组⎩⎨⎧≤<-≤<-1111y x 所表示的平面区域内整点坐标.9.求Z=2x+y 的最大值和最小值, 其中x , y 满足约束条件⎪⎩⎪⎨⎧≤≤≥-+2202y x y x .班级____姓名_____1.若点P满足(x+2y-1) (x-y+3)≥0, 求P到原点的最小距离为。
人教A 高中数学必修5同步训练1.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )A .4B .5C .6D .7 解析:选C.由等差数列性质得a 2+a 8=2a 5=12,所以a 5=6.2.等差数列{a n }的公差为d ,则数列{ca n }(c 为常数且c ≠0)( )A .是公差为d 的等差数列B .是公差为cd 的等差数列C .不是等差数列D .以上都不对答案:B3.在等差数列{a n }中,a 10=10,a 20=20,则a 30=________.解析:法一:d =a 20-a 1020-10=20-1020-10=1,a 30=a 20+10d =20+10=30. 法二:由题意可知,a 10、a 20、a 30成等差数列,所以a 30=2a 20-a 10=2×20-10=30. 答案:304.已知三个数成等差数列,其和为15,首、末两项的积为9,求这三个数. 解:由题意,可设这三个数分别为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ (a -d )+a +(a +d )=15,(a -d )(a +d )=9, 解得⎩⎪⎨⎪⎧ a =5d =4或⎩⎪⎨⎪⎧ a =5,d =-4.所以,当d =4时,这三个数为1,5,9;当d =-4时,这三个数为9,5,1.一、选择题1.下列命题中,为真命题的是( )A .若{a n }是等差数列,则{|a n |}也是等差数列B .若{|a n |}是等差数列,则{a n }也是等差数列C .若存在自然数n 使2a n +1=a n +a n +2,则{a n }是等差数列D .若{a n }是等差数列,则对任意n ∈N *都有2a n +1=a n +a n +2答案:D2.等差数列{a n }中,前三项依次为1x +1,56x ,1x,则a 101=( ) A .5013 B .1323C .24D .823解析:选D.∵53x =1x +1x +1,∴x =2. ∴首项a 1=1x +1=13,d =12(12-13)=112. ∴a 101=823,故选D.3.若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .33解析:选D.经观察发现(a 2+a 5)-(a 1+a 4)=(a 3+a 6)-(a 2+a 5)=2d =39-45=-6,所以a 3+a 6=a 2+a 5-6=39-6=33.4.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( ) A .14 B .15C .16D .17解析:选C.设等差数列{a n }的公差为d ,则由等差数列的性质得5a 8=120,∴a 8=24,a 9-13a 11=3a 9-a 113=2a 9+(a 9-a 11)3=2(a 9-d )3=2a 83=2×243=16. 5.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37解析:选C.设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2.∴{a n +b n }为等差数列.又∵a 1+b 1=a 2+b 2=100,∴a 37+b 37=100.6.首项为-24的等差数列从第10项起开始为正数,则公差d 的取值范围是( )A .d >83B .d <3 C.83≤d <3 D.83<d ≤3 解析:选D.设等差数列为{a n },首项a 1=-24,则a 9≤0⇒a 1+8d ≤0⇒-24+8d ≤0⇒d ≤3,a 10>0⇒a 1+9d >0⇒-24+9d >0⇒d >83. ∴83<d ≤3. 二、填空题7.已知{a n }为等差数列,a 3+a 8=22,a 6=7,则a 5=________.解析:由于{a n }为等差数列,故a 3+a 8=a 5+a 6,故a 5=a 3+a 8-a 6=22-7=15.答案:158.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=________.解析:∵a 7、a 14、a 21成等差数列,∴a 7+a 21=2a 14,a 21=2a 14-a 7=2n -m .答案:2n -m9.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________.解析:法一:因为{a n }为等差数列,所以a 15,a 30,a 45,a 60,a 75也成等差数列,设其公差为d ,a 15为首项,则a 60为其第四项,所以a 60=a 15+3d ,得d =4.所以a 75=a 60+d ⇒a 75=24.法二:因为a 15=a 1+14d ,a 60=a 1+59d ,所以⎩⎪⎨⎪⎧ a 1+14d =8a 1+59d =20,解得⎩⎨⎧ a 1=6415d =415.故a 75=a 1+74d =6415+74×415=24. 答案:24三、解答题10.已知正数a ,b ,c 组成等差数列,且公差不为零,那么由它们的倒数所组成的数列1a ,1b ,1c能否成为等差数列? 解:由已知,得a ≠b 且b ≠c 且c ≠a ,且2b =a +c ,a >0,b >0,c >0.因为2b -(1a +1c )=2b-a +c ac =2ac -2b 2abc =2ac -(a +c )22abc =-(a -c )22abc <0,所以2b ≠1a +1c. 所以1a ,1b ,1c不能成为等差数列. 11.已知{a n }是等差数列,且a 1+a 2+a 3=12,a 8=16.(1)求数列{a n }的通项公式;(2)若从数列{a n }中,依次取出第2项,第4项,第6项,…,第2n 项,按原来顺序组成一个新数列{b n },试求出{b n }的通项公式.解:(1)∵a 1+a 2+a 3=12,∴a 2=4,∵a 8=a 2+(8-2)d ,∴16=4+6d ,∴d =2,∴a n =a 2+(n -2)d =4+(n -2)×2=2n .(2)a 2=4,a 4=8,a 8=16,…,a 2n =2×2n =4n .当n >1时,a 2n -a 2(n -1)=4n -4(n -1)=4.∴{b n }是以4为首项,4为公差的等差数列.∴b n =b 1+(n -1)d =4+4(n -1)=4n .12.某单位用分期付款方式为职工购买40套住房,共需1150万元,购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率为1%.若交付150万元后的第一个月算分期付款的第一个月,求分期付款的第10个月应付多少钱?最后一次应付多少钱?解:购买时先付150万元,还欠款1000万元.依题意知20次可付清.设每次交付的欠款依次为a 1,a 2,a 3,…,a 20,构成数列{a n },则a 1=50+1000×0.01=60;a 2=50+(1000-50)×0.01=59.5;a 3=50+(1000-50×2)×0.01=59;…a n =50+[1000-50(n -1)]×0.01=60-12(n -1)(1≤n ≤20).所以{a n }是以60为首项,-12为公差的等差数列. 则a 10=60-9×12=55.5, a 20=60-19×12=50.5, 故第10个月应付55.5万元,最后一次应付50.5万元.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。
高中数学数学必修5全套同步练习-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN同步练习(必修5)目录第一章:解三角形1.1.1 正弦定理(一) (2)1.1.1 正弦定理(二) (4)1.1.2 余弦定理(一) (6)1.1.2 余弦定理(二) (8)1.1.3 正余弦定理的综合应用 (10)1.2 应用举例(一) (12)1.2 应用举例(二) (15)本章测试 (17)第二章:数列2.1数列的概念和简单表示 (20)2.2等差数列 (23)2.3等差数列的前n项和 (25)2.4 等比数列 (27)2.5 等比数列的前n项和 (29)本章测试 (31)第三章:不等式3.1 不等关系 (35)3.2 一元二次不等式及其解法 (37)3.3.1 二元一次不等式(组)与平面区域 (39)3.3.2简单的线性规划问题 (44)3.4 基本不等式 (46)本章测试 (49)必修五模块测试题一... (53)必修五模块测试题二 (58)参考答案............... (62)第一章 解三角形1.1.1.正弦定理(一)典型例题:1.在△ABC 中,已知030,10,25===A c a ,则∠B 等于( )A .0105B .060C .015D .0015105或答案:D2.在△ABC 中,已知060,2,6===A b a ,则这样的三角形有_________个. 答案:13.在△ABC 中,若5:3:1::=c b a ,求C B A sin sin sin 2-的值. 解 由条件51sin sin ==C A c a ∴C A sin 51sin = 同理可得C B sin 53sin = ∴C B A sin sin sin 2-=CC C sin sin 53sin 512-⨯=51-练习:一、 选择题1.一个三角形的两内角分别为045与060,如果045角所对的边长是6,那么060角所对的边的边长为( ). A.63 B.23 C.33 D.622.在△ABC 中,若其外接圆半径为R,则一定有( ) A.R Cc B b A a 2sin sin sin === B.R B a 2sin = C.aR A 2sin = D.B R b sin =3.在△ABC 中,Ab B a cos cos =,则△ABC 一定是( ) A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形二、填空题4.在△ABC 中,已知,6,8==b a 且S△ABC = 312,则C=_______5.如果ba B A =--cos 1cos 1,那么△ABC 是_______ 三、解答题6.在△ABC 中,若AB=2,BC=5,面积S△ABC =4,求2sin B 的值.7.在△ABC 中,,,,c b a 分别为内角A,B,C的对边,若060,2+==A B a b ,求A的值.1.1.1.正弦定理(二)典型例题:1.在△ABC 中,已知045,1,2===B c b ,则a 的值为 ( ) A.226- B.226+ C.12+ D.23- 答案:B2.在△ABC 中,已知0015,105,5===C B a ,则此三角形的最大边长为_________ 答案:665215+ 3.△ABC 的两边长分别为3cm,5cm,夹角的余弦是方程06752=--x x 的根,求△ABC 的面积.解 设两边夹角为α,而方程06752=--x x 的两根122,3/5x x ==- ∴53cos -=α ∴54)53(1sin 2=-=α ∴S△ABC =26545321cm =⨯⨯⨯ 练习:一、 选择题1.在△ABC 中,已知0075,60,8===C B a ,则b 等于( )A.24 B.34 C.64 D.3322.在△ABC 中,已知045,2,===B cm b xcm a ,如果利用正弦定理解三角形有两解,则x 的取值范围是 ( )A.222<x< B.222≤<x C.2x > D.2x <3.△ABC 中,若sinA :sinB :sinC=m :(m+1):2m, 则m 的取值范围是( )A.(0,+∞) B.(21,+∞) C.(1,+∞) D.(2,+∞)二、填空题4.在△ABC 中,若sinA =2cosBsinC,则△ABC 的形状是______ ___5.在△ABC 中,已知31cos ,23==C a ,S△ABC =34,则=b _________ 三、解答题6.已知方程0cos )cos (2=+-B a x A b x 的两根之积等于两根之和,且b a ,为△ABC 的两边,A 、B 为两内角,试判断这个三角形的形状7.在△ABC 中,3,2π=-=+C A b c a ,求sinB 的值。
3.2 第3课时 均值不等式习题课基础巩固一、选择题1.若x >0,y >0,且x +y ≤4,则下列不等式中恒成立的是( ) A.1x +y ≤14 B.1x +1y ≥1 C.xy ≥2 D.1xy≥1 [答案] B[解析] 取x =1,y =2满足x +y ≤4排除A 、C 、D 选B. 具体比较如下:∵0<x +y ≤4∴1x +y ≥14故A 不对;∵4≥x +y ≥2xy ,∴xy ≤2,∴C 不对;又0<xy ≤4,∴1xy ≥14∴D 不对;1x +1y =x +y xy ≥2xy xy =2xy ,∵1xy ≥12,∴1x +1y ≥1. 2.设函数f (x )=2x +1x -1(x <0),则f (x )( )A .有最大值B .有最小值C .是增函数D .是减函数 [答案] A[解析] 令2x =1x ,由x <0得x =-22,∴在x =-22两侧,函数f (x )的单调性不同,排除C 、D.f (x )=2x +1x -1=-⎝ ⎛⎭⎪⎫-2x -1x -1≤-2(-2x )·⎝ ⎛⎭⎪⎫-1x -1=-22-1, 等号在x =-22时成立,排除B.3.设实数a ,b ,x ,y 满足a 2+b 2=1,x 2+y 2=3,则ax +by 的最大值是( )A .2 B. 3 C. 5 D.1210 [答案] B[解析] 令a =cos α,b =sin α α∈[0,2π), x =3cos β,y =3sin β,β∈[0,2π). ∴ax +by =3cos αcos β+3sin αsin β =3cos(α-β)≤ 3. ∴ax +by 的最大值为 3.4.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值1 [答案] D[解析] f (x )=(x -2)2+12(x -2)=x -22+12(x -2),∵x ≥52,∴x -2≥12,f (x )≥2x -22·12(x -2)=1. 当且仅当x =3时等号成立.5.设M =(1a -1)(1b -1)(1c-1),且a +b +c =1(其中a ,b ,c ∈R+),则M 的取值范围是( ) A .[0,18)B .[18,1)C .[1,8)D .[8,+∞)[答案] D[解析] ∵a +b +c =1,∴M =(a +b +c a -1)(a +b +c b -1)(a +b +cc -1),=(b a +c a )(a b +c b )(a c +bc )≥2bc a 2·2ac b 2·2ab c 2=8. ∴M ∈[8,+∞).6.若x 、y 是正数,则(x +12y )2+(y +12x 2取得最小值是( )A .3 B.72 C .4 D.92[答案] C[解析] (x +12y )2+(y +12x )2=x 2+x y +14y 2+y 2+y x +14x2 =x 2+14x 2+y 2+14y 2+y x +x y.∵x 2+14x 2≥214=1, y 2+14y2≥214=1, y x +xy2,当且仅当⎩⎪⎨⎪⎧x 2=14x2y 2=14y 2y x =x y时成立,即x =y =22时,(x +12y )2+(y +12x )2取得最小值为4.二、填空题7.(2010·山东文)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.[答案] 3[解析] ∵x >0,y >0且1=x 3+y4≥2xy 12, ∴xy ≤3,当且仅当x 3=y 4,即x =32,y =2时取等号.8.已知a 、b 为实常数,函数y =(x -a )2+(x -b )2的最小值为__________[答案] 12(a -b )2[解析] 从函数解析式的特点看,本题可化为关于x 的二次函数,再通过配方求其最小值(留给读者完成).但若注意到(x -a )+(b -x )为定值,则用变形不等式a 2+b 22≥(a +b 2)2更简捷.∴y =(x -a )2+(x -b )2≥2[(x -a )+(b -x )2]2=(a -b )22.当且仅当x -a =b -x ,即x =a +b2时,上式等号成立.∴当x =a +b 2,y min =(a -b )22.三、解答题9.已知a >0,b >0,c >0,d >0,求证:ad +bc bd +bc +adac ≥4.[解析] ad +bc bd +bc +ad ac =a b +c d +b a +dc=(a b +b a )+(c d +dc ≥2+2=4(当且仅当a =b 且c =d 时,取“=”).10.已知正常数a 、b 和正实数x 、y ,满足a +b =10,a x +by =1,x +y 的最小值为18,求a ,b 的值.[解析] x +y =(x +y )·1=(x +y )·(a x +by )=a +b +ay x +bxy ≥a +b +2ab =(a +b )2等号在ay x =bx y 即yx=ba时成立 ∴x +y 的最小值为(a +b )2=18 又a +b =10,∴ab =16.∴a ,b 是方程x 2-10x +16=0的两根 ∴a =2,b =8或a =8,b =2.能力提升一、选择题1.已知x >0,y >0,x ,a ,b ,y 成等差数列x ,c ,d ,y 成等比数列,则(a +b )2cd的最小的值是( )A .0B .1C .2D .4[答案] D[解析] 由题意,得⎩⎪⎨⎪⎧a +b =x +ycd =xy ,∴(a +b )2cd =(x +y )2xy =x 2+y 2+2xy xy =x 2+y 2xy +2,∵x >0,y >0,∴x 2+y 2xy +2≥2+2=4(当且仅当x =y 时,取“=”号).2.已知不等式(x +y )(1x +ay ≥9对任意正实数x 、y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8[答案] B[解析] ∵x 、y 、a ∈R +,∴(x +y )(1x +ay )=1+ax y +y x+a ≥1+2a+a =(1+a )2,即9≤(1+a )2,∴a ≥4,故选B.二、填空题3.2008年的四川大地震震惊了整个世界,四面八方都来支援.从某地出发的一批救灾物资随17列火车以v 千米/小时速度匀速直达400千米以外的灾区,为了安全起见,两辆火车的间距不得小于(v 20)2千米,问这批物资全部运送到灾区最少需__________小时.[答案] 8[解析] 物资全部运到灾区需t =400+16×(v20)2v=400v +16v 400≥8,当且仅当400v =16v 400,即v =100时,等号成立,∴t min =8.故这批物资全部运送到灾区最少需要8小时.4.(2010·浙江文)若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.[答案] 18[解析] ∵x >0,y >0, ∴2x +y ≥22xy ,∴2x +y +6=xy ≥22xy +6, ∴(xy )2-22xy -6≥0, 解得xy ≥32,即xy ≥18. 三、解答题5.已知函数f (x )=lg x (x ∈R +),若x 1、x 2∈R +,判断12[f (x 1)+f (x 2)]与f (x 1+x 22)的大小并加以证明.[解析] 12[f (x 1)+f (x 2)]≤f (x 1+x 22)∵f (x 1)+f (x 2)=lg x 1+lg x 2=lg(x 1·x 2), f (x 1+x 22)=lg x 1+x 22,而x 1、x 2∈R +,x 1x 2≤(x 1+x 22)2,而f (x )=lg x 在区间(0,+∞)上为增函数. ∴lg(x 1x 2)≤lg(x 1+x 22)2,∴12lg(x 1x 2)≤lg x 1+x 22.即12(lg x 1+lg x 2)≤lg x 1+x 22.因此,12[f (x 1)+f (x 2)]≤f (x 1+x 22).6.图画挂在墙上,它的下边缘在观察者的眼睛上方a 米处,而上边缘在b 米处,问观察者站在离墙多远的地方,才能使视角最大?(如下图)[解析] 要求何时θ达最大值,可先求何时tan θ达到最大值. 如图,tan α=a x ,tan β=b x.∴tan θ=tan(β-α)=tan β-tan α1+tan αtan β=b x -a x 1+ab x 2=b -ax +ab x ,∵x +abx≥2x ·abx=2ab (x >0,a >0,b >0). ∴tan θ≤b -a2ab,当且仅当x =abx 即x =ab 时取“=”.又∵x ∈(0,π2),y =tan x 是增函数,∴x =ab 时,θ有最大值.答:观察者站在离墙ab 米的地方时,θ有最大值。
3.5.2 简单线性规划5分钟训练(预习类训练,可用于课前)1.目标函数z=3x-y,将其看成直线方程时,z的意义是()A.该直线的截距B.该直线的纵截距C.该直线纵截距的相反数D.该直线的横截距解析:由目标函数z=3x-y,得y=3x-z.令x=0,得y=-z.也就是说,z表示该直线纵截距的相反数,故选C.答案:C2.能表示下图阴影部分的二元一次不等式组是()A.⎩⎨⎧≤+-≤≤221yxyB.⎩⎨⎧≥+-≤221yxyC.⎪⎩⎪⎨⎧≤≥+-≤≤221xyxyD.⎪⎩⎪⎨⎧≤+-≤≤221yxxy解析:从图中可看出,阴影部分满足0≤y≤1,-1≤x≤0.因为点(0,0)在2x-y+2=0下方,且(0,0)点坐标代入方程左端有2×0-0+2>0,因为阴影部分符合2x-y+2>0.故选C.答案:C3.若0≤x≤1,-1≤y≤2,则z=x+4y的最小值为_____________.解析:如下图所示,当直线z=x+4y过点(0,-1)时,z取最小值,则z min=0+4×(-1)=-4.答案:-44.设z=2y-x,式中变量x、y满足下列条件⎪⎩⎪⎨⎧≥≤+-≥-,12323,12yyxyx,则z的最大值为____________.解析:在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC 中满足z=2y-x的最大值是点C,代入得最大值等于11.答案:1110分钟训练(强化类训练,可用于课中)1.设E为平面上以三点A(4,1),B(-1,-6),C(-3,2)为顶点的三角形区域(包括边界),则z=4x-3y的最大值与最小值分别为()A.14,-18B.-14,-18C.18,14D.18,-14解析:当动直线z=4x-3y通过点B时,z取最大值,通过点C时,z取最小值.答案:A2.完成一项装修工程,木工和瓦工的比例为2∶3,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工资预算2 000元,设请木工x人,瓦工y人,请工人数的约束条件是()A.⎩⎨⎧∈≤+*,532NyxyxB.⎪⎩⎪⎨⎧=≤+3220004050yxyxC.⎪⎪⎩⎪⎪⎨⎧∈=≤+*,3220045NyxyxyxD.⎪⎩⎪⎨⎧=<+32,10065yxyx解析:工人数x、y必须为正整数,所以可排除B、D,再根据工资预算列线性约束条件,得5x+4y≤200.故选C.答案:C3.已知实数x、y满足⎩⎨⎧-≥≤.|1|,1xyy则x+2y的最大值是_____________.解析:已知实数x、y满足⎩⎨⎧-≥≤.|1|,1xyy在坐标系中画出可行域,三个顶点分别是A(0,1),B(1,0),C(2,1),∴x+2y的最大值是4.答案:44.在线性条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,yyxxy下,z=2x-y的最大值是___________,最小值是___________.解析:约束条件的可行域,如下图中△ABC的内部加上边界.当z为常数时,-z表示直线z=2x-y在y轴上的截距.如下图所示,当点(x,y)位于点C(-1,-1)时,-z取最大值.∴z有最小值,z min=2×(-1)-(-1)=-1.当点(x,y)位于点B(2,-1)时,-z取最小值,∴z有最大值,z max=2×2-(-1)=5.答案:5,-1.5.已知变量x,y满足约束条件1≤x+y≤4,-2≤x-y≤2.若目标函数z=ax+y(其中a>0)仅在点(3,1)处取得最大值,则a的取值范围为_______________.解析:变量x,y满足约束条件1≤x+y≤4,-2≤x-y≤2.在坐标系中画出可行域,如下图为四边形ABCD,其中A(3,1),k AD=1,k AB=-1,目标函数z=ax+y(其中a>0)中的z表示斜率为-a 的直线截距的大小,若仅在点(3,1)处取得最大值,则斜率应小于k AB=-1,即-a<-1,所以a 的取值范围为(1,+∞).答案:(1,+∞)6.若x,y满足条件⎪⎩⎪⎨⎧≤+-≥+-≤-+.0104,01023,0122yxyxyx求z=x+2y的最大值和最小值.解:画出可行域,平移直线找最优解.作出约束条件所表示的平面区域,即可行域,如下图所示.作直线l:z=x+2y,即y=21-x+21z,它表示斜率为21-,纵截距为2z的平行直线系,当它在可行域内滑动时,由图可知,直线l过点A时,z取得最大值,当l过点B时,z取得最小值.所以,z max=2+2×8=18,z min=-2+2×2=2.30分钟训练(巩固类训练,可用于课后)1.某公司招收男职员x名,女职员y名,x和y须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115xyxyx则z=10x+10y的最大值是()A.80B.85C.90D.95解析:画出可行域,寻找最优解.故找到(5,4)点,∴z=10x+10y.最大值为10×5+10×4=90.答案:C2.在△ABC中,三顶点A(2,4)、B(-1,2)、C(1,0),点P(x,y)在△ABC内部及边界运动,则z=x-y的最大值为()A.1B.-3C.-1D.3解析:先画出△ABC,如下图所示,对z=x-y,可看成y=x-z,求z的最值,相当于找斜率为1的直线经过△ABC区域时纵截距的有关最值.可知,直线经过C、B点,纵截距-z分别取最小值-1及最大值3,从而z分别取最大值1及最小值-3.答案:A3.如下图,目标函数z=ax-y的可行域为四边形OACB(含边界),若C(54,32)是该目标函数z=ax-y的最优解,则a的取值范围是()A.(125,310--) B.(103,512--)C.(512,103) D.(103,512-)解析:因k BC =103-,k AC =512-,故a ∈(512-,103-).最优解为C 点,则目标函数表示的直线的斜率在直线BC 与AC 的斜率之间.答案:B4.已知三点A (x 0,y 0)、B (1,1)、C (5,2),如果一个线性规划问题的可行域是△ABC 的边界及其内部,线性目标函数z=ax+by 在点B 处取得最小值3,在点C 处取得最大值12,则下列关系成立的是( )A.3≤x 0+2y 0≤12B.x 0+2y 0≤3或x 0+2y 0≥12C.3≤2x 0+y 0≤12D.2x 0+y 0≤3或2x 0+y 0≥12解析:由题设,得z min =a+b=3,z max =5a+2b=12,联立解得a=2,b=1,则z=2x+y.又对于可行域内的任意点(x ,y ),都有3≤z≤12,故3≤2x 0+y 0≤12.答案:C5.可行域D :⎪⎪⎩⎪⎪⎨⎧≥≥≤-+≥+-0,0,04,01y x y x y x 与可行域E :⎪⎩⎪⎨⎧≤≤≤≤250,40y x 对应的点集间的关系是____________. 解析:分别作出可行域D 和E ,其中两直线x-y+1=0与x+y-4=0交点坐标为(25,23),如下图所示,可知区域D 的点全部落在E 区域内,且E 中有更多的点,故D E.答案:D E6.不等式组⎪⎩⎪⎨⎧≥+-≥+≤05,0,3y x y x x 表示的平面区域的面积为______________.解析:作出不等式组表示的可行域,如下图所示,可知图形为三角形,可求BC=11,BC 边上的高为253+=211,∴S=21×11×211=4121.答案:41217.在满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,62,5yxyxyx的点中,使目标函数k=6x+8y取得最大值的点的坐标是_____________.解析:首先根据不等式组表示的约束条件画出对应的平面区域,然后由直线k=6x+8y在平面区域内平移可得在点(0,5)处取最大值.答案:(0,5)8.已知⎪⎩⎪⎨⎧≥+-≤--≥-+.052,053,052yxyxyx问(x+1)2+(y+1)2的最大值、最小值各是多少?解:作出不等式组⎪⎩⎪⎨⎧≥+-≤--≥-+52,053,052yxyxyx表示的可行域.由⎩⎨⎧=-+=+-.052,052yxyx得:A(1,3);由⎩⎨⎧=--=+-.053,052yxyx得:B(3,4);由⎩⎨⎧=-+=--.052,053yxyx得:C(2,1).z=(x+1)2+(y+1)2表示可行域内的点到点(-1,-1)的距离的平方.以(-1,-1)为圆心,z为半径画圆,当圆经过点B时,z最大;当圆经过点C时,z最小.∴当x=3,y=4时,(x+1)2+(y+1)2=41最大,当x=2,y=1时,(x+1)2+(y+1)2=13最小.9.学校有线网络同时提供A、B两套校本选修课程.A套选修课播40分钟,课后研讨20分钟,可获得学分5分;B套选修课播32分钟,课后研讨40分钟,可获学分4分.全学期20周,网络每周开播两次,每次均为独立内容.学校规定学生每学期收看选修课不超过1 400分钟,研讨时间不得少于1 000分钟.两套选修课怎样合理选择,才能获得最好学分成绩?解:设选择A、B两套课程分别为x、y次,z为学分,则⎪⎪⎩⎪⎪⎨⎧∈≥+≤+≤+.,,10004020,14003240,40Nyxyxyxyx图示如下:目标函数:z=5x+4y.由方程组解得:点A(15,25),B(25,12.5),由于目标函数的斜率与直线AB的斜率相等,因此在图中阴影线段AB上的整数点A(15,25)、C(19,20)、D(23,15)都符合题意,使得学分最高为175分.但学生可根据自己的经验和要求选择一个最佳的点.例如,学生需要最省时就可以选择点A(15,25).10.海湾战争,美军两支部队从不同驻地到某攻击点会师,实行合围,其运动时间可能需要5至6小时.伊军一旦发现情况后只需20分钟集结就会遁逸.全歼伊军胜算的概率有多少?解:以x、y分别表示两支部队到达攻击点的时刻,则两支部队能在伊军逃走前会师的条件为|x-y|≤20,x、y∈[0,60],即⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≥+-≤--.60,60,020,020yxyxyx图示如下:在直角坐标系中画出x、y的可行域,如上图中阴影部分所示,显然两支部队可能在伊军逃走前会师的时间为图中边长等于60的正方形内的点(包括边界),两支部队能在伊军逃走前会师的机会为图中阴影部分,从而可得到所求的概率为P=602-2×956040402126022=⨯⨯⨯-.。
人教B版高中数学必修5同步章节训练题及答案全册汇编高中数学人教B版必修5同步练习目录1.1.1《正弦定理》测试题 1.1.2《余弦定理》测试题 1.2《正余弦定理的应用》测试2.1《数列》同步练习 2.2.1《等差数列》例题解析2.2.2《等差数列前n项和》例题解析 2.3.1《等比数列》例题解析 2.3.1《等比数列》测试3.1.1《不等关系与不等式》测试题 3.1.2《不等式的性质》测试题 3.2《均值不等式》测试题 3.2《均值不等式》测试题3.3《一元二次不等式的解法》测试题 3.3《一元二次不等式的解法》测试题 3.4《不等式的实际应用》测试题3.4《不等式的实际应用》测试题(人教B版必修5) 3.5.1《二元一次不等式(组)所表示的平面区域》测试题3.5.2《简单线性规划》测试题高中数学人教B版必修5同步练习1.1.1正弦定理测试题【能力达标】一、选择题1. 不解三角形,下列判断正确的是()ooA. a=7,b=14,A=30,有两解.B. a=30,b=25,A=150,有一解.ooC. a=6,b=9,A=45,有两解.D. a=9,b=10,A=60,无解. 2.在?ABC中acosA=bcosB,则?ABC是( ) A.等腰三角形 B.直角三角形C.等边三角形D.等腰或直角三角形3.在?ABC中,已知a=52,c=10,∠A=30,则∠B等于()oA.105B. 60C. 15D.105或154.在?ABC中,a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)的值是()oo o oo1 B.0 C.1 D.? 25. 在?ABC中下列等式总成立的是()A.A. a cosC=c cosAB. bsinC=c sinAC. absinC=bc sinBD. asinC=c sinA 6. 在ΔABC中,∠A=45,∠B=60,a=2,则b=( ) A.6 B.26 C.36 D.46 7.在ΔABC中,∠A=45, a=2,b=2,则∠B=()00A.300 B.300或1500 C.600 D.600或1200 二、填空题8.在ΔABC中,a=8,B=1050,C=150,则此三角形的最大边的长为。
2021高二数学必修同步训练必修5 高中是重要的一年,大家一定要好好把握高中,查字典数学网小编为大家整理了2021高二数学必修同步训练,希望大家喜欢。
1.余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这
两边与它们的夹角的余弦的积的两倍.即
a2=b2+c2-2bccos_A,b2=c2+a2-2cacos_B,
c2=a2+b2-2abcos_C.
2.余弦定理的推论
cos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos
C=a2+b2-c22ab.
3.在△ABC中:
(1)假设a2+b2-c2=0,那么C=90
(2) 假设c2=a2+b2-ab,那么C=60
(3)假设c2=a2+b2+2ab,那么C=135.
一、选择题
1.在△ABC中,a=1,b=2,C=60,那么c等于()
A.3
B.3
C.5
D.5
答案 A
2.在△ABC中,a=7,b=43,c=13,那么△ABC的最小角为()
A. B.6
C. D.12
答案 B
解析∵ac,C为最小角,
由余弦定理cos C=a2+b2-c22ab
=72+432-1322743=32.C=6.
3.在△ABC中,a=2,那么b cos C+ccos B等于()
A.1
B.2
C.2
D.4
答案 C
解析 bcos C+ ccos B=
ba2+b2-c22ab+cc2+a2-b22ac=2a22a=a=2.
4.在△ABC中,b2=ac且c=2a,那么cos B等于()
A.14
B.34
C.24
D.23
答案 B
解析∵b2=ac,c=2a,b2=2a2,b=2a,
cos B=a2+c2-b22ac=a2+4a2-2a22a2a=34.
5.在△ABC中,sin2A2=c-b2c (a,b,c分别为角A,B,C 的对应边),那么△ABC的形状为()
A.正三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形
答案 B
解析∵sin2A2=1-cos A2=c-b2c,
cos A=bc=b2+c2-a22bca2+b2=c2,符合勾股定理.
故△ABC为直角三角形.
6.在△ABC中,面积S= 14(a2+b2-c2),那么角C的度数为()
A.135
B.45
C.60
D.120
答案 B
解析∵S=14(a2+b2-c2)=12absin C,
a2+b2-c2=2absin C,c2=a2+b2-2absin C.
由余弦定理得:c2=a2+b2-2abcos C,
sin C=cos C,
C=45 .
在高中复习阶段,大家一定要多练习题,掌握考题的规律,掌握常考的知识,这样有助于进步大家的分数。
查字典数学网为大家整理了2021高二数学必修同步训练,供大家参考。