《实践与探索(第3课时)》教案精品 2022年华师大版八下数学
- 格式:docx
- 大小:377.04 KB
- 文档页数:10
6.3 实践与探索第3课时教学目标【知识与能力】使学生理解用一元一次方程解行程问题、工程问题的本质规律.【过程与方法】通过对“行程问题、工程问题〞的分析进一步培养学生用代数方法解决实际问题的能力. 【情感态度价值观】使学生在自主探索与合作交流的过程中理解和掌握根本的数学知识、技能、数学思想,获得广泛的数学活动经验,提高解决问题的能力.教学重难点【教学重点】用一元一次方程解决行程问题、工程问题.【教学难点】如何找行程问题中的等量关系.课前准备课件教学过程一、情境导入,初步认识1.行程问题中路程、速度、时间三者间有什么关系?相遇问题中含有怎样的相等关系?追及问题中含有怎样的相等关系呢?2.工作量、工作效率、工作时间之间有怎样的关系【教学说明】通过对这两种常见的问题中公式的复习,为找等量关系打好根底.二、思考探究,获取新知问题1:小张和父亲方案搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站.随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.公共汽车的平均速度是40千米/时,问小张家到火车站有多远?吴小红同学给出了一种解法:设小张家到火车站的路程是x千米,由实际时间比原方案乘公共汽车提前了45分钟,可列出方程:解这个方程:x/40-x/120-x/120=3/43x―x―x=90x=90经检验,它符合题意.答:小张到火车站的路程是90千米.张勇同学又提出另一种解法:设实际上乘公共汽车行驶了x千米,那么从小张家到火车站的路程是3x千米,乘出租车行使了2x千米.注意到提前的3/4小时是由于乘出租车而少用的,可列出方程:2x/40-2x/80=3/4解这个方程得:x=30.3x=90.所得的答案与解法一相同.讨论:试比较以上两种解法,它们各是如何设未知数的?哪一种比较方便?是不是还有其它设未知数的方法?试试看.【教学说明】两种解题方法,让学生亲身体验设不同的未知数,可列出不同的方程,难易度也不一样.从而得出为了解题方便应选择设适当的未知数的结论.【归纳结论】1.行程问题中根本数量关系是:路程=速度×时间;变形可得到:速度=路程÷时间,时间=路程÷速度.2.常见题型是相遇问题、追及问题,不管哪个题型都有以下的相等关系:相遇:相遇时间×速度和=路程和;追及:追及时间×速度差=被追及距离.问题2:课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.师傅单独完成需4天,徒弟单独完成需6天〞,就停住了.片刻后,同学们带着疑问的目光,窃窃私语:“这个题目没有完呀?要求什么呢?〞李老师开口了:“同学们的疑问是有道理的,今天我们就是要请同学们自己来提问.〞淘气的小刘说:“让我试一试.〞上去添了“两人合作需几天完成?〞.有同学反对:“这太简单了!〞,但也引起了大家的兴趣,于是各自试了起来:有添上一人先做几天再让另一人做的,有两人先后合作再一人离开的,有考虑两人合作完成后的报酬问题的……李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元.如果按各人完成的工作量计算报酬,那么该如何分配?试解答这一问题,并与同学一起交流各自的做法.分析:我们可以将工作总量看作“单位1〞,根据“工作效率=工作总量/工作时间〞可以知道,师傅的工作效率是1/4,徒弟的工作效率是1/6,整项工程分了两个局部:第一局部是徒弟先做的一天,第二局部是师徒两人合作完成的,而合作的时间我们不知道,所以应设合作的时间为x,根据工作总量可列出方程.从而求出他们各自工作的量,这样就可以求出他们得到的报酬.解:设两人合作的时间是x天,根据题意可列出方程:1/6+〔1/6+1/4〕x=1解得:x=2经检验,它符合题意.所以,徒弟工作时间为3天,完成工作总量的1/6×3=1/2;师傅工作时间为2天,完成工作总量的1/4×2=1/2.因为他们完成的工作量一样,所以报酬也应该一样多,都是270元.你还能提出其它的问题吗?试一试,并解答这些问题.【教学说明】给学生充足的时间,发挥他们的想象力,锻炼他们的创新能力和思维能力. 【归纳结论】工程问题中的三个量,根据工作量=工作效率×工作时间,其中两个量,就可以表示第三个量.两人合作的工作效率=每个人的工作效率的和.三、运用新知,深化理解1.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥需多5秒,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求各铁桥的长.2.一艘船由A地开往B地,顺水航行需5小时,逆水航行要比顺水航行多用50分钟.船在静水中每小时走12千米,求水流速度.3.一条环形跑道长400米,甲、乙两人练习跑步,甲每秒钟跑6米,乙每秒钟跑4米.(1)两人同时、同地、背向出发,经过多少时间,两人首次相遇(2) 两人同时、同地、同向出发,经过多少时间,两人首次相遇4.甲、乙两队合挖一条水渠,5天可以完成.如果甲队独挖8天可以完成,那么乙队独挖几天可以完成?5.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,那么甲、乙一起做还需多少小时才能完成工作?【教学说明】通过练习,使学生掌握应用一元一次方程解决实际问题的步骤和方法.【答案】1.解:设第一座铁桥的长为x米,那么第二座铁桥的长为〔2x-50〕米,过完第一座铁桥所需的时间为x/600分.过完第二座铁桥所需的时间为(2x-50)/600分.依题意,可列出方程x/600+5/60=(2x-50)/600解方程x+50=2x-50得x=100∴2x-50=2×100-50=150答:第一座铁桥长100米,第二座铁桥长150米.2.分析:在水流问题中:船的顺水速度=船的静水速度+水流速度,船的逆水速度=船的静水速度-水流速度.等量关系:船顺水航行的路程=船逆水航行的路程.解:设水流速度为x千米/时.根据题意,得顺水航行的速度为(12+x)千米/时,逆水航行的速度为(12-x)千米/时,5(12+x)=(5+50/60)(12-x)60+5x=35/6×12-35/6x65/6x=10x=12/13.答:水流速度为12/13千米/时.3.分析:(1)同时、同地、背向,甲、乙二人第一次相遇时,甲和乙共跑了一圈(即400米),等价于相遇问题,相等关系:甲走的路程+乙走的路程=400米.(2) 同时、同地、同向,甲、乙二人第一次相遇时,甲比乙多跑了一圈(即400米),等价于追及问题,等量关系:甲走的路程-乙走的路程=400米.解:(1)设两人同时、同地、背向出发,经过x秒后两人首次相遇,根据题意,得6x+4x=400,解方程,得x=40.答:两人同时、同地、背向出发,经过40秒后两人首次相遇.(2) 设两人同时、同地、同向出发,经过x秒后两人首次相遇,根据题意,得6x-4x=400,解方程,得x=200.答:两人同时、同地、背向出发,经过200秒后两人首次相遇.4.分析:这一工程问题求的是工作时间.只要先求出乙的工作效率,根据:工作量=工作效率×工作时间,就能列出求乙的工作时间的方程.解:设乙队单独挖需x天完成,由于两队合做每天完成的工作量等于各队每天完成的工作量的和,也就是说两队合做的工作效率等于各队单独的工作效率的和,所以乙队的工作效率为:1/5-1/8.根据题意,得(1/5-1/8)x=1解这个方程,得3/40x=1,x=40/3.答:乙队独挖40/3天可以完成.5.解:设甲、乙一起做还需x小时才能完成工作.根据题意,得1/6×1/2+〔1/6+1/4〕x=1.解这个方程,得x=11/5.11/5小时=2小时12分.答:甲、乙一起做还需2小时12分才能完成工作.四、师生互动,课堂小结本节课你学习了哪些知识,掌握了哪些方法?请相互交流.课后作业1.布置作业:教材第20页“习题6.3.2〞中第3 、4 题.2.完成练习册中本课时练习.五、教学反思本节课的教学难点是行程问题,而行程问题又分几种类型,如:相遇、追及、同向、逆向、水流、环行问题等.环行问题的根本特征是路径呈环状或为环线的一局部.事实上,这类问题也有“相遇〞与“追及〞之分:(1)假设同地出发,反向而行,那么每次相遇,两者的行程之和等于环形的周长.(2)假设同地出发,同向而行,那么每次追及,两者的行程之差等于环行道的周长,或表示为快者的行程=慢者的行程+环形周长.此外,假设是同时出发,那么相遇(或追及)时,两者行走的时间相等.在水流问题中:船的顺水速度=船的静水速度+水流速度,船的逆水速度=船的静水速度-水流速度.第二课时用坐标表示平移1.掌握用坐标表示点的平移的规律;(重点)2.了解并掌握用坐标表示图形平移的规律与方法.(难点)一、情境导入如图是小丽利用平移设计的一幅作品,说一说平移的特点.你能在坐标系中快速画出这一组图案吗?二、合作探究探究点一:点在坐标系中的平移平面直角坐标系中,将点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为()A.(1,-8) B.(1,-2)C.(-6,-1) D.(0,-1)解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解.点A的坐标为(-3,-5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是-3-3=-6,纵坐标为-5+4=-1,即(-6,-1).应选C.方法总结:此题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.探究点二:图形在坐标系中的平移【类型一】根据平移求对应点的坐标如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(a+6,b-2) B.(a+6,b+2)C.(-a+6,-b) D.(-a+6,b+2)解析:根据三对对应点的坐标,得出变换规律,再让点P的坐标也做相应变化.∵A(-3,-2),B(-2,0),C(-1,-3),A′(3,0),B′(4,2),C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A′B′C′.∵△ABC边上点P的坐标为(a,b),∴点P变换后的对应点P′的坐标为(a+6,b+2).应选B.方法总结:坐标系中图形上所有点的平移变化规律是一致的,解决此类问题的关键是根据对应点找到各对应点之间的平移变化规律.【类型二】平移作图如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2).(1)请画出上述平移后的△A1B1C1,并写出点A、C、A1、C1的坐标;(2)求出以A、C、A1、C1为顶点的四边形的面积.解析:(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.解:(1)△A 1B 1C 1如下列图,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1.S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,故S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.方法总结:坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.求四边形的面积通常转化为求几个三角形的面积的和.探究点三:平面坐标系中点及图形平移的规律探究如图,一个动点在第一象限及x 轴、y 轴上运动,在第1秒钟,它从原点运动到(1,0),然后接着按图中箭头所示方向运动,即(0,0)→(1,0)→(1,1)→(0,1)→…,且每秒移动一个单位,那么第2021秒时动点所在位置的坐标是________.解析:方法一:动点运动的规律:(0,0),动点运动了0秒;(1,1),动点运动了1×2=2(秒),接着向左运动;(2,2),动点运动了2×3=6(秒),接着向下运动;(3,3),动点运动了3×4=12(秒),接着向左运动;(4,4),动点运动了4×5=20(秒),接着向下运动;…于是会出现:(44,44),动点运动了44×45=1980(秒),接着动点向下运动,而2021-1980=31,故动点的位置为(44,44-31),即(44,13).方法二:由题目可以知道,动点运动的速度是每秒钟运动一个单位长度,(0,0)→(1,0)→(1,1)→(0,1)用的秒数分别是1秒钟,2秒钟,3秒钟,到(0,2)用4秒,到(2,2)用6秒,到(2,0)用8秒,到(3,0)用9秒,到(3,3)用12秒,到(0,4)用16秒,依次类推,到(5,5)用30秒.由上面的结论,我们可以得到的第一象限角平分线上的点从(0,0)到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,那么由(n,n)到(n+1,n+1)所用时间增加(2n +2)秒,这样可以先确定第2021秒时动点所在的正方形,然后就可以进一步推得点的坐标是(44,13).方法三:该动点每一次从一个轴走到另一个轴所走的步数要比上一次多走一横步,多走一竖步,共多走两步.从(0,0)点走到(0,1)点共要3步,从(0,1)点走到(2,0)点共5步……当n为偶数时,从(0,n-1)点到(n,0)点共走(2n+1)步;当n为奇数时,从(n-1,0)点到(0,n)点共走(2n +1)步,这里n=1,2,3,4,….∵3+5+7+…+(2n+1)=n(n+2)=(n+1)2-1,∴当n=44时,n(n+2)=(n+1)2-1=452-1=2024,离2021最近,此时n为偶数,即该过程是从(0,43)到(44,0-2021=13,即从(44,0)向上“退〞13步即可.当到2021秒时动点所在的位置为(44,13).故答案为(44,13).方法总结:此类归纳探索猜想型问题的解题关键是总结规律,由特殊到一般的归纳思想来确定点所在的大致位置,进而确定该点的坐标.三、板书设计用坐标表示平移:横坐标右移加,左移减;纵坐标上移加,下移减.通过本课时的学习,学生经历图形坐标变化与图形平移之间的关系的探索过程,掌握空间与图形的根底知识和根本作图技巧,丰富对现实空间及图形的认识,建立初步的空间观念,培养形象思维能力,激发数学学习的好奇心与求知欲.教学过程中让学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣。
新版华东师大版八年级数学下册《17.5实践与探索第3课时》教学设计一. 教材分析华东师大版八年级数学下册《17.5实践与探索第3课时》主要讲述了相似多边形的性质和判定。
本节课通过具体的案例让学生理解相似多边形的概念,掌握相似多边形的性质,并能够运用这些性质解决实际问题。
教材内容紧密联系生活实际,激发学生的学习兴趣,培养学生运用数学知识解决实际问题的能力。
二. 学情分析八年级的学生已经学习了相似三角形的性质和判定,对相似形的概念有一定的了解。
但学生在运用相似性质解决实际问题时,往往由于对性质理解不深而出现错误。
因此,在教学过程中,教师需要引导学生深化对相似多边形性质的理解,提高学生运用知识解决实际问题的能力。
三. 教学目标1.理解相似多边形的概念,掌握相似多边形的性质。
2.能够运用相似多边形的性质解决实际问题。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.重点:相似多边形的概念,相似多边形的性质。
2.难点:运用相似多边形的性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入相似多边形的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生发现相似多边形的性质,培养学生的思考能力。
3.实践操作法:让学生动手画图,加深对相似多边形性质的理解。
六. 教学准备1.课件:制作相应的课件,展示相似多边形的图片和实例。
2.学具:为学生准备相关的学习用品,如直尺、圆规等。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中常见的相似多边形图片,如人民币、房屋设计图等,引导学生观察并思考:这些图形为什么叫做相似形?相似形有哪些性质?2.呈现(10分钟)教师通过讲解和演示,引导学生发现相似多边形的性质。
如:相似多边形对应边的比相等,对应角相等等。
同时,给出相似多边形的判定条件。
3.操练(10分钟)学生分组进行实践操作,利用相似多边形的性质解决实际问题。
如:已知一个三角形的边长,求另一个相似三角形的边长。
华师大版数学八年级下册17.5《实践与探索》(第3课时)教学设计一. 教材分析华师大版数学八年级下册17.5《实践与探索》(第3课时)的内容主要包括:实际问题与二元一次方程组的建立、求解及应用。
这部分内容是对前面学习的二元一次方程组的拓展和应用,旨在培养学生解决实际问题的能力。
教材通过引入实际问题,引导学生运用二元一次方程组的知识进行解答,从而提高学生的数学应用能力。
二. 学情分析学生在学习本课时,已经掌握了二元一次方程组的基本知识,具备了一定的解题技巧。
但学生在解决实际问题时,往往不能将数学知识与实际问题有效地结合起来,对于如何建立方程组和求解方程组解决实际问题还有一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,并指导学生如何建立和求解方程组。
三. 教学目标1.知识与技能:使学生能够理解实际问题与二元一次方程组的关系,能够运用二元一次方程组的知识解决实际问题。
2.过程与方法:通过解决实际问题,培养学生将实际问题转化为数学问题的能力,提高学生的数学应用能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和解决问题的能力。
四. 教学重难点1.教学重点:实际问题与二元一次方程组的建立、求解及应用。
2.教学难点:如何将实际问题转化为二元一次方程组,并求解。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过引入实际问题,引导学生自主探究,合作交流,从而达到教学目标。
六. 教学准备1.教师准备:准备好相关的实际问题,制作好课件。
2.学生准备:预习相关知识,了解二元一次方程组的基本概念。
七. 教学过程1.导入(5分钟)教师通过引入一个实际问题,激发学生的学习兴趣,引导学生思考如何运用数学知识解决实际问题。
2.呈现(10分钟)教师呈现准备好的实际问题,引导学生进行分析,思考如何将实际问题转化为数学问题。
3.操练(15分钟)教师指导学生如何建立和求解二元一次方程组,学生进行实际操作,解决实际问题。
实践与探索第3课时(一)本课目标1.通过描点,拟合变量之间的函数关系,导出函数的关系式, 从中体会实际问题中的数学建模思想.2.了解收集数据、用描点法整理数据是猜想函数名称、利用所得函数性质解决问题的根本思想方法.(二)教学流程1.情境导入(利用多媒体演示幻灯片)王莉同学在探索鞋码的两种长度“码〞与“厘米〞之间的换算关系时, 通过调查获得下表数据:(1)(2)问43码的鞋相当于多少厘米的鞋2.课前热身(1)用描点法画函数图象,一般分成哪几个步骤(2)一次函数、反比例函数的图象分别具有什么特征3.合作探究(1)整体感知为了解决上述问题,本节课我们将着重探讨通过描点,探究出函数图象的特征, 根据函数图象的特征拟合函数变量之间的关系,然后利用这个函数关系解决问题.(2)四边互动师:利用多媒体演示幻灯片5.问题3:为了研究某合金材料的体积V(cm3)随温度t(℃)变化的规律,对一个用这种合金制成的圆球测得相关数据如下:分析:将这些数值所对应的点在坐标系中描出.我们发现, 这些点大致位于一条直线上,可知V 和t 近似地符合一次函数关系.我们可以用一条直线去尽可能地与这些点相符合,求出近似的函数关系式.如以下图的就是一条这样的直线, 较近似的点应该是(10,1000.3)和(60,1002.3),这样我们就可以求出这个函数的解析式.也可以将直线稍稍挪动一下,不敢这两点,换上更适当的两点.请你自己试一试,再和同学讨论、交流.生:动手尝试,并交流操作和解答的结论.师:从上述的操作中,你受到哪些启发有哪些体会请和同学们交流一下你的观点.明确我们曾采用待定系数法求得一次函数和反比例函数的关系式. 但是现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正, 建立比较接近的函数关系式进行研究.常用的方法是:把实践或调查中得到的一些变量的值,通过描点得出函数的近似图象,再根据画出的图象的特征,猜想相应的函数名称,然后利用待定系数法求出函数关系式.互动2师:根据上述解决问题的方法,请探究本课开始提出的问题中隐含的函数关系式,并解答提出的问题,然后在小组内展开交流,比一比,看谁解答得最好.生:经过独立尝试后,在小组内展开交流,并对自己的解题方法和思路进行反思,逐渐形成正确的观念,纳入个人的认知结构中.明确教师利用多媒体演示解答的过程和结果.把x 和y 的对应值分别作为点的横、纵坐标,在坐标系中描出表格中的各点,画出近似图象(如以下图).图象可以近似地看成直线,且点(23,36)和点(26,42)在图象上,由待定系数法求得的函数解析式为:y=2x-10.当y=43时,x=26.5,说明43码的鞋与厘米的鞋大小一样.互动3师:利用多媒体演示幻灯片.小明在做电学实验时,电路图如以下图.在保持电源不变的情况下, 改换不同的电阻R,并用电流表测量出通过不同电阻的电流I,记录结果如下:(1)建立适当的平面直角坐标系,在坐标系中描出表格中的各点, 并画出该函数的近似图象;)(2)观察图象,猜想I与R之间的函数关系,并求出函数解析式;(3)小明将一个未知电阻值的电阻串联到电路中,查得电流表的度数为安培,你知道这个电阻的电阻值吗请同学们独立解答问题,然后在小组内交流解答的结果,看谁解答得又对又快生:动手操作,再在小组内展开交流,并进行相互评价.明确教师利用多媒体演示解答的结果,验证同学们得出的结论.用描点法画出表格中的各点,可得函数的近似图象(如以下图), 由近似图象可知,是反比例函数,且用待定系数法求得函数解析式为I=12R,当时,R=24.4.达标反响请同学们先独立探究课本中练习提出的问题, 然后在相邻的四位同学中进行交流,统一结论后举手答复以下问题.教师利用多媒体演示正确的解题过程和结果,验证同学们的操作结论.5.学习小结(1)内容总结通过本节课的学习,同学们学到了哪些知识(2)方法归纳在实验或调查的根底上获得数据后,常常用描点的方法整理数据,再画出函数的近似图象,从而由图象的特征猜想函数关系,然后解答问题.(三)延伸拓展1.链接生活某商店在售货时,在进价的根底上加上一定的利润.其数量x(千克)与售价y(元)的关系如下表所示,请你根据表中提供的信息,探究出y与x之间的函数关系式,并求出当售价为65元时,售出该物品的数量.(1)实践活动在网站收集有关一定质量的气体,其密度随体积变化的相关数据,并探究出密度与体积之间关系的函数关系式.(2)稳固练习课本第69页复习题第8题.(四)板书设计第二课时用坐标表示平移1.掌握用坐标表示点的平移的规律;(重点)2.了解并掌握用坐标表示图形平移的规律与方法.(难点)一、情境导入如图是小丽利用平移设计的一幅作品,说一说平移的特点.你能在坐标系中快速画出这一组图案吗?二、合作探究探究点一:点在坐标系中的平移平面直角坐标系中,将点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为()A.(1,-8) B.(1,-2)C.(-6,-1) D.(0,-1)解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解.点A的坐标为(-3,-5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是-3-3=-6,纵坐标为-5+4=-1,即(-6,-1).应选C.方法总结:此题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.探究点二:图形在坐标系中的平移【类型一】根据平移求对应点的坐标如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(a+6,b-2) B.(a+6,b+2)C.(-a+6,-b) D.(-a+6,b+2)解析:根据三对对应点的坐标,得出变换规律,再让点P的坐标也做相应变化.∵A(-3,-2),B(-2,0),C(-1,-3),A′(3,0),B′(4,2),C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A′B′C′.∵△ABC边上点P的坐标为(a,b),∴点P变换后的对应点P′的坐标为(a+6,b+2).应选B.方法总结:坐标系中图形上所有点的平移变化规律是一致的,解决此类问题的关键是根据对应点找到各对应点之间的平移变化规律.【类型二】平移作图如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2).(1)请画出上述平移后的△A1B1C1,并写出点A、C、A1、C1的坐标;(2)求出以A、C、A1、C1为顶点的四边形的面积.解析:(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A、C、A1、C1为顶点的四边形的面积可分割为以AC1为底的2个三角形的面积.解:(1)△A1B1C1如下列图,各点的坐标分别为A(-3,2)、C(-2,0)、A1(3,4)、C1(4,2);(2)如图,连接AA 1、CC 1.S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,故S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.方法总结:坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.求四边形的面积通常转化为求几个三角形的面积的和.探究点三:平面坐标系中点及图形平移的规律探究如图,一个动点在第一象限及x 轴、y 轴上运动,在第1秒钟,它从原点运动到(1,0),然后接着按图中箭头所示方向运动,即(0,0)→(1,0)→(1,1)→(0,1)→…,且每秒移动一个单位,那么第2021秒时动点所在位置的坐标是________.解析:方法一:动点运动的规律: (0,0),动点运动了0秒;(1,1),动点运动了1×2=2(秒),接着向左运动; (2,2),动点运动了2×3=6(秒),接着向下运动; (3,3),动点运动了3×4=12(秒),接着向左运动; (4,4),动点运动了4×5=20(秒),接着向下运动; …于是会出现:(44,44),动点运动了44×45=1980(秒),接着动点向下运动,而2021-1980=31,故动点的位置为(44,44-31),即(44,13).方法二:由题目可以知道,动点运动的速度是每秒钟运动一个单位长度,(0,0)→(1,0)→(1,1)→(0,1)用的秒数分别是1秒钟,2秒钟,3秒钟,到(0,2)用4秒,到(2,2)用6秒,到(2,0)用8秒,到(3,0)用9秒,到(3,3)用12秒,到(0,4)用16秒,依次类推,到(5,5)用30秒.由上面的结论,我们可以得到的第一象限角平分线上的点从(0,0)到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,那么由(n,n)到(n+1,n+1)所用时间增加(2n +2)秒,这样可以先确定第2021秒时动点所在的正方形,然后就可以进一步推得点的坐标是(44,13).方法三:该动点每一次从一个轴走到另一个轴所走的步数要比上一次多走一横步,多走一竖步,共多走两步.从(0,0)点走到(0,1)点共要3步,从(0,1)点走到(2,0)点共5步……当n为偶数时,从(0,n-1)点到(n,0)点共走(2n+1)步;当n为奇数时,从(n-1,0)点到(0,n)点共走(2n +1)步,这里n=1,2,3,4,….∵3+5+7+…+(2n+1)=n(n+2)=(n+1)2-1,∴当n=44时,n(n+2)=(n+1)2-1=452-1=2024,离2021最近,此时n为偶数,即该过程是从(0,43)到(44,0-2021=13,即从(44,0)向上“退〞13步即可.当到2021秒时动点所在的位置为(44,13).故答案为(44,13).方法总结:此类归纳探索猜想型问题的解题关键是总结规律,由特殊到一般的归纳思想来确定点所在的大致位置,进而确定该点的坐标.三、板书设计用坐标表示平移:横坐标右移加,左移减;纵坐标上移加,下移减.通过本课时的学习,学生经历图形坐标变化与图形平移之间的关系的探索过程,掌握空间与图形的根底知识和根本作图技巧,丰富对现实空间及图形的认识,建立初步的空间观念,培养形象思维能力,激发数学学习的好奇心与求知欲.教学过程中让学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣。