江苏省南京市、盐城市2016届高三年级第二次模拟考试数学
- 格式:doc
- 大小:187.00 KB
- 文档页数:6
南京市、盐城市2016届高三年级第二次模拟考试英语 2016.03本试卷分选择题和非选择题两部分。
满分 分,考试用时 分钟。
注意事项:答题前,考生务必将自己的学校、姓名、考试号写在答题纸上。
考试结束后,将答题纸交回。
第一部分 听力 共两节,满分 分做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题纸上。
第一节 共 小题;每小题 分,满分 分听下面 段对话。
每段对话后有一个小题,从题中所给的 、 、 三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有 秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
第二节 共 小题;每小题 分,满分 分听下面 段对话或独白。
每段对话或独白后有几个小题,从题中所给的 、 、 三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题 秒钟;听完后,各小题将给出 秒钟的做答时间。
每段对话或独白读两遍。
听第 段材料,回答第 至 题。
听第 段材料,回答第 至 题。
听第 段材料,回答第 至 题。
听第 段材料,回答第 至 题。
. . .. ... .听第 段材料,回答第 至 题。
第二部分 英语知识运用 共两节,满分 分第一节 单项填空(共 小题;每小题 分,满分 分)请认真阅读下面各题,从题中所给的 、 、 、 四个选项中,选出最佳选项,并在答题纸上将该项涂黑。
第二节 完形填空(共 小题;每小题 分,满分 分)请认真阅读下面短文,从短文后各题所给的 、 、 、 四个选项中,选出最佳选项,并在答题纸上将该项涂黑。
声称的第三部分 阅读理解(共 小题;每小题 分,满分 分)请认真阅读下列短文,从短文后各题所给的 、 、 、 四个选项中,选出最佳选项,并在答题纸上将该项涂黑。
表现不固定性遗传酶无活力的 白血病伯氏先天性黑蒙①②跳蚤③ 不知足的④① ② ③ ④第四部分 任务型阅读 共 小题;每小题 分,满分 分请认真阅读下列短文,并根据所读内容在文章后表格中的空格里填入一个..最恰当的单词。
一、填空题:本大题共14个小题,每小题5分,共70分.1.设集合A ={x |-2<x <0},B ={x |-1<x <1},则A ∪B =▲________. 【答案】{x |-2<x <1} 【解析】试题分析:A ∪B ={x |-2<x <0}∪{x |-1<x <1}={x |-2<x <1} 考点:集合的并集2.若复数z =(1+m i)(2-i)(i 是虚数单位)是纯虚数,则实数m 的值为 ▲ . 【答案】2- 【解析】试题分析:因为 z =(1+m i)(2-i)i m m )12()2(-++=,所以.2012,02-=⇒≠-=+m m m 考点:复数概念3.将一骰子连续抛掷两次,至少有一次向上的点数为1的概率是 ▲ . 【答案】3611考点:古典概型概率4.如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若 一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为▲________.【答【解析】试题分析:950)002.0004.0(30=⨯+⨯(第4题图)考点:频率分布直方图5.执行如图所示的流程图,则输出的k 的值为 ▲ .【答案】5考点:循环结构流程图6.设公差不为0的等差数列{a n }的前n 项和为S n .若S 3=22a ,且S 1,S 2,S 4成等比数列,则a 10等于 ▲ . 【答案】19 【解析】试题分析:设公差为d ,则由题意得20,64)2(2=⇒≠+=+d d d d ,因此.199110=+=d a 考点:等差数列通项公式7.如图,正三棱柱ABC —A 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A —A 1EF 的体积是▲________.(第5题图)【答案】38考点:三棱锥体积8.已知函数f (x )=2sin(ωx +φ)(ω>0,2||πϕ<)的最小正周期为π,且它的图象过点(,12π-,则φ的值为▲________. 【答案】12π-【解析】试题分析:由题意得22)6sin(,22-=+-==ϕπππω,ππϕπk 246+-=+-或)(,2436Z k k ∈+-=+-ππϕπ,因为2||πϕ<,所以12πϕ-= 考点:三角函数性质9.知函数21,0,(),2(1),0xx f x x x ⎧+≤⎪=⎨⎪-->⎩则不等式f (x )≥-1的解集是▲________.【答案】]2,4[- 【解析】试题分析:由题意得⎪⎩⎪⎨⎧-≥+≤112x x 或⎩⎨⎧-≥-->1)1(02x x ,解得04≤≤-x 或20≤<x ,即24≤≤-x ,解集(第7题图)ABCA 1B 1FC 1E考点:分段函数解集10.在平面直角坐标系xOy 中,抛物线y 2=2px (p >0) 的焦点为F ,双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别与抛物线交于A ,B 两点(A ,B 异于坐标原点O ).若直线AB 恰好过点F ,则双曲线的渐近线方程是▲________. 【答案】x y 2±= 【解析】试题分析:由题意得:一条渐近线过点),2(p p ,因此斜率为22=p p,双曲线的渐近线方程是x y 2±=考点:抛物线性质,双曲线渐近线11.在△ABC 中,A =120°,AB =4.若点D 在边BC 上,且2,BD DC AD ==,则AC 的长为▲________. 【答案】3考点:向量数量积12.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为▲________. 【答案】[2-+ 【解析】试题分析:由题意得:2=OP,因此由两圆有交点得:2221211(4)922OM a a a -<<+⇒≤+-≤⇒≤≤+考点:直线与圆位置关系13.已知函数f (x )=ax 2+x -b (a ,b 均为正数),不等式f (x )>0的解集记为P ,集合Q = {x |-2-t <x <-2+t }.若对于任意正数t ,P ∩Q ≠∅,则11a b-的最大值是▲________. 【答案】1.2试题分析:由题意得b a f ≥-⇒≥-240)2(,241111--≤-a a b a ,令111,()422y a a a =->-,则221401(42)y a a a '=-+=⇒=-,当1a >时,0y '<;当112a <<时,0y '>;因此当1a =时,y 取最大值12;即11a b -的最大值是1.2考点:一元二次不等式解集,利用导数求函数最值14.若存在两个正实数x 、y ,使得等式x +a (y -2e x )(ln y -ln x )=0成立,其中e 为自然对数的底数,则实数a 的取值范围为▲________. 【答案】10.a a e<≥或考点:利用导数求函数值域二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)已知α为锐角,cos (α+4π). (1)求tan(α+4π)的值; (2)求sin(2α+3π)的值.【答案】(1)2(2【解析】试题分析:(1)由同角三角函数平方关系得sin (α+4π)=,注意角的范围确定开方取正,再根据同角三角函数关系中商数关系得tan(α+4π)=sin()42cos()4παπα+=+(2)将α+4π看做整体,设为β,则2α+236ππβ=-,再结合两角差的正弦公式及二倍角公式,可求得sin(2α+3π)的值考点:同角三角函数关系,两角差的正弦公式及二倍角公式 16.(本小题满分14分)如图,在三棱锥P —ABC 中,平面P AB ⊥平面ABC ,P A ⊥PB ,M ,N 分别为AB ,P A 的中点. (1)求证:PB ∥平面MNC ;(2)若AC =BC ,求证:P A ⊥平面MNC .ANBPMC【答案】(1)详见解析(2)详见解析 【解析】试题分析:(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行,往往从平面几何中寻求,本题利用中位线性质得MN ∥PB .(2)线面垂直的证明,往往需要线面垂直判定及性质定理多次转化,而面面垂直条件,一般利用面面垂直性质定理给予转化,本题利用等腰三角形性质CM ⊥AB ,将平面P AB ⊥平面ABC 转化为CM ⊥平面P AB ,从而得CM ⊥P A .结合P A ⊥PB 及MN ∥PB 可得:(第16题图)P A⊥MN,因此可由线面垂直判定定理推出结论.考点:线面平行判定定理,面面垂直性质定理, 线面垂直判定及性质定理17.(本小题满分14分)如图,某城市有一块半径为1(单位:百米)的圆形景观,圆心为C,有两条与圆形景观相切且互相垂直的道路.最初规划在拐角处(图中阴影部分)只有一块绿化地,后来有众多市民建议在绿化地上建一条小路,便于市民快捷地往返两条道路.规划部门采纳了此建议,决定在绿化地中增建一条与圆C 相切的小道AB.问:A,B两点应选在何处可使得小道AB最短?【答案】当A,B两点离道路的交点都为2(百米)时,小道AB最短.试题解析:解:如图,分别由两条道路所在直线建立直角坐标系xOy .设A (a ,0),B (0,b )(0<a <1,0<b <1), 则直线AB 方程为1x ya b+=,即bx +ay -ab =0. 因为AB 与圆C 1=.……………4分化简得 ab -2(a +b )+2=0,即ab =2(a +b )-2.……………6分因此AB ====8分 因为0<a <1,0<b <1,所以0<a +b <2, 于是AB =2-(a +b ). 又ab =2(a +b )-2≤2()2a b +, 解得0<a +b ≤4-,或a +b ≥4+.因为0<a +b <2,所以0<a +b ≤4-,………………………………………12分 所以AB =2-(a +b ) ≥2-(4-)=-2, 当且仅当a =b =2时取等号,所以AB 最小值为-2,此时a =b =2.答:当A ,B 两点离道路的交点都为2(百米)时,小道AB 最短.……………14分 考点:直线与圆位置关系,基本不等式应用 18.(本小题满分16分)在平面直角坐标系xOy 中,点C 在椭圆M :22221x y a b+= (a >b >0)上.若点A (-a ,0),B (0,3a ),且32AB BC =.(1)求椭圆M 的离心率;(2)设椭圆M 的焦距为4,P ,Q 是椭圆M 上不同的两点,线段PQ 的垂直平分线为直线l ,且直线l不与y 轴重合.①若点P (-3,0),直线l 过点(0,-67),求直线l 的方程; ②若直线l 过点(0,-1) ,且与x 轴的交点为D ,求D 点横坐标的取值范围.【答案】(1)23(2)①y =-x +67或y =95-x +67,②(,0)∪(0).因为32AB BC =,所以(a ,3a )=32 (x 0,y 0-3a )=(32x 0,32y 0-2a ), 得002359x a y a ⎧=⎪⎪⎨⎪=⎪⎩………………………………………………………2分代入椭圆方程得a 2=95b 2. 因为a 2-b 2=c 2,所以e =23c a =.………………………………………4分(2)①因为c =2,所以a 2=9,b 2=5,所以椭圆的方程为22195x y +=,设Q (x 0,y 0),则2200195x y +=……① ………………………………………………6分因为点P (-3,0),所以PQ 中点为003(,)22x y -,因为直线l 过点(0,-67),直线l 不与y 轴重合,所以x 0≠3,所以0000627332y y x x +⋅-+=-1, ………………………………………………8分 化简得x 02=9-y 02-127y 0.……② 将②代入①化简得y 02-157y 0=0,解得y 0=0(舍),或y 0=157.将y 0=157代入①得x 0=±67,所以Q 为(±67,157),所以PQ 斜率为1或59,直线l 的斜率为-1或95-,所以直线l 的方程为y =-x +67或y =95-x +67.……………………………………………10分②设PQ :y =kx +m ,则直线l 的方程为:y =-1kx -1,所以x D =-k . 将直线PQ 的方程代入椭圆的方程,消去y 得(5+9k 2)x 2+18kmx +9m 2-45=0.…………①, 设P (x 1,y 1),Q (x 2,y 2),中点为N , x N =1229259x x km k +=-+,代入直线PQ 的方程得y N =2559mk +,…………………………12分 代入直线l 的方程得9k 2=4m -5. ……②又因为△=(18km )2-4(5+9k 2) (9m 2-45)>0,化得m 2-9k 2-5<0. ………………………………………………14分 将②代入上式得m 2-4m <0,解得0<m <4,<k,且k ≠0,所以x D =-k ∈(,0)∪(0). 综上所述,点D 横坐标的取值范围为(,0)∪(0).…………………………16分考点:椭圆离心率,弦中点问题19.(本小题满分16分)对于函数f (x ),在给定区间[a ,b ]内任取n +1(n ≥2,n ∈N *)个数x 0,x 1,x 2,…,x n ,使得a =x 0<x 1<x 2<…<x n -1<x n =b ,记S =10n i -=∑|f (x i +1)-f (x i )|.若存在与n 及x i (i ≤n ,i ∈N )均无关的正数A ,使得S ≤A 恒成立,则称f (x )在区间[a ,b ]上具有性质V . (1)若函数f (x )=-2x +1,给定区间为[-1,1],求S 的值;(2)若函数f (x )=xxe ,给定区间为[0,2],求S 的最大值; (3)对于给定的实数k ,求证:函数f (x )=k ln x -12x 2 在区间[1,e ]上具有性质V .【答案】(1)4,(2)22(1)e e -,(3)详见解析试题解析:(1)解:因为函数f (x )=-2x +1在区间[-1,1]为减函数,所以f (x i +1)<f (x i ),所以|f (x i +1)-f (x i )|= f (x i )-f (x i +1).S =10n i -=∑|f (x i +1)-f (x i )|=[ f (x 0)-f (x 1)]+[ f (x 1)-f (x 2)]+…+[ f (x n -1)-f (x n )]=f (x 0)-f (x n )=f (-1)-f (1)=4. …………………………………………2分(3)证明:f ′(x )=k x -x =2k x x-,x ∈[1,e].①当k ≥e 2时,k -x 2≥0恒成立,即f ′(x )≥0恒成立,所以f (x )在[1,e]上为增函数, 所以S =10n i -=∑|f (x i +1)-f (x i )|=[ f (x 1)-f (x 0)]+[ f (x 2)-f (x 1)]+…+[ f (x n )-f (x n -1)]=f (x n )-f (x 0)=f (e)-f (1)=k +12-12e 2. 因此,存在正数A =k +12-12e 2,都有S ≤A ,因此f (x )在[1,e]上具有性质V .……………10分②当k ≤1时,k -x 2≤0恒成立,即f ′(x )≤0恒成立,所以f (x )在[1,e]上为减函数, 所以S =10n i -=∑|f (x i +1)-f (x i )|=[ f (x 0)-f (x 1)]+[ f (x 1)-f (x 2)]+…+[ f (x n -1)-f (x n )]=f (x 0)-f (x n )= f (1)-f (e)=12e 2-k -12. 因此,存在正数A =12e 2-k -12,都有S ≤A ,因此f (x )在[1,e]上具有性质V .…………12分考点:绝对值不等式性质,利用导数研究函数单调性 20.(本小题满分16分)已知数列{a n }的前n 项和为S n ,且对任意正整数n 都有a n =(-1)n S n +p n (p 为常数,p ≠0). (1)求p 的值;(2)求数列{a n }的通项公式;(3)设集合A n ={a 2n -1,a 2n },且b n ,c n ∈A n ,记数列{nb n },{nc n }的前n 项和分别为P n ,Q n .若b 1≠c 1,求证:对任意n ∈N *,P n ≠Q n .【答案】(1)-12(2)11,21,2n n nn a n +⎧-⎪⎪=⎨⎪⎪⎩为正奇数为正偶数(3)详见解析【解析】试题分析:(1)因为对任意正整数n 都有a n =(-1)n S n +p n ,所以取特殊情形:a 1=-S 1+p ,及a 2=S 2+p 2从而有a 1=2p ,a 1=-p 2,所以2p =-p 2.即p =-12.(2)利用一般数列和项与通项关系得项的递推关系:由1(1)()2n n n n a S =-+-,及1111(1)()2n n n n a S +++=--+-,相加得a n +a n +1=(-1)n (-a n +1)+12×(-12)n .再分奇偶讨论得11,21,2n n nn a n +⎧-⎪⎪=⎨⎪⎪⎩为正奇数为正偶数(3)A n ={-14n ,14n },因为b 1≠c 1则b 1 与c 1一正一负,不妨设b 1=14,c 1=-14.然后估计P n ,Q n 范围,由于P n >170436->,而Q n <-14+736<0,故P n ≠Q n.(3)A n ={-14n ,14n },由于b 1≠c 1,则b 1 与c 1一正一负, 不妨设b 1>0,则b 1=14,c 1=-14.则P n =b 1+2b 2+3b 3+…+nb n ≥14-(224+334+…+4n n).……………………………12分设S =224+334+…+4n n ,则14S =324+434+…+14n n+两式相减得34S =224+314+…+1144n n n +-=11111748124448n n n -+-⨯-<.所以S <736,所以P n ≥14-(224+334+…+4n n )>170436->.………………………14分 因为Q n = c 1+2 c 2+3 c 3+…+n c n ≤-14+S <-14+736<0,所以P n ≠Q n . ………………………………………………………………16分 考点:数列通项,数列求和附加题21.A 选修4—1:几何证明选讲如图,在Rt △ABC 中,AB =BC .以AB 为直径的⊙O 交AC 于点D ,过D 作DE ⊥BC ,垂足为E ,连接AE 交⊙O 于点F .求证:BE ⋅CE =EF ⋅EA .【答案】详见解析考点:切割线定理21.B 选修4—2:矩阵与变换已知a ,b 是实数,如果矩阵A =32a b ⎡⎤⎢⎥-⎣⎦所对应的变换T 把点(2,3)变成点(3,4). (1)求a ,b 的值.(2)若矩阵A 的逆矩阵为B ,求B 2.【答案】(1)a =-1,b =5.(2)⎥⎦⎤⎢⎣⎡--=45112BA【解析】 试题分析:(1)由对应点坐标关系解出a,b的值⎩⎨⎧=-=⇒⎩⎨⎧=-=+⇒⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+⇒⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-51462336436236433223b a b a b a b a (2)由逆矩阵公式求出矩阵A 的逆矩阵:⎥⎦⎤⎢⎣⎡--==⇒-=⇒⎥⎦⎤⎢⎣⎡--=-35121||25131A B A A再根据矩阵运算求⎥⎦⎤⎢⎣⎡--=45112B 试题解析:解:(1)由题意,得323234a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得6+3a =3,2b -6=4,…………………4分 所以a =-1,b =5.…………………………………………………………6分(2)由(1),得3152A -⎡⎤=⎢⎥-⎣⎦.由矩阵的逆矩阵公式得2153B -⎡⎤=⎢⎥-⎣⎦……………………8分 所以⎥⎦⎤⎢⎣⎡--=45112B ……………………………………………………………10分 考点:逆矩阵,矩阵运算21.C 选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为sin()3πρθ-=椭圆C的参数方程为2cos x ty t=⎧⎪⎨=⎪⎩ (t 为参数) . (1)求直线l 的直角坐标方程与椭圆C 的普通方程; (2)若直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.【答案】(1)y =22143x y +=(2)16.5考点:极坐标方程化为直角坐标方程,参数方程化为普通方程21.D选修4—5:不等式选讲解不等式:|x-2|+x|x+2|>2【答案】{x|-3<x<-1或x>0}.【解析】试题分析:解含绝对值不等式,一般方法为利用绝对值定义,分类讨论法:当x≤-2时,不等式化为(2-x)+x(-x-2)>2,当-2<x<2时,不等式化为(2-x)+x(x+2)>2,当x≥2时,不等式化为(x-2)+x(x+2)>2,最后求这三类不等式解集的并集试题解析:解:当x≤-2时,不等式化为(2-x)+x(-x-2)>2,解得-3<x≤-2;………………………………………………3分当-2<x<2时,不等式化为(2-x)+x(x+2)>2,解得-2<x<-1或0<x<2;…………………………………………………6分当x≥2时,不等式化为(x-2)+x(x+2)>2,解得x≥2;………………………………………………………9分所以原不等式的解集为{x|-3<x<-1或x>0}.……………………………………………………10分考点:解含绝对值不等式22.(本小题满分10分)甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E (ξ). 【答案】(1)1136(2)E (ξ) =1试题解析:解:(1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 所以比赛结束后甲的进球数比乙的进球数多1个的概率12322133323333332112112111()()()()()()()3323323236p C C C C C =++=…………………………………4分(2)ξ的取值为0,1,2,3,所以 ξ的概率分布列为…………………………………………………8分所以数学期望E (ξ)=0×724+1×1124+2×524+3×124=1.……………………………10分 考点:互斥事件概率,概率分布和数学期望 23.(本小题满分10分)设(1-x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2. (1)设n =11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值; (2)设b k =1k n k+-a k +1(k ∈N ,k ≤n -1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n -1),求1||m mn S C - 的值.【答案】(1)1024,(2)1试题解析:解:(1)因为a k =(-1)k kn C ,当n =11时,|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|=67891011111111111111C C C C C C +++++ =01101110111111111()21024.2C C C C ++++==……………………………………………3分(2)b k =1k n k +-a k +1=(-1)k +11k n k+-1k n C +=(-1)k +1kn C ,……………………………………5分当1≤k ≤n -1时,b k =(-1)k +1 k n C = (-1)k +1 (111k k n n C C ---+)=(-1)k +111k n C --+(-1)k +1 1k n C -=(-1)k -1 11k n C ---(-1)k1k n C -. ……………………………………7分当m =0时,011||||m m n n S b C C --==1. ……………………………………8分 当1≤m ≤n -1时,S m =-1+1mk =∑[(-1)k -111k n C ---(-1)k 1k n C -]=-1+1-(-1)m 1m n C -=-(-1)m 1mn C -,所以1||mmn S C -=1. 综上,1||mmn S C -=1. ……………………………………10分 考点:组合数性质:。
江苏苏中三市2016届高三数学二调试卷(带答案)南通、扬州、泰州三市2016届高三第二次调研测试数学(I)参考公式:锥体的体积,其中为锥体的底面积,为高.一、填空题:本大题共14小题,每小题5分,共计70分.设复数满足(为虚数单位),则复数的实部为▲.设集合,,,则实数的值为▲.下图是一个算法流程图,则输出的的值是▲.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如下表:使用寿命只数52344253根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是▲.电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是▲.已知函数()的图像如图所示,则的值是▲.设函数(),当且仅当时,取得最大值,则正数的值为▲.在等比数列中,,公比.若成等差数列,则的值是▲.在体积为的四面体中,平面,,,,则长度的所有值为▲.在平面直角坐标系中,过点的直线与圆相切于点,与圆相交于点,且,则正数的值为▲.已知是定义在上的偶函数,且对于任意的,满足,若当时,,则函数在区间上的零点个数为▲.设实数满足,则的最小值是▲.若存在,使得,则实数的取值范围是▲.二、解答题:本大题共6小题,共计90分.在斜三角形中,.(1)求的值;(2)若,,求的周长.如图,在正方体中,分别为棱的中点.求证:(1)平面;(2)平面平面.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m的围墙.现有两种方案:方案①多边形为直角三角形(),如图1所示,其中;方案②多边形为等腰梯形(),如图2所示,其中.请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.如图,在平面直角坐标系中,已知椭圆()的离心率为.为椭圆上异于顶点的一点,点满足.(1)若点的坐标为,求椭圆的方程;(2)设过点的一条直线交椭圆于两点,且,直线的斜率之积为,求实数的值.设函数,,其中是实数.(1)若,解不等式;(2)若,求关于的方程实根的个数.设数列的各项均为正数,的前项和,.(1)求证:数列为等差数列;(2)等比数列的各项均为正数,,,且存在整数,使得.(i)求数列公比的最小值(用表示);(ii)当时,,求数列的通项公式.数学(II)(附加题)21(B).在平面直角坐标系中,设点在矩阵对应的变换作用下得到点,将点绕点逆时针旋转得到点,求点的坐标.21(C).在平面直角坐标系中,已知直线(为参数)与曲线(为参数)相交于两点,求线段的长.22.一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,倍的奖励(),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为元.(1)求概率的值;(2)为使收益的数学期望不小于0元,求的最小值.(注:概率学源于赌博,请自觉远离不正当的游戏!)23.设(),其中().当除以4的余数是()时,数列的个数记为.(1)当时,求的值;(2)求关于的表达式,并化简.参考答案一、填空题:(本大题共14题,每小题5分,共计70分.1.2.13.174.14005.6.7.28.9.10.411.712.13.14.二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)解:(1)因为,即,因为在斜三角形中,,因为,所以............................................6分(2)在中,,则,由正弦定理,得,........................................9分故,......................................12分.所以的周长为,.......................14分16.(本小题满分14分)证明:(1)在正方体中,因为分别为棱的中点,所以.又,故,所以四边形为平行四边形.从而.......................................................4分又平面平面,所以平面;............................................6分(2)连结,在正方形中,.又分别为棱的中点,故.所以............................................8分在正方体中,平面,又平面,所以.............................................10分而平面,所以平面................................................12分又平面,所以平面平面.......................................14分17.(本小题满分14分)解:设方案①,②中多边形苗圃的面积分别为.方案①设,则.................................3分(当且仅当时,“=”成立)...................................5分方案②设,则.................8分由得,(舍去)..........10分因为,所以,列表:+0-极大值所以当时,.................................................12分因为,所以建苗圃时用方案②,且.答:方案①,②苗圃的最大面积分别为,建苗圃时用方案②,且...........................................................14分18.(本小题满分16分)解:(1)因为,而,所以.代入椭圆方程,得,①..........................................2分又椭圆的离心率为,所以,②.............................4分由①②,得,故椭圆的方程为....................................6分(2)设,因为,所以.因为,所以,即于是.........................................9分代入椭圆方程,得,即,③..................12分因为在椭圆上,所以.④因为直线的斜率之积为,即,结合②知.⑤.................................14分将④⑤代入③,得,解得........................................16分19.解:(1)时,,由,得........................................2分此时,原不等式为,即,解得或.所以原不等式的解集为........................................5分(2)由方程得,.①由,得,所以,.方程①两边平方,整理得.②.................7分当时,由②得,所以原方程有唯一解,当时,由②得判别式,1)时,,方程②有两个相等的根,所以原方程有唯一的解....................................................10分2)且时,方程②整理为,解得.由于,所以,其中,即.故原方程有两解.........................................14分3)时,由2)知,即,故不是原方程的解.而,故原方程有唯一解.综上所述:当或时,原方程有唯一解;当且时,原方程有两解.................................16分注:2)中,法2:,故方程②两实根均大于,所以原方程有两解.20.(本小题满分16分)证明:(1)因为,①所以,②①-②,得,,..............................2分因为数列的各项均为正数,所以.从而,,所以数列为等差数列.................................4分(2)(1)①中,令,得,所以.由得,,所以.③由得,,即④.......................6分当时,④恒成立.当时,④两边取自然对数,整理得,.⑤记,则.记,则,故为上增函数,所以,从而,故为上减函数,从而的最大值为.⑤中,,解得...........................10分当时,同理有,所以公比的最小值为(整数)............................12分(2)依题意,,由(2)知,,(整数).所以.从而,当时,,只能,此时,不符;当时,,只能,此时,不符;当时,,只能,此时,符合;综上,........................................................16分21.【选做题】A.(本小题满分10分)证明:连结,因为,所以.由圆知,所以.从而,所以.……………………………………………………6分又因为为圆的切线,所以,又因为,所以.................................10分B.(本小题满分10分)解:设,依题意,由,得....................................4分则.记旋转矩阵,..........................................6分则,即,解得,所以点的坐标为................................................10分C.(本小题满分10分)解:将直线的参数方程化为普通方程,得.①........................3分将曲线的参数方程化为普通方程,得.②......................6分由①②,得或,..........................................8分所以,从而.....................................10分D.(本小题满分10分)解:由柯西不等式,得..............6分因为,所以.所以,所以的最大值为,当且仅当等号成立......................................10分22.(本小题满分10分)解:(1)事件“”表示“有放回的摸球3回,所指定的玻璃球只出现1次”,则.....................................3分(2)依题意,的可能值为,且,......................................6分结合(1)知,参加游戏者的收益的数学期望为(元)...........................8分为使收益的数学期望不小于0元,所以,即.答:的最小值为110.................................................10分23.(本小题满分10分)解:(1)当时,数列中有1个1或5个1,其余为0,所以..................................................3分(2)依题意,数列中有3个1,或7个1,或11个1,…,或个1,其余为0,所以.............................5分同理,得.因为,所以.又,所以...............................................10分。
江苏省南京市、盐城市2017届高三年级第二次模拟考试数学(理)试卷一、填空题.(共14小题,每小题5分,共70分.不需写出解答过程,请把答案写在答题纸的指定位置上在每小题列出的四个选项中,只有一项是符合题目要求的.)1.函数1()ln1f x x=-的定义域为_______________. 2.若复数z 满足()1i 2z -=,(i 为虚数单位),z 是z 的共轭复数,则z z •=_______________.3.某校有三个兴趣小组,甲乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,则甲乙不在同一个兴趣小组的概率为_______________.4.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:不喜欢戏剧喜欢戏剧 男性青年观众 40 10 女性青年观众4060现要从所有参加调查的人中用分层抽样的方法抽取n 个人做进一步的调研,若在“不喜欢戏剧的男性青年观众”中抽取8人,则n 的值为_______________.5.根据如图所示的伪代码,输出S 的值为_______________.6.记公比为正数的等比数列{}n a 的前n 项和为n S , 若1421,50a S S =-=, 则5S 的值为_______________.7.将函数()sin f x x =的图象向右平移π3个单位后得到函数()y g x =的图象,则函数()()y f x g x =+的最大值是_______________.8.在平面直角坐标系xoy 中,抛物线26y x =的焦点为F ,准线为l ,P 是抛物线上的一点,PA l ⊥,A 为垂足,若直线AF 的斜率为3k =-,则线段PF 的长为_______________. 9.若π3πsin(),(0,)652αα-=∈则cos α的值为_______________.10.,αβ是两个不同的平面,,m n 为两条不同的直线,下列命题中正确的是_______________.(填上所有正确的序号)①若,m αβα⊂∥,则m β∥; ②若,m n αα⊂∥,则m n ∥; ③若,,n m n αβαβ⊥=⊥I ,则m β⊥;④若,,m n m αβα⊥⊥⊥,则m β⊥11.在平面直角坐标系xoy 中,直线1:20l kx y -+=,与直线2:20l x ky +-=相交于点P ,则当k 实数变化时,点P 到直线40x y --=的距离的最大值为_______________.12.若函数22()cos 38f x x m x m m =-++-有唯一的零点,则满足条件的实数m 的所有的集合为_______________.13.已知平面向量(1,2),(2,2)AC BD ==-u u u r u u u r ,则AB CD u u u r u u u rg 的最小值为_______________.14.已知函数()ln ()f x x e a x b =+--,其中e 为自然对数的底数,若不等式()0f x ≤恒成立,则ba的最小值为_______________.二、解答题:本大题共6小题 计90分. 解答应写出必要的文字说明或推理、验算过程. 15.(本小题满分14分)如图,在ABC ∆中,D 为边BC 上一点,6,3, 2.AD BD DC ===. (1)若AD BC ⊥,求BAC ∠的大小; (2)若π4ABC ∠=,求ADC ∆的面积.16.(本小题满分14分)如图,四棱锥中,平面,AP AB ⊥. (1)求证:CD AP ⊥;(2)若CD PD ⊥,求证:CD ∥平面PAB .17.(本小题满分14分)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,然后再矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形的边长为x 厘米,矩形纸板的两边AB ,BC 的长分别为a 厘米和b 厘米,其中a b ≥. (1)当90a =时,求纸盒的侧面积的最大值;(2)试确定,,a b x 的值,使得纸盒的体积最大,并求出最大值.18.(本小题满分16分)如图,在平面直角坐标系xoy 中,焦点在x 轴上的椭圆222:18x y C b +=经过点(,2)b c ,其中e 为椭圆C 的离心率,过点(1,0)T 作斜率为(0)k k >的直线交椭圆C 于A ,B 两点(A 在x 轴下方). (1)求椭圆C 的标准方程;(2)过点O 且平行于l 的直线交椭圆C 于点M ,N ,求2AT BTMN ⋅的值;(3)记直线l 与y 轴的交点为P ,若25AP TB =u u u r u u r,求直线l 的斜率k .19.(本小题满分16分)已知函数()e 1x f x ax =--,其中e 为自然对数的底数,a ∈R . (1)若e a =,函数()(2e)g x x =-.①求函数()()()h x f x g x =-的单调区间;②若函数(),()(),f x x mF x g x x m ≤⎧=⎨>⎩的值域为R ,求实数m 的取值范围;(2)若存在实数[]12,0,2x x ∈,使得12()()f x f x =,且121x x -≥,求证:2e 1e 2a -≤≤-,. 20.(本小题满分16分)已知数列{}n a 的前n 项和为n S ,数列{},{}n n b c 满足121(1),(2)2n n n n n n n n b a n c n n++++=-+=-,其中.n *∈N(1)若数列{}n a 是公差为2的等差数列,求数列{}n c 的通项公式;(2)若存在实数λ,使得对一切n *∈N ,有n n b c λ≤≤,求证:数列{}n a 是等差数列.数学附加题部分(本部分满分40分,考试时间30分钟) 21.【选做题】在A ,B ,C ,D 四个小题中只能选做2题,每小题10分,共计20分.请在答题纸的指定区域内作答,解答应写出文字说明、证明过程或演算步骤. A .选修4-1:几何证明选讲如图,ABC ∆的顶点A ,C 在圆O 上,B 在圆外,线段AB 与圆O 交于点M . (1)若BC 是圆O 的切线,且AB=8,BC=4,求线段AM 的长;(2)若线段BC 与圆O 交于另一点N ,且2AB AC =,求证:2BN MN =.B .(选修4-2:矩阵与变换)设,a b ∈R ,若直线:70l ax y +-=在矩阵301A b ⎡⎤=⎢⎥-⎣⎦对应的变化作用下,得到的直线为:9910l x y '+-=,求实数,a b 的值.C .选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,直线315:45x t l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),与曲线24:4x k C y k ⎧=⎨=⎩(k 为参数)交于A ,B 两点,求线段AB 的长.D .选修4-5:不等式选讲设a b ≠,求证:42242264()a a b b ab a b ++>+.【必做题】第22题、第23题,每题10分共计20分.请答题卡的指定区域内作答解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在直四棱柱1111ABCD A B C D -中,底面四边形ABCD 为菱形,1π2,,,3A A AB ABC E F ==∠=分别是1,BC AC 的中点. (1)求异面直线,EF AD 所成角的余弦值;(2)点M 在线段1A D 上,11A MA Dλ=,若CM ∥平面AEF ,求实数λ的值. 23.(本小题满分10分) 现有(1)(2,)2n n n n *+≥∈N 个给定的不同的数随机排成一个下图所示的三角形数阵:设k M 是第k 行中的最大数,其中1,k n k *≤≤∈N ,记12n M M M <<<L 的概率为n p(1)求2p的值;(2)证明:211(1)nn nCpn++>+.。
南京市、盐城市2016届高三年级第二次模拟考试英语 2016.03本试卷分选择题和非选择题两部分。
满分120分,考试用时120分钟。
注意事项:答题前,考生务必将自己的学校、姓名、准考证号等填涂在答题卡相应位置处。
考试结束后,将答题卡交回。
第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题纸上。
第一节(共5小题:每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where are the speakers?A. At home.B. In a restaurant.C. In a hotel.2· What does the boy mean?A. Nancy has left the TV on.B. He forgot to turn off the TV.C. Nancy remembered turning off the TV.3 · What does the woman advise the man to do?A. Go to the post office.B. Call the post office.C. on tact the mail carrier.4· Which word can best describe the man?A. Hardworking.B. Dishonest.C. Humorous.5· What can we learn什om the conversation?A. The man is unhappy.B. The woman is very helpful.C. Mr. Barkley is disappointed.第二节(共15个小题;每小题1分,满分15分)听下面5段对话或独白。
南京市、盐城市2016届高三年级第二次模拟考试英语 2016.03本试卷分选择题和非选择题两部分。
满分120分,考试用时120分钟。
注意事项:答题前,考生务必将自己的学校、姓名、考试号写在答题纸上。
考试结束后,将答题纸交回。
第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题纸上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where are the speakers?A. At home.B.In a restaurant.C. In a hotel.2. What does the boy mean?A. Nancy has left the TV on.B. He forgot to turn off the TV.C. Nancy remembered turning off the TV.3. What does the woman advise the man to do?A. Go to the post office.B. Call the post office.C. Contact the mail carrier.4. Which word can best describe the man?A. Hardworking.B. Dishonest.C. Humorous.5. What can we learn from the conversation?A. The man is unhappy.B. The woman is very helpful.C. Mr. Barkley is disappointed.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
南京市、盐城市2016届高三年级第二次模拟考试英语 2016。
03本试卷分选择题和非选择题两部分.满分120分,考试用时120分钟。
注意事项:答题前,考生务必将自己的学校、姓名、考试号写在答题纸上。
考试结束后,将答题纸交回。
第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题纸上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where are the speakers?A。
At home。
B.In a restaurant. C。
In a hotel.2。
What does the boy mean?A。
Nancy has left the TV on。
B. He forgot to turn off the TV。
C。
Nancy remembered turning off the TV.3. What does the woman advise the man to do?A。
Go to the post office. B。
Call the post office。
C。
Contact the mail carrier。
4. Which word can best describe the man?A。
Hardworking. B。
Dishonest. C。
Humorous.5。
What can we learn from the conversation?A。
The man is unhappy.B。
The woman is very helpful.C。
Mr. Barkley is disappointed。
第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
2019届南京市、盐城市2016级高三下学期二模考试数学试卷★祝考试顺利★一、选择题:本大题共14个小题,每小题5分,共70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1.已知集合,,则=______.【答案】【解析】【分析】直接利用并集的定义求解.【详解】由题得=故答案为:2.若复数满足(为虚数单位),且实部和虚部相等,则实数的值为______. 【答案】【解析】【分析】由题得z=(a+2i)i=-2+ai,因为复数的实部与虚部相等,即可求出a的值.【详解】由题得z=(a+2i)i=-2+ai,因为复数的实部与虚部相等,所以a=-2.故答案为:-23.某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17),将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,如图是根据实验数据制成的频率分布直方图,已知第一组与第二组共有20人,则第三组中的人数为_________.【答案】【解析】【分析】由频率以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出总的人数,求出第三组的人数.【详解】由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,设总的人数为n,则所以第3小组的人数为人.故答案为:184.下图是某算法的伪代码,输出的结果的值为______.【答案】【解析】【分析】直接按照算法的伪代码运行即得结果.【详解】1<6,i=3,S=4,3<6,i=5,S=9,5<6,i=7,S=16,7>6,输出S=16.故答案为:165.现有件相同的产品,其中件合格,件不合格,从中随机抽检件,则一件合格,另一件不合格的概率为______.【答案】【解析】【分析】分别求出基本事件的总数和要求事件包含的基本事件的个数,根据古典概型的概率计算公式即可得出.【详解】从5件产品中任意抽取2有种抽法,其中一件合格、另一件不合格的抽法有种.根据古典概型的概率计算公式可得一件合格,另一件不合格的概率.故答案为:6.等差数列中,,前项的和,则的值为______.【答案】【解析】【分析】首先根据已知求出,再利用等差数列的通项求出的值.【详解】由题得.故答案为:-47.在平面直角坐标系中,已知点是抛物线与双曲线的一个交点.若抛物线的焦点为,且,则双曲线的渐近线方程为______.【答案】【解析】【分析】设点A(x,y),根据的坐标,再把点A的坐标代入双曲线的方程求出,再求双曲线的渐近线方程.【详解】设点A(x,y),因为x-(-1)=5,所以x=4.所以点A(4,±4),由题得所以双曲线的渐近线方程为.故答案为:8.若函数的图象经过点,且相邻两条对称轴间的距离为,则的值为______.【答案】【解析】【分析】先根据相邻两条对称轴间的距离为求出的值,再根据图象经过点求出,再求的值.【详解】因为相邻两条对称轴间的距离为,所以所以.因为函数的图象经过点所以.所以,所以.故答案为:9.已知正四凌锥的所有棱长都相等,高为,则该正四棱锥的表面积为______.【答案】【解析】【分析】设正四棱锥的棱长为2a,根据求得a=1,再求正四棱锥的表面积. 【详解】设正四棱锥的棱长为2a,由题得.所以四棱锥的棱长为2.所以正四棱锥的表面积=.故答案为:【点睛】本题主要考查几何体的边长的计算和表面积的计算,意在考查学生对这些知识的理解能力掌握水平和空间观察想象能力.10.已知函数是定义在上的奇函数,且当时,,则不等式的解集为______.【答案】【解析】【分析】利用函数的奇偶性求出函数的表达式,然后解不等式件即可.【详解】设,则,所以.因为是定义在上的奇函数,所以,所以,所以当时,,当时,.当时,当0≤时,.所以0≤.当x<0时,所以-2<x<0.综上不等式的解集为.故答案为:11.在平面直角坐标系中,已知点,.若圆上存在唯一点,使得直线,在轴上的截距之积为,则实数的值为______. 【答案】【解析】【分析】根据题意,设的坐标为,据此求出直线、的方程,即可得求出两直线轴上的截距,分析可得,变形可得,即可得的轨迹方程为,据此分析可得圆与有且只有一个公共点,即两圆内切或外切,又由圆心距为,则两圆只能外切,结合圆与圆的位置关系可得,解可得的值,即可得答案.【详解】根据题意,设的坐标为,直线的方程为,其在轴上的截距为,直线的方程为,其在轴上的截距为,若点满足使得直线,在轴上的截距之积为5,则有,变形可得,则点在圆上,若圆上存在唯一点,则圆与有且只有一个公共点,即两圆内切或外切,又由圆心距为,则两圆只能外切,则有,解可得:,故答案为:.12.已知是直角三角形的斜边上的高,点在的延长线上,且满足.若,则的值为______.【答案】【解析】【分析】设∠DPC=,∠DPB=,先化简得到|PD|=2,再利用数量积的公式展开,利用三角函数和三角和角的余弦公式化简即得解.【详解】设∠DPC=,∠DPB=,由题得,所以|PB|所以=.故答案为:213.已知函数设,且函数的图象经过四个象限,则实数的取值范围为______.【答案】【解析】【分析】先讨论当x≤0时,f(x)-g(x)=|x+3\-kx-1,须使f(x)-g(x)过第三象限,得到k<.再讨论当x>0时,f(x)-g(x)=, f(x)-g(x)过第四象限,得到k >-9.综合即得解.【详解】当x≤0时,f(x)-g(x)=|x+3\-kx-1,须使f(x)-g(x)过第三象限,所以f(-3)-g(-3)<0, 解之得k<.当x>0时,f(x)-g(x)=,因为,所以须使f(x)-g(x)过第四象限,必须综合得-9<k<.故答案为:14.在中,若,则的最大值为______.【答案】【解析】【分析】先由题得,再化简得=,再利用三角函数的图像和性质求出最大值.【详解】在△ABC中,有,所以==,当即时取等.故答案为:二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤,请把答案写在答题卡的指定区域内.15.设向量,,其中,,且与互相垂直.(1)求实数的值;(2)若,且,求的值.【答案】(1)1;(2).【解析】【分析】(1)由与互相垂直可得,展开化简即得.(2)由,得..,最后求.【详解】解:(1)由与互相垂直,可得,所以.又因为,所以.因为,所以,所以.又因为,所以.(2)由(1)知.由,得,即.因为,所以,所以.所以,因此.【点睛】本题主要考查平面向量的数量积运算,考查三角恒等变换和求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.如图,在三棱柱中,,,,,分别是和的中点.求证:(1)平面;(2)平面.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)连接,证明,即得平面.(2),,平面.【详解】证明:(1)连接,在三棱柱中,且,所以四边形是平行四边形.又因为是的中点,所以也是的中点.在中,和分别是和的中点,所以.又因为平面,平面,所以平面.(2)由(1)知,因为,所以.又因为,,,平面,所以平面.又因为平面,所以.在中,,是的中点,所以.因为,,,,平面,所以平面.【点睛】本题主要考查空间几何元素位置关系的证明,意在考查学生对这些知识的理解掌握水平和空间想象分析推理转化能力.17.某公园内有一块以为圆心半径为米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点,分别在圆周上;观众席为梯形内切在圆外的区域,其中,,且,在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过米.设,.问:对于任意,上述设计方案是否均能符合要求?【答案】能符合要求【解析】【分析】过作垂直于,垂足为,所以点处观众离点处最远. 由余弦定理可得.再求得. 因为,所以观众席内每一个观众到舞台处的距离都不超过米.【详解】解:过作垂直于,垂足为.在直角三角形中,,,所以,因此.由图可知,点处观众离点处最远.在三角形中,由余弦定理可知.因为,所以当时,即时,,即.因为,所以观众席内每一个观众到舞台处的距离都不超过米. 答:对于任意,上述设计方案均能符合要求.【点睛】本题主要考查三角函数的应用,考查余弦定理和三角函数最值的计算,意在考查学生对这些知识的理解掌握水平和利用数学知识解决实际问题的能力.18.在平面直角坐标系中,已知椭圆的离心率为,且椭圆短轴的一个顶点到一个焦点的距离等于.(1)求椭圆的方程;(2)设经过点的直线交椭圆于,两点,点.①若对任意直线总存在点,使得,求实数的取值范围;②设点为椭圆的左焦点,若点为的外心,求实数的值.【答案】(1);(2)①;②.【解析】【分析】(1)依题意解之即得椭圆的方程.(2) ①设直线的方程为,代入椭圆的方程,根据,解得.,所以,即. 解得.由,即可解得m范围②由,.所以,解得,即可求出m值.【详解】解:(1)依题意解得所以,所以椭圆的方程为.(2)设直线的方程为,代入椭圆的方程,消去,得.因为直线交椭圆于两点,所以,解得.设,,则有,.①设中点为,则有,.当时,因为,所以,即.解得.当时,可得,符合.因此.由,解得.②因为点为的外心,且,所以.由消去,得,所以,也是此方程的两个根.所以,.又因为,,所以,解得.所以.【点睛】本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查直线和直线的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.19.已知,.(1)当时,求函数图象在处的切线方程;(2)若对任意,不等式恒成立,求的取值范围;(3)若存在极大值和极小值,且极大值小于极小值,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)利用导数的几何意义求得函数图象在处的切线方程为.(2)先求导得,再对a分类讨论得到的取值范围.(3对a分类讨论,结合极大值小于极小值求出的取值范围.【详解】解:(1)当时,,,则.又因为,所以函数图象在处的切线方程为,即.(2)因为所以,且.因为,所以.①当时,即,因为在区间上恒成立,所以在上单调递增.当时,,所以满足条件.②当时,即时,由,得,当时,,则在上单调递减,所以时,,这与时,恒成立矛盾. 所以不满足条件.综上,的取值范围为.(3)①当时,因为在区间上恒成立,所以在上单调递增,所以不存在极值,所以不满足条件.②当时,,所以函数的定义域为,由,得,列表如下:↗极大值↘极小值↗由于在是单调减函数,此时极大值大于极小值,不合题意,所以不满足条件.③当时,由,得.列表如下:↘极小值↗此时仅存在极小值,不合题意,所以不满足条件.④当时,函数的定义域为,且,.列表如下:↗极大值↘↘极小值↗所以存在极大值和极小值,此时因为,所以,,,,所以,即,所以满足条件.综上,所以的取值范围为.【点睛】本题主要考查导数的几何意义和切线方程,考查利用导数研究极值和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力. 20.已知数列各项为正数,且对任意,都有.(1)若,,成等差数列,求的值;(2)①求证:数列为等比数列;②若对任意,都有,求数列的公比的取值范围.【答案】(1)或;(2)①详见解析;②.【解析】【分析】(1)根据,,成等差数列得到,,成等比数列,即可求出或.(2)①利用定义证明数列为等比数列;②当时,,所以满足条件. 当时,由,得,由于,因此,与任意恒成立相矛盾,所以不满足条件. 综上可得q的取值范围.【详解】解:(1)因为,所以,因此,,成等比数列. 设公比为,因为,,成等差数列,所以,即,于是,解得或,所以或.(2)①因为,所以,两式相除得,即,由,得,两式相除得,即,所以,即,,,由(1)知,所以,,因此数列为等比数列.②当时,由时,可得,所以,因此,所以满足条件.当时,由,得,整理得.因为,,所以,因此,即,由于,因此,与任意恒成立相矛盾,所以不满足条件.综上,公比的取值范围为.【点睛】本题主要考查等差数列的性质和等比数列的证明,考查数列的求和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.南京市、盐城市2019届高三年级第二次模拟考试数学附加题【选做题】在A、B、C三小题中只能选做2题,每小题10分,共计20分,请在答题卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.A.选修4-2:矩阵与交换21.已知矩阵,,.(1)求,的值;(2)求的逆矩阵.【答案】(1);(2).【解析】【分析】(1)由题得即得(2)由题得,即得的逆矩阵.【详解】解:(1)因为,,,所以即(2)因为,所以.【点睛】本题主要考查矩阵的性质和逆矩阵的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.【必做题】第22题、第23题,每题10分,共20分,请在答题卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.22.如图是一旅游景区供游客行走的路线图,假设从进口开始到出口,每遇到一个岔路口,每位游客选择其中一条道路行进是等可能的.现有甲、乙、丙、丁共名游客结伴到旅游景区游玩,他们从进口的岔路口就开始选择道路自行游玩,并按箭头所指路线行走,最后到出口集中,设点是其中的一个交叉路口点.(1)求甲经过点的概率;(2)设这名游客中恰有名游客都是经过点,求随机变量的概率分布和数学期望.【答案】(1);(2)详见解析.【解析】【分析】(1) 选择从中间一条路走到的概率为.选择从最右边的道路走到点的概率为.因为选择中间道路和最右边道路行走的两个事件彼此互斥,所以.(2) 随机变量可能的取值,,,,,再求出它们对应的概率,即得随机变量的概率分布和数学期望.【详解】解:(1)设“甲从进口开始到出口经过点”为事件,甲选中间的路的概率为,在前面从岔路到达点的概率为,这两步事件相互独立,所以选择从中间一条路走到的概率为.同理,选择从最右边的道路走到点的概率为.因为选择中间道路和最右边道路行走的两个事件彼此互斥,所以.答:甲从进口开始到出口经过点的概率.(2)随机变量可能的取值,,,,,则,,,,,概率分布为:数学期望.【点睛】本题主要考查互斥事件的概率,考查随机变量的分布列和数学期望的计算,意在考查学生对这些知识的理解能力掌握水平,考查学生的应用能力.23.平面上有个点,将每一个点染上红色或蓝色.从这个点中,任取个点,记个点颜色相同的所有不同取法总数为.(1)若,求的最小值;(2)若,求证:.【答案】(1)2;(2)详见解析.【解析】【分析】(1)当时,共有个点,对染红色的点的个数分类讨论,即得T的最小值为2.(2) 首先证明:任意,,,有. 设个点中含有个染红色的点,接着证明①时,②时,③时,.【详解】解:(1)当时,共有个点,若染红色的点的个数为个或个,则;若染红色的点的个数为个或个,则;若染红色的点的个数为个或个,则;若染红色的点的个数为,则;因此的最小值为.(2)首先证明:任意,,,有.证明:因此,所以.设个点中含有个染红色的点,①当时,,因为,所以,于是.②当时,,同上可得.③当时,,设,,当时,,显然,当即时,,当即时,,即;;因此,即.综上,当时,.【点睛】本题主要考查排列组合的计数问题,考查组合不等式的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力,解答本题的关键是分类讨论思想的灵活运用.。
专题函数常见题型归纳三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R +,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b2)2,当且仅当a =b 时取等号.上述三个不等关系揭示了a 2+b 2,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2ab (或ab ≤(a +b2)2),当且仅当a=b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值.利用基本不等式求最值:一正、二定、三等号. 【题型一】利用拼凑法构造不等关系【典例1】(扬州市2015—2016学年度第一学期期末·11)已知1>>b a 且7log 3log 2=+a b b a ,则112-+b a 的最小值为 .【解析】∵1>>b a 且7log 3log 2=+a b b a ∴32log 7log a a b b +=,解得1log 2a b =或log 3a b =,∵1>>b a ∴1log 2a b =,即2a b =.2111111a ab a +=-++--13≥=. 练习:1.(南京市、盐城市2015届高三年级第一次模拟·10)若实数满足,且,则的最小值为 .解析:由log 2x+log 2y=1可得log 2xy=1=log 22,则有xy=2,那么==(x -y )+≥2=4,当且仅当(x -y )=,即x=+1,y=-1时等号成立,故的最小值为4.2.(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)若实数,x y 满足133(0)2xy x x +=<<,则313x y +-的最小值为 .3.(无锡市2017届高三上学期期末)已知0,0,2a b c >>>,且2a b +=,则2ac c c b ab +-+的最小值为 . 【典例2】(南京市2015届高三年级第三次模拟·12)已知x ,y 为正实数,则4x 4x +y +yx +y 的最大值为 .解析:由于4x 4x +y +y x +y =))(4()4()(4y x y x y x y y x x +++++=22225484y xy x yxy x ++++ =1+22543y xy x xy ++=1+345x y y x ⋅++≤1+5423+⋅xy y x =43,当且仅当4y x =xy,即y=2x 时等号成立. 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 解析:由,a b R +∈,得223(),()4()1202a b ab a b a b a b +=++≤+-+-≥,解得6a b +≥(当且仅当a b =且3ab a b =++,即3a b ==时,取等号).变式:1.若,a b R +∈,且满足22a b a b +=+,则a b +的最大值为_________.解析:因为,a b R +∈,所以由22222()2a b a b a b a b a b ++=+⇒+=+≥,2()a b +-2()0a b +≤,解得02a b <+≤(当且仅当a b =且22a b a b +=+,即1a b ==时,取等号).2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 43.设R y x ∈,,1422=++xy y x ,则y x +2的最大值为_________10524.(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)已知正数a ,b 满足195a b+=,则ab 的最小值为 【题型二】含条件的最值求法【典例4】(苏州市2017届高三上期末调研测试)已知正数y x ,满足1=+y x ,则1124+++y x 的最小值为 练习1.(江苏省镇江市高三数学期末·14)已知正数y x ,满足111=+yx ,则1914-+-y yx x 的最小值为 . 解析:对于正数x ,y ,由于x 1+y 1=1,则知x>1,y>1,那么14-x x +14-y y =(14-x x +14-y y )(1+1-x 1-y 1)=(14-x x +14-y y )(xx 1-+y y 1-)≥(x x x x 114-⋅-+yy y y 114-⋅-)2=25,当且仅当14-x x ·y y 1-=14-y y ·xx 1-时等号成立.2.(2013~2014学年度苏锡常镇四市高三教学情况调查(一)·11)已知正数满足,则的最小值为 .解析:,当且仅当时,取等号.故答案为:9.3.(南通市2015届高三第一次调研测试·12)已知函数(0)xy a b b =+>的图像经过点(1,3)P ,如下图所示,则411a b+-的最小值为 .解析:由题可得a+b=3,且a>1,那么14-a +b 1=21(a -1+b )(14-a +b 1)=21(4+b a 1-+14-a b +1)≥21(2141-⋅-a b b a +5)=29,当且仅当b a 1-=14-a b 时等号成立. 4.(江苏省苏北四市2015届高三第一次模拟考试·12)己知a ,b 为正数,且直线 与直线 互相平行,则2a+3b 的最小值为________.【解析】由于直线ax+by -6=0与直线2x+(b -3)y+5=0互相平行,则有=,即3a+2b=ab ,那么2a+3b=(2a+3b )·=(2a+3b )(+)=++13≥2+13=25,当且仅当=,即a=b 时等号成立.5.常数a ,b 和正变量x ,y 满足ab =16,a x +2b y =12.若x +2y 的最小值为64,则a b=________.答案:64;(考查基本不等式的应用).6.已知正实数,a b 满足()()12122a b b b a a +=++,则ab 的最大值为 .答案:【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知14ab =,,(0,1)a b ∈,则1211ab+--的最小值为 .解析:由14ab =得14a b = ,2221211424122711411451451a b b b b b b b b b b b +---+--=+==+---+--+- 令71b t -=则22714949111418451427183427b t b b t t t t-+=+=-≥+-+--+-+-当且仅当2t =即214等号成立.练习1.(江苏省扬州市2015届高三上学期期末·12)设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .解析:由x 2+2xy -1=0可得y=212x x -,那么x 2+y 2= x 2+222(1)4x x -=54x 2+214x -12≥21212,当且仅当54x 2=214x ,即x 4=15时等号成立.2.(苏州市2014届高三调研测试·13)已知正实数x ,y 满足,则x + y 的最小值为 . 解析:∵正实数x ,y 满足xy+2x+y=4,∴(0<x <2).∴x+y=x+==(x+1)+﹣3,当且仅当时取等号.∴x+y 的最小值为.故答案为:.3.(南通市2014届高三第三次调研测试·9)已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 .解析:∵正实数x ,y 满足(x ﹣1)(y+1)=16,∴1116++=y x ,∴x+y=()8116121116=+⋅+≥+++y y y y ,当且仅当y=3,(x=5)时取等号.∴x+y 的最小值为8.故答案为:8.4.(扬州市2017届高三上学期期中)若2,0>>b a ,且3=+b a ,则使得214-+b a 取得最小值的实数a = 。