浙江省温州市瓯海区2013-2014学年上学期期中检测八年级数学试卷
- 格式:doc
- 大小:869.50 KB
- 文档页数:8
八年级数学试卷温馨提示:1.本试卷分试题卷和答题卷两部分。
满分100分,考试时间90分钟。
2.答题前,必须在答题卷的密封区内填写姓名和班级、学号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,上交答题卷。
一、精心选一选,相信你一定会选对的!(每小题3分,共30分) 1.如图,直线c ,b 被直线a 所截,则∠1与∠2是( ▲ ) A .同位角 B .内错角 C .同旁内角 D .对顶角 2.下列几何体不属于...多面体的是( ▲ ) A .三棱锥 B .立方体 C .球体 D .四面体3.体育课上,八年级(1)班两个组各10人参加立定跳远,要判断哪一组成绩比较整齐,通常需要知道这两个组立定跳远成绩的( ▲ ) A . 平均数 B .方差 C .众数 D .中位数4.在以下列各组数为边长的三角形中,不是..直角三角形的是 ( ▲ ) A .3,4,5 B .2,2,3 C .7,24,25 D .135.直角三角形两直角边的长分别为6和8,则此直角三角形斜边上的中线长为( ▲ )A .3B .4C .5D .106.等腰三角形的一个外角是130︒,则它的底角等于( ▲ )A .50︒B .65︒C .100︒D .50︒或65︒ 7.下列各图中,经过折叠能围成一个正方体的是( ▲ )8.如图,下列说法正确的是( ▲ )A .若AB ∥CD ,则∠1=∠2 B .若AD ∥BC ,则∠3=∠4 C .若∠1=∠2,则AD ∥BC D .若∠1=∠2,则AB ∥CD9.为了解九年级学生的体育锻炼时间,小华调查了某班45名 同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻...炼时间...的说法错误..的是( ▲ ) A .众数是9 B .中位数是9ABCDD CBA432121cba(第10题图)C .平均数是9D .锻炼时间不少于9小时的有14人10.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了右图,如果继续“生长”下去 ,它将变得“枝繁叶茂”,请你算出“生长”了2012次后形成的图形中所有的正方形的面积和是( ▲ )A .2010B .2012C .2013D .1二、细心填一填,相信你一定会填对的!(本题有8小题,每小题4分,共32分) 11.如图,在∆ABC 中,AB =AC ,点D 为BC 上一点,请填上你认为适合的一个条件: ▲ ,能使AD ⊥BC 成立.12.如图,∠1+∠2=180°,∠3= ▲13.已知数据123,,,,n x x x x ⋅⋅⋅的平均数是3,则一组新数据 1238,8,,8,8nx x x x ++⋅⋅⋅++的平均数是 ▲.16.一个直棱柱有12个顶点,则这个直棱柱共有 ▲__条棱.17.如图,在△ABC 中,AB =AC ,点D 为BC 边上的一点,且AB =BD ,AD =CD ,则∠ABC = ▲ 度.18.如图,已知△ABC 中,AB =6,AC =9,AD ⊥BC 于点D , 则22DC DB -= ▲ .0 7 8 9 10 11DCBAC BADBA三、动脑想一想,你一定会获得成功的!(本题有6小题,共38分)19.(本题6分)如图是由7块小立方体摆放而成的几何体,请画出它的三视图。
温州地区2013-2014学年上学期第二次联考八年级数学试卷一、选择题:(每题3分,共30分)1、在下列长度的四根木棒中,能与4,9cm cm 长的两根木棒首尾相接,钉成一个三角形的是: …………………………………………………………………… ( ) A 、4cm B 、5cm C 、9cm D 、13cm2、下列命题属于真命题的是………………………………………………( )A 、如果a 2=b 2,那么a =b B 、同位角相等C 、如果a =b ,那么a 2=b 2D 、若a >b ,则ac 2>bc 2。
3、如果a>b ,那么下列不等式中正确的是………………………………… ( ) A 、a-2>b+2B 、8a <8bC 、ac<bcD 、-a+3<-b+3 4、直角三角形两直角边的长分别为3和4,则此直角三角形斜边上的中线长为 …………………………………………………………………………… ( )A 、5B 、2.5C 、2D 、1.55、已知在△ABC 中,∠A=∠B —∠C ,则△ABC 为…………………( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、以上都有可能 6、下列命题中,逆命题一定正确的是………………… ……………… ( )A 、对顶角相等B 、全等三角形的对应角相等;C 、两直线平行,同位角相等D 、等边对等角7、不等式9-114x>x+23的正整数解的个数是………… ………………… ( ) A 、1 B 、2 C 、3D 、48、等腰三角形的一个外角是80°,则其底角是…………………………… ( )A 、40° B、100°或40° C、100° D、809、如下图(左),AB =AC ,BD =BC ,若∠A =40°,则∠ABD 的度数是……( )A 、20°B 、30°C 、35° D、40°10、如图(右),将直角边AC=6cm ,BC=8cm 的直角△ABC 纸片折叠,使点B 与点A 重合,折痕为DE, 则CD 等于…………………………… ……… ( ) A 、425 B 、322 C 、47 D 、35二、填空题:(每空3分,共24分)11、在Rt △ABC 中, 锐角∠A =25°,则另一个锐角∠B = ;12、用不等式表示“7与m 的4倍的和是正数“就是 ;13、如图(2)已知AC = BD ,要使△ABC ≌DCB ,只需增加的一个条件是___________;114、如图,在△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若∠B =35°,则∠CAD =__________°15、请你写出一个解集为2x ≤-的一元一次不等式: 。
八年级数学实验A 班期中考试试卷一;选择题(共8小题,每小题3分,满分24分) 1.已知a b >,且0a ≠,0b ≠,0a b +≠,则函数y ax b =+与a by x+=在同一坐标系中的图象不可能...是( )2.已知实数a 、b 、c 满足0a <,024>+-c b a ,则一定有( ) A .240b ac -> B .240b ac -<C .240b ac -≥ D .240b ac -≤3..已知二次函数y=3x 2﹣6x+5,若它的顶点不动,把开口反向,再沿对称轴平移,得一条新抛物线,它恰好与直线y=﹣x ﹣2交于点(a ,﹣4),则新抛物线的解析式为( )A . y=6x 2﹣3x+4B . y=﹣3x 2+6x ﹣4C . y=3x 2+6x ﹣4D . y=﹣3x 2+6x+44.如图,AB 是⊙O 的弦,P 在AB 上,AB=10cm ,PA=4cm ,OP=5cm ,则⊙O 的半径为( ) A . 5 B . 6 C . 7 D . 8 5.把反比例函数12y x=的图像先向左平移1个单位,再向上平移一个单位后所得函数解析式为( ) A .y=12x+1 +1 B.y= 12x-1 +1 C.y= 12x+2 +1 D.y= 12x-2+16.如图,在半径为1的⊙O 中,直径AB 把⊙O 分成上、下两个半圆,点C 是上半圆上一个动点(C 与点A 、B 不重合),过点C 作弦CD ⊥AB ,垂足为E ,∠OCD 的平分线交⊙O 于点P ,设CE =x ,AP =y ,下列图象中,能反映y 与x 之间函数关系的是( )7..将一张边长分别为a ,b (a >b )的矩形纸片ABCD 折叠,使点C 与点A 重合,则折痕的Oy A.Oy B.Oy OyD.第4小题长为( )A .22b a a b+ B .22b a b a+C .22b a a b- D .22b a ba-8..如图,点1234,,n A A A A A ⋅⋅⋅,,,在射线OA 上,点1231,,n B B B B -⋅⋅⋅,,在射线OB 上,且11223311n n A B A B A B B --⋅⋅⋅∥∥∥∥A ,2132431n n A B A B A B -⋅⋅⋅∥∥∥∥A B 12123211,,,,n n n A A B A A B A A B --∆∆⋅⋅⋅∆为阴影三角形,若212A B B △,323A B B △的面积分别为1,4,则图中面积小于2009的阴影三角形面积共有( )A .6个B .7 个C .11个D .12个二、填空题(共6小题,每小题4分,共24分)9.把抛物线2x y -=向上平移2个单位,那么所得抛物线与x 轴的两个交点之间的 距离是 .10.平行四边形ABCD 中,E 是AD 的中点,AC 与BE 相交于F ,若S △EFC =1cm 2,则平行四边形ABCD 的面积= _________ .11..已知⊙O 的半径OA =1,弦AB 、AC 的长分别是2、3,则∠BAC 的度数是___________.12.小颖同学想用“描点法”画二次函数y =ax 2+bx +c (a ≠0)的图象,取自变量x 的5个值,分别计算出对应的y 值,如下表:x … -2 -1 0 1 2 … y…112-125…由于粗心,小颖算错了其中的一个y 值,请你指出这个算错的y 值所对应的x =__________.13.如图,已知反比例函数y =xm 8-(m 为常数)的图象经过点A (-1,6),过A 点的直线交函数y =xm 8-的图象于另一点B , 与x 轴交于点C ,且AB =2BC ,则点C 的坐标为_____________.14.对于每个x ,函数y 是y 1=﹣x+6,y 2=﹣2x 2+4x+6这两个函数的较小值,则函数y 的最大值是 _________ .P N MF E D CB A AB CD E FM N P 三、解答题(15、16每小题6分;17、18每小题8分;19题10分;20题14分。
2013~2014学年度第一学期期中质量检测八年级数学试题【友情提醒】全卷共三大题,23小题,满分150分,考试时间120分钟。
一、选择题(每小题4分,共40分)1.点A (5-,4)在第 象限。
( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各曲线中,能够表示y 是x 的函数的是( )3.函数y =中自变量x 的取值范围是( ) A .x ≥3- B .x ≥3-且1x ≠ C .1x ≠ D .3x ≠-且1x ≠ 4.下列语句是命题的是( )A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗?5.一个三角形的两边长分别为3和8,则第三边长可能是( )A .5B .6C .3D .116.点1P (1x ,1y )、2P (2x ,2y )是一次函数b kx y +=(0<k )图象上的两个点,且21x x <,则1y 与2y 的大小关系是( )A .21y y >B .21y y =C .21y y <D .无法确定 7.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形8.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A .125°B .120°C .140°D .130°9.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(1-,2-),“象”位于点(4,1-),则“炮”位于点( ) A .(2,1-) B .(1-,2) C .(2-,1) D .(2-,2) 10.下列四组点中,可以在同一个正比例函数图象上的一组点是( )A .(2,3-)、(4-,6)B .(2-,3)、(4,6)C .(2-,3-)、(4,6-)D .(2,3)、(4-,6) 二、填空题(每小题5分,共20分)11.在直角坐标系中,把点A (3-,2)先向右平移3个单位,再向下平移2个单位,得到的点的坐标是 。
2013-2014年八年级上册数学期中试卷及答案八年级数学试卷一、选择题(每题3分,共30分)1、在△ABC 和△DEF 中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使△ABC ≌△DEF ,则补充的条件是( )A 、BC=EFB 、∠A=∠DC 、AC=DFD 、∠C=∠F 2、下列命题中正确个数为( ) ①全等三角形对应边相等;②三个角对应相等的两个三角形全等; ③三边对应相等的两个三角形全等; ④有两边对应相等的两个三角形全等.A .4个B 、3个C 、2个D 、1个 3、已知△ABC ≌△DEF ,∠A=80°,∠E=40°,则∠F 等于 ( )A 、 80°B 、40°C 、 120°D 、 60° 4、已知等腰三角形其中一个内角为70°,那么那个等腰三角形的顶角度数为( )A 、70°B 、70°或55°C 、40°或55°D 、70°或40° 5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你能够推断这时的实际时刻是( )A 、10:05B 、20:01C 、20:106、等腰三角形底边上的高为腰的一半,则它的顶角为( ) A、120° B 、90° C 、100° D 、60° 7、点P (1,-2)关于x 轴的对称点是P1,P1关于y 轴的对称点坐标是P2,则P2的坐标为( )A 、(1,-2)B 、(-1,2)C 、(-1,-2)D 、(-2,-1)8、已知()221x y -++=0,求yx 的值( )A 、-1B 、-2C 、1D 、29、如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=8cm ,AB =10cm ,则△EBC 的周长为( )A 、16 cmB 、18cmC 、26cmD 、28cm 10、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是A D 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为( )A 、2cm ²B 、4cm ²C 、8cm ²二、填空题(每题4分,共20分)11、等腰三角形的对称轴有 条. 12、(-0.7)²的平方根是 . 13、若2)(11y x x x +=-+-,则x-y= .14、如图,在△ABC 中,∠C=90°AD 平分∠BAC ,BC=10cm ,BD=6cm ,则点D 到AB 的距离为__ .15、如图,△ABE ≌△ACD ,∠ADB=105°,∠B=60°则∠BAE= .三、作图题(6分)16、如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址P 应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址Q 应选在哪个位置?请将上述两种情形下的自来水厂厂址标出,并保留作图痕迹.四、求下列x 的值(8分)ED ABCFE DBE DBAA B CD第9题图第10题图第14题图第15题图•A•BD E CB A O 17、 27x ³=-343 18、 (3x-1)²=(-3)²五、解答题(5分)19、已知5+11的小数部分为a ,5-11的小数部分为b ,求 (a+b)2012的值。
温州市六校2013-2014学年第一学期期中联考八年级数学试卷温馨提示:1.本试卷分试题卷和答题卷两部分.满分100分,考试时间90分钟.2.答题前,必须在答题卷的密封区内填写姓名和班级、学号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4.考试结束后,上交答题卷.一.精心选一选,相信你一定会选对的!(每小题3分,共30分)1.下图是各种汽车的标志,其中不是..轴对称图形的是(▲).A.B.C.D.2.下列语句是命题的是(▲).A.画两条相等的线段B.在线段AB上取点PC.等腰三角形是轴对称图形D.垂线段最短吗?3.若a>b,则下列不等式中,不成立...的是(▲).A.33a b->-B.33a b->-C.33ba>D.a+3> b+34.下列命题是假命题的是(▲).A.有一个角为60°的等腰三角形是等边三角形B.等角的余角相等C.钝角三角形一定有一个角大于900D.同位角相等5.下列条件中,不能..判定△ABC是等腰三角形的是(▲).A.a=3,b=3,c=4 B.a︰b︰c=2︰3︰4C.∠B=50°,∠C=80°D.∠A︰∠B︰∠C=1︰1︰26.如图是玩具拼图模板的一部分,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中能和△ABC完全重合的是(▲).ba c70°60°50°BC Aca50°a70°50°ac50°(第9题图)A .甲和丙B .丙和乙C .只有甲D .只有丙 7.已知等腰三角形的一个内角是30°,那么这个等腰三角形的顶角度数为( ▲ ).A .75°B .120°C .30°D .30°或120° 8.已知AD 是△ABC 的中线,BE 是△ABD 的中线,若△ABC 的面积为20, 则△ABE 的面积为( ▲ ).A .5B .10C .15D .18 9.如图,在△ABC 中,AB=AC =5,BC =6,点M 为BC 的中点,MN ⊥AC 于 点N ,则MN 等于( ▲ ). A .56 B .59 C .512 D .516 10.如图,△ABC 中,∠ACB =90°,∠B =30°,AD 平分∠CAB ,DE ⊥AB 于点E ,连结CE 交AD 于点H ,则图中的等腰三角形有( ▲ ). A .2个 B .3个 C .4个 D .5个二.细心填一填,相信你一定会填对的!(本题有8小题,每小题3分,共24分)11.把命题“有两个角相等的三角形是等腰三角形”改写成“如果…那么…”的形式 ▲ . 12.当x ▲ 时,代数式33-+x x 有意义. 13.如图,已知∠ABC =∠DBC ,要使△ABC ≌△DBC ,请添加一个条件 ▲ .(只需写出一个条件)14.已知一个直角三角形的两直角边长分别为3和4,则该直角三角形斜边上的中线..长为▲ .15.如图,在△ABC 中,AB=AC ,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,如果BC =10,△BDC 的周长为22,那么AB = ▲ . 16.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(∠B =60°)的斜边AB 上,两块三角板的直角边交于点M .如果∠BDE =75°,那么∠AMD 的度数是 ▲ .17.在一个平面内把7根同样长的火柴棒首尾相接,围成一个等腰三角形,最多能围成 ▲NAMCB(第16题图)DBCA(第10题图)(第15题图)(第13题图)ABEFMDHEDACB甲乙丙第6题图E DA BC(第8题图)DEABC种不同的等腰三角形.18.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC =5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD 的周长是30,则这个风车的外围周长....是 ▲ . 三.动脑想一想,你一定会获得成功的!(本题有6小题,共46分)19、(本题6分)如图,已知AB=AC ,∠1=∠2,∠B =∠C ,则BD=CE .请说明理由:解:∵∠1=∠2∴∠1+∠BAC =∠2+________ 即∠EAC =∠DAB .在△ABD 和△ACE 中, ∠B =________(已知) ∵ AB =________(已知) ∠EAC =________(已证) ∴△ABD ≌△ACE (________)∴ BD=CE (__________________________________)20.(本题8分)图(a )和图(b )是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的长均为1.请分别画出符合要求的图形,所画图形的各顶点必须与方格纸中的小正方形的顶点重合.图(a ) 图(b )(1)请在图(a )中画出一个面积为6的等腰三角形. (2)请在图(b )中画出一个边长为10的等腰直角三角形.DCAB▲ ▲(第18题图)(第19题图)▲ ▲ ▲ ▲ CAB(图2)(图1)21DB CEA21.(本题6分)如图所示,在△ABC 中,CD 平分∠ACB ,DE ∥AC .(1)请找出图中的一个等腰三角形,并说明它是等腰三角形的理由. (2)若∠A =70°,∠B =30°,求∠DEC 的度数.22.(本题8分)如图,有一个△ABC ,三边长为AC =6,BC =8,AB =10,沿AD 折叠,使点C 落在AB 边上的点E 处.(1)试判断△ABC 的形状,并说明理由.(2)求线段CD 的长.23.(本题8分)如图,已知△ABC 是等边三角形,D 为边AC 的中点,AE ⊥EC ,BD =EC . (1)求证:△BDC ≌△CEA(2)请判断△ADE 是什么三角形,并说明理由.24.(本题10分)如图,AB ⊥BC ,射线CM ⊥B C ,且BC =4,AB =1,点P 是线段BC (不与点B 、C 重合)上的动点,过点P 作DP ⊥AP 交射线CM 于点D ,连结AD . (1)如图1,若BP =3,求△ABP 的周长.(2)如图2,若DP 平分∠ADC ,试猜测PB 和PC 的数量关系,并说明理由. (3)若△PDC 是等腰三角形,作点B 关于AP 的对称点B ′,连结B ′D ,则B ′D =__________.(请直接写出答案)(第23题图)DEABC(第22题图)EDBCADCEBA(第21题图)MDCBA PMDCBA PMCBA八年级数学答题卷温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现! 题号一 二 三 总 分 1—1011—1819 20 21 22 23 24 得分一.精心选一选,相信你一定会选对的!(本题有10小题,每小题3分,共30分。
温州市瓯海区2013-2014学年上学期期中检测八年级语文试卷亲爱的同学:欢迎你参加考试!做题时要认真审题,积极思考,细心答题,发挥你的最佳水平。
答卷时,请注意以下几点:1. 本卷满分总计120分,考试时间110分钟。
2. 答题前务必在答题卷密封区内写好班级、姓名、学号、准考证号等。
3.答案请写在答题卷相应的位置上,书写要规范、清楚,不要使用涂改液、修正带等。
祝你成功!一、书写(5分)书写要规范、清楚,卷面要保持整洁。
二、语文知识积累与运用(26分)1.读下面的文字,根据拼音写出相应的汉字。
(4分)今年的第一场雪在人们期盼的目光中如约而至。
我怀着一种yōu ( ▲ )闲的心情走进公园,zhù( ▲ )足欣赏银装素裹的美丽风光。
近处,这些造xíng( ▲ )各异的石刻狮子在白雪的覆盖下愈发显得生气勃勃。
远处,屋顶树木草坪全白了,像披上了一条洁白的纱巾。
周围一片宁静,往日的喧嚣在这一场雪后dàng( ▲ )然无存。
2.下列句子中加点成语运用不恰当...的一项是(▲)(3分)A.我同桌说话总是转弯抹角....,让人琢磨不透。
B.想到因为自己一时疏忽酿成如此大错,内疚和自责像洪水一样将他瞬间淹没,他张皇失...措.,不知道该怎么做才能弥补自己的过错。
C. 溶洞里的钟乳石千态百状,有的像卧虎,有的像白熊……无不惟妙惟肖....。
D. 自然之神用它神奇的刻刀将世间万景雕刻得巧妙绝伦....。
3.古诗文默写。
(8分)①会当凌绝顶,▲。
(杜甫《望岳》)②树树皆秋色,▲。
(王绩《野望》)③▲ ,孤帆天际看。
(孟浩然《早寒江上有怀》)④气蒸云梦泽,▲。
(《望洞庭湖赠张丞相》)⑤▲ ,芳草萋萋鹦鹉洲。
(崔颢《黄鹤楼》)⑥无丝竹之乱耳,▲。
(刘禹锡《陋室铭》)⑦汉乐府民歌《长歌行》中规劝人们珍惜青春,从小发奋努力,以免将来后悔遗憾的诗句是:▲ , ▲。
4.名著阅读:(4分)阅读下面选文,按要求回答问题。
八年级(上)期中数学试卷题号一二三总分得分@一、选择题(本大题共10小题,共30.0分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.:3.将下列长度的三根木棒首尾顺次相接,能组成三角形的是()A. 1cm,2cm,3cmB. 2cm,2cm,4cmC. 3cm,4cm,12cmD. 4cm ,5cm,6cm4.下列实际情景运用了三角形稳定性的是()A. 人能直立在地面上B. 校门口的自动伸缩栅栏门C. 古建筑中的三角形屋架D. 三轮车能在地面上运动而不会倒5.如图,已知∠ABC=∠ABD,则下列条件中,不能判定△ABC≌△ABD的是()A. AC=ADB. BC=BDC. ∠C=∠DD. ∠CAB=∠DAB6.在△ABC中,∠A=30°,∠B=75°,则△ABC是()—A. 直角三角形B. 钝角三角形C. 等边三角形D. 等腰三角形7.等腰三角形的腰长为3,底边长为4,则它的周长为()A. 7B. 10C. 11D. 10或118.定理“等腰三角形的两个底角相等”的逆定理是()A. 有两个角相等的三角形是等腰三角形B. 有两个底角相等的三角形是等腰三角形C. 有两个角不相等的三角形不是等腰三角形D. 不是等腰三角形的两个角不相等9.如图,在3×3网格中,已知点A,B是网格顶点(也称格点),若点C也是图中的格点,且使得△ABC为等腰三角形,则满足条件的点C的个数为()10.11.A. 3B. 4C. 5D. 612.如图,△ABC、△ADE及△EFG都是等边三角形,D和G分别为AC和AE的中点.若AB=4时,则图形ABCDEFG外围的周长是()<A. 12B. 15C. 18D. 2113.如图,在△ABC中,AB=AC,点D是AB的中点,BE⊥AC于点E.若DE=5cm,S△BEA=4S△BEC,则AE的长度是()A. 10B. 8C. 7.5D. 6二、填空题(本大题共8小题,共24.0分)14.“两直线平行,同位角相等”的条件是______ ,结论是______ .15.-16.如图,两根竹竿AB和DB斜靠在墙CE上,量得∠CAB=25°,∠CDB=15°,则∠ABD= ______ 度.17.18.19.20.21.22.23.如图,在△ABC中,AB=AC,点D是BC的中点,∠BAD=20°,则∠BAC= ______ 度.24.25.26.27.28.29.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是______cm.30.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=________.31.~34.35.36.37.如果等腰三角形的一个内角为50度,那么这个等腰三角形的底角是______ 度.38.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB= ______ cm.39.40.41.42.43.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4.直线l上有一点C在点P右侧,PC=4cm,过点C 作射线CD⊥l,点F为射线CD上的一个动点,连结AF.当△AFC与△ABQ全等时,AQ= ______ cm.三、解答题(本大题共6小题,共46.0分)44.#45.如图,点E、F在线段BC上且F在E的右侧,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.46.47.48.在学习中,小明发现:当n=1,2,3时,n2-10n的值都是负数.于是小明猜想:当n为任意正整数时,n2-10n的值都是负数.判断小明的猜想是真命题还是假命题,并说明你的理由.51.52.53.54.55.56.如图,已知△ABC,按如下步骤作图:57.①以A为圆心,AB长为半径画弧;58.②以C为圆心,CB长为半径画弧,两弧相交于点D;59.③连接BD,与AC交于点E,连接AD,CD.60.求证:AC所在的直线是BD的垂直平分线.61.62.63.64.65.66.67.68.两图均是4×4的正方形网格,格点A,格点B和直线l的位置如图所示,点P在直线l上.69.(1)请分别在图1和图2中作出点P,使PA+PB最短;70.(2)请分别在图3和图4中作出点P,使PA-PB最长.71.72.已知:如图AB∥CE,BE平分∠ABC,CP平分∠BCE交BE于点P.73.(1)求证:△BCP是直角三角形;74.(2)若BC=5,S△BCP=6,求AB与CE之间的距离.77.如图,在△ABC中,已知AB=AC=10√2cm,∠BAC=90°,点D在AB边上且BD=4cm,过点D作DE⊥AB交BC于点E.78.(1)求DE的长;79.(2)若动点P从点B出发沿BA方向以2cm/s的速度向终点A运动,连结PE,设点P运动的时间为t秒.当S△PDE=6cm2时,求t的值;80.(3)若动点P从点D出发沿着DA方向向终点A运动,连结PE,以PE为腰,在PE右侧按如图方式作等腰直角△PEF,且∠PEF=90°.当点P从点D运动到点A时,求点F运动的路径长(直接写出答案).答案和解析1.【答案】A【解析】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】}解:A、1+2=3,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、3+4<12,不能组成三角形,故此选项错误;D、4+5>6,能组成三角形,故此选项正确;故选:D根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.【答案】C【解析】解:古建筑中的三角形屋架是利用了三角形的稳定性,故选:C.利用三角形的稳定性进行解答.本题考查了三角形的稳定性在实际生活中的应用问题,关键是分析能否在同一平面内组成三角形.4.【答案】A【解析】解:A、添加AC=AD不能判定△ABC≌△ABD,故此选项符合题意;B、添加BC=BD可利用SAS判定△ABC≌△ABD,故此选项不符合题意;C、添加∠C=∠D可利用AAS判定△ABC≌△ABD,故此选项不符合题意;D、添加CAB=∠DAB可利用ASA判定△ABC≌△ABD,故此选项不符合题意;故选:A.根据全等三角形的判定方法SSS、SAS、ASA、AAS进行分析即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.解:∵在△ABC中,∠A=30°,∠B=75°,∴∠C=180°-30°-75°=75°,∴△ABC是等腰三角形.故选D.直接根据三角形内角和定理即可得出结论.本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.【答案】B【解析】>解:因为腰长为3,底边长为4,所以其周长=3+3+4=10.故选B由已知条件,根据等腰三角形的性质及周长公式即可求得其周长.本题考查了等腰三角形的性质;本题已知比较明确,思路比较直接,属于基础题.7.【答案】A【解析】解:定理“等腰三角形的两个底角相等”的逆定理是有两个角相等的三角形是等腰三角形,故选A.根据题意可以写出原定理的逆定理,本题得以解决.本题考查命题与定理,解题的关键是明确逆定理的定义.解:,故选C根据等腰三角形的判定可得答案.本题考查等腰三角形的判定,解题的关键是学会分类讨论,注意不能漏解.9.【答案】B【解析】解:∵△ABC、△ADE及△EFG都是等边三角形,D和G分别为AC和AE的中点,AB=AC=BC=4∴DE=CD=AC=×4=2,EF=GF=AG=DE=×2=1∴图形ABCDEFG外围的周长是AB+CD+BC+DE+EF+GF+AG=4+2+4+2+1+1+1=15故选B.利用平移性质可得图形ABCDEFG外围的周长等于等边三角形△ABC的周长加上AE,GF长,利用三角形中位线长定理可得其余未知线段的长.本题考查的是等边三角形的性质及三角形中位线定理.10.【答案】B【解析】—解:∵BE⊥AC,∴∠BEA=90°,∵DE=5,D为AB中点,∴AB=2DE=10,∴AC=AB=10.∵S△BEA=4S△BEC,∴AE•BE=4×CE•BE,∴AE=4CE,∴AE=AC=8.故选B.先根据直角三角形斜边上的中线求出AB长,即为AC长,再根据S△BEA=4S△BEC,得出AE=4CE,进而求出AE的长度.本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边一半的应用,三角形的面积,求出AB=2DE=10是解题的关键.11.【答案】两直线平行;同位角相等【解析】解:两直线平行;同位角相等.命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.“两直线平行,同位角相等”的条件是两直线平行,结论是同位角相等.要根据命题的定义和命题的组成来回答.12.【答案】10【解析】解:由三角形的外角的性质得,∠ABD=∠CAB-∠CDB=10°,故答案为:10.根据三角形的外角的性质列式计算,得到答案.本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.【答案】40【解析】解:∵AB=CA,∴△ABC是等腰三角形,∵D是BC边上的中点,∴AD平分∠BAC,∵∠BAD=20°.∴∠BAC=2×20°=40°.故答案为:40.由已知条件,利用等边三角形三线合一的性质进行求解.本题考查了等腰三角形的性质;利用三线合一是正确解答本题的关键.14.【答案】18【解析】:解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18cm,故答案为:18根据有一个角是60°的等腰三角形的等边三角形进行解答即可.此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.15.【答案】2【解析】解:∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,故答案为2.根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.16.【答案】50或65【解析】解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是40°或70°.故答案是:50或65.知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.此题考查了等腰三角形的性质.此题比较简单,解题的关键是注意掌握等边对等角定理的应用,注意分类讨论思想的应用.17.【答案】16【解析】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长-△EBC的周长=AB,∴AB=40-24=16(cm).故答案为:16.首先根据DE是AB的垂直平分线,可得AE=BE;然后根据△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,可得△ABC 的周长-△EBC的周长=AB,据此求出AB的长度是多少即可.(1)此题主要考查了垂直平分线的性质,要熟练掌握,解答此题的关键是要明确:垂直平分线上任意一点,到线段两端点的距离相等.(2)此题还考查了等腰三角形的性质,以及三角形的周长的求法,要熟练掌握.18.【答案】127【解析】-解:要使△AFC与△ABQ全等,则应满足,∵AQ:AB=3:4,AQ=AP,PC=4cm,∴AQ=.故答案为:.根据直角三角形的全等的判定解答即可.此题考查直角三角形的全等问题,关键是根据SAS证明三角形的全等.19.【答案】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,{AB=DC ∠B=∠C BF=CE∴△ABF≌△DCE(SSS)∴∠A=∠D.【解析】可通过全等三角形的判定定理证△ABF≌△DCE,再利用全等三角形的性质来得出∠A=∠D的结论.此题考查全等三角性的判定及性质,注意先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件是解答此题的关键.20.【答案】解:假命题.理由如下:如:当n=10时,n2-10n=102-10×10=0,不是负数,所以小明的猜想是假命题.【解析】利用反例可证明小明的猜想为假命题.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.21.【答案】证明:∵AD=AB,∴点A在线段BD的垂直平分线上,∵CD=CB,∴点C在线段BD的垂直平分线上,∴AC所在的直线是BD的垂直平分线.【解析】根据作图可得AD=AB,BC=CD,然后根据到线段两端点的距离相等的点在线段的垂直平分线上可得A、C都在BD的垂直平分线上,根据两点确定一条直线可得AC所在的直线是BD的垂直平分线.此题主要考查了线段的垂直平分线,关键是掌握到线段两端点的距离相等的点在线段的垂直平分线上.22.【答案】解:如图所示.【解析】(1)图1,根据两点之间线段最短,连接AB与直线l的交点即为点P,图2,找出点B关于直线l的对称点,连接AB′与直线l相交于点P,根据轴对称确定最短路线问题,点P即为所求;(2)图3,找出点B关于直线l的对称点B′,连接AB′并延长与直线l相交于点P,根据轴对称的性质,PB=PB′,此时,点P即为所求;图4,连接AB并延长与直线l相交于点P,点P即为所求.本题考查了轴对称确定最短路线问题,两点之间线段最短的性质,熟练掌握最短距离的确定方法是解题的关键.23.【答案】解:(1)∵AB∥CE,∴∠ABC+∠BCE=180°,又∵BE平分∠ABC,CP平分∠BCE,∴∠EBC+∠BCP=1(∠ABC+∠BCE)=90°,2∴△BCP是直角三角形;(2)过点P作PD⊥BC于点D,PF⊥AB于点F,延长FP交CE于点H.又∵AB∥CE,∴PH⊥CE,又∵BE,CP分别平分∠ABC,∠BCE,∴PD=PF=PH,∵BC=5,S△BCP=6,∴PD=2.4,∴FH=4.8,即AB与CE之间的距离是4.8.【解析】(1)先根据平行线的性质,得出∠ABC+∠BCE=180°,再根据BE平分∠ABC,CP平分∠BCE,求得∠EBC+∠BCP=(∠ABC+∠BCE)=90°,即可得出△BCP 是直角三角形;(2)过点P作PD⊥BC于点D,PF⊥AB于点F,延长FP交CE于点H,根据BE,CP分别平分∠ABC,∠BCE,得出PD=PF=PH,再根据S△BCP=6,求得PD=2.4,进而得出AB与CE之间的距离是4.8.本题主要考查了角平分线的性质以及平行线的性质,解决问题的关键是作辅助线,运用角平分线的性质以及三角形的面积进行计算.24.【答案】解:(1)∵AB =AC ,∠BAC =90°, ∴∠B =∠C =45°,∵DE ⊥AB ,∴∠B =∠BED =45°,∴DE =BD =4cm ;(2)当点P 在线段BD 上时,S △PDE =12×DP ×DE =12×4×(4-2t )=6,整理得,4-2t =3,解得,t =0.5,当点P 在线段AD 上时,S △PDE =12×DP ×DE =12×4×(2t -4)=6,整理得,2t -4=3,解得,t =3.5,综上所述,t =0.5或3.5;(3)点F 运动的路径长为10√2-4.理由如下:过点F 作FH ⊥DE 于点H .∵∠PEF =90°,∴∠PED +∠FEH =90°,∴∠PED =∠EFH ,在△PDE 和△EHF 中,{∠PED =∠FEH ∠PDE =∠HEF EP =EH,∴△PDE ≌△EHF ,∴FH =DE =4,∴当P 从点D 运动到点A 时,点F 运动的路径为线段,该线段的长度=AD =10√2-4.【解析】(1)根据等腰直角三角形的性质解答;(2)分点P 在线段BD 上和点P 在线段AD 上两种情况,根据三角形的面积公式计算;(3)证明△PDE ≌△EHF ,根据全等三角形的性质、结合图形解答即可.本题考查的是三角形的知识的综合运用,掌握等腰直角三角形的性质、全等三角形的判定定理和性质定理是解题的关键.。
20013-2014学年上学期期中考试八年级·数学(全卷满分100分,考试时间:120分钟)一、选择题(每小题3分,共24分)1、如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB . AM ∥CNC .AB = CD D . AM =CN2、如图,△ABC ≌△CDA ,AB=5,BC=6,AC=7,则AD 的边长是( )A .5B .6C .7D .不能确定3、已知等腰三角形的两边长分别为4cm 、8cm ,则该等腰三角形的周长是( )A .12cmB .16cmC .16cm 或20cmD .20cm4、已知:如图,AC=AE ,∠1=∠2,AB=AD ,若∠D=25°,则∠B 的度数为 ( ) A 、25° B 、30°C 、15°D 、30°或15°5、在△ABC 内一点P 满足PA=PB=PC ,则点P 一定是△ABC ( )A 、三条角平分线的交点B 、三边垂直平分线的交点C 、三条高的交点D 、三条中线的交点6、一个多边形的内角和是外角和的2倍,则这个多边形的边数是( )A 、4B 、5C 、6D 、77、如图,△ABC 中,∠C=90°,AM 平分∠CAB ,CM=20cm ,那么M 到AB 的距离是( )A 、10cmB 、15cmC 、20cmD 、25cm二、填空题:(本题共8个小题,每小题3分,共24分)11、已知等腰三角形的一个角是80°,则它的底角是_____________.12、如图,在△ABC 中,AB =AC ,AD ⊥BC 于D 点,点E 、F 分别是AD 的三等分点,若△ABC 的面积为182cm ,则图中阴影部分面积为_________2cm .A BDCMN第4题第7题*13、如图,在△ABC 中,∠C =90°,BD 平分∠ABC ,若CD =3cm ,则点D 到AB 的距离为____________cm.14、如图把Rt △ABC (∠C=90°)折叠,使A 、B 两点重合,得到折痕ED •,•再沿BE 折叠,C 点恰好与D 点重合,则∠A 等于________度. .*16、如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,CD 是斜边AB 上的高,若AB =8,则BD=__________.三、解答题 21.(8分)如图7,AD 是△ABC 的中线,CE ⊥AD 于E , BF ⊥AD 交AD•的延长线于F ,求证:CE=BF 。
钟书教育一对一辅导2013-2014学年八年级(上)期中数学试卷一、选择题.(4分×10=40分)1.(4分)如图,已知△ABC≌△EFD,∠C=∠D,AB=EF,则下列说法错误的是()A.B C=FD B.A C=EF C.∠A=∠DEF D.A E=BF2.(4分)如图,OA=OB,OC=OD,∠O=50°,∠C=28°,∠BED的度数是()A.62°B.55°C.74°D.50°3.(4分)下列条件中,不一定能证明两个三角形全等的是()A.两边和一角对应相等B.两角和一边对应相等C.三边对应相等D.两边对应相等的两个直角三角形4.(4分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形5.(4分)在三角形内部,到三角形三边距离相等的点是()A.三条中线的交点B.三条高线交点C.三个内角平分线交点D.三边垂直平分线交点6.(4分)如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠1=∠2;②BE=CF;③CD=DN;④△ACN≌△ABM,其中正确的有()A.4个B.3个C.2个D.1个7.(4分)下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,148.(4分)如图,△ABC中,BC=10,边BC的垂直平分线DE分别交AB、BC于点E、D,BE=6,则△BCE的周长是()A.16 B.22 C.26 D.219.(4分)三角形中下列结论可能存在的有()①最小内角是20°②最大内角是100°③最小内角为89°④三个内角都等于60°⑤有两个内角都等于80°.A.①②③④B.①③④⑤C.②③④⑤D.①②④⑤10.(4分)画△ABC一边上的高,下列画法正确的是()A.B.C.D.二、填空题.(5分×6=30分)11.(5分)等腰三角形中,有一个底角是65°,则另外两个角分别为_________.12.(5分)两边长分别为为4cm、8cm的等腰三角形的周长是_________.13.(5分)(2004•哈尔滨)一个多边形的每一个外角都等于36°,则该多边形的内角和等于_________度.14.(5分)如图,在△ABC和△FED中,AD=FC,AB=FE,当添加条件_________时,既可以得到△ABC≌△FED.(只需填写一个你认为正确的条件)15.(5分)在△ABC中,∠A:∠B:∠C=1:2:3,则∠A=_________,∠B=_________,∠C=_________.16.(5分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为_________.三、作图题.(保留作图痕迹,本题8分)17.(8分)已知:△ABC,求作:△A′B′C′,使△A′B′C′≌△ABC.四、解答题.(共72分)18.(8分)已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.19.(8分)如图,PM⊥OA于M,PN⊥OB于N,PM=PN,∠BOC=30°,求∠AOB的度数.20.(10分)如图,AB=AC,BD⊥AC于点D,∠A=50°,求∠DBC的度数.21.(10分)(2012•横县一模)已知:如图,∠1=∠2,∠3=∠4.求证:AC=AD.22.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.23.(12分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.(12分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.2013-2014学年广东省汕尾市陆丰市内湖中学八年级(上)期中数学试卷参考答案与试题解析一、选择题.(4分×10=40分)1.(4分)如图,已知△ABC≌△EFD,∠C=∠D,AB=EF,则下列说法错误的是()A.B C=FD B.A C=EF C.∠A=∠DEF D.A E=BF考点:全等三角形的性质.分析:根据全等三角形对应边相等,对应角相等对各选项分析判断后利用排除法求解.解答:解:A、∵△ABC≌△EFD,∴BC=FD,正确,故本选项错误;B、∵△ABC≌△EFD,∴AC=DE,故本选项正确;C、∵△ABC≌△EFD,∴∠A=∠DEF正确,故本选项错误;D、∵AB=EF,∴AB﹣EB=EF﹣EB,即AE=BF,故本选项错误.故选B.点评:本题考查了全等三角形的性质,是基础题,熟记性质是解题的关键.2.(4分)如图,OA=OB,OC=OD,∠O=50°,∠C=28°,∠BED的度数是()A.62°B.55°C.74°D.50°考点:全等三角形的判定与性质.分析:首先证明△AOD≌△BOC,可得∠C=∠D,再利用三角形内角和定理计算出∠OBC,然后再利用内角与外角的关系可得答案.解答:解:在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴∠C=∠D=28°,∵∠O=50°,∠C=28°,∴∠OBC=180°﹣50°﹣28°=102°,∴∠BED=102°﹣28°=74°,故选:C.点评:此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形对应角相等.3.(4分)下列条件中,不一定能证明两个三角形全等的是()A.两边和一角对应相等B.两角和一边对应相等C.三边对应相等D.两边对应相等的两个直角三角形考点:全等三角形的判定.分析:根据三角形全等的判定定理,结合选项进行判定.解答:解:A、有两条边和一个角对应相等的三角形不一定全等,因为角的位置没有确定,不一定全等,故本选项正确;B、两角和一边对应相等,运用的是全等三角形判定定理中的AAS或ASA,可以证明两个三角形全等,故本选项错误;C、三边对应相等,运用的是全等三角形判定定理中的SSS,可以证明两个三角形全等,故本选项错误;D、两边对应相等的两个直角三角形全等,若是两条直角边,可以根据SAS判定全等,若是直角边与斜边,可根据HL判定全等,故本选项错误;故选A.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(4分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形考点:三角形的稳定性.分析:稳定性是三角形的特性.解答:解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选C.点评:稳定性是三角形的特性,这一点需要记忆.5.(4分)在三角形内部,到三角形三边距离相等的点是()A.三条中线的交点B.三条高线交点C.三个内角平分线交点D.三边垂直平分线交点考点:角平分线的性质.分析:根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,即可得出答案.解答:解:由角平分线的性质,得出到三角形三边距离相等的点是三个内角平分线交点.故选:C.点评:此题主要考查了角平分线的性质,熟练利用角平分线的性质是解决问题的关键.6.(4分)如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠1=∠2;②BE=CF;③CD=DN;④△ACN≌△ABM,其中正确的有()A.4个B.3个C.2个D.1个考点:全等三角形的判定与性质.分析:由∠E=∠F=90°,∠B=∠C,AE=AF,根据直角三角形全等的判定得到Rt△ABE≌Rt△ACF,则BE=C,∠EAB=∠FAC得到①②正确;易证Rt△AEM≌Rt△AFN,得到AM=AN,则MC=BN,易证得△ACN≌△ABM,得到④正确;△DMC≌△DMB,则DC=DB,得到③错误.解答:解:如图,∵∠E=∠F=90°,∠B=∠C,AE=AF,∴Rt△ABE≌Rt△ACF,∴BE=CF,所以②正确;∴∠EAB=∠FAC,∴∠1=∠2,所以①正确;∴Rt△AEM≌Rt△AFN,∴AM=AN,而∠MAN公共,∠B=∠C,∴△ACN≌△ABM,所以④正确;∵AC=AB,AM=AN,∴MC=BN,而∠B=∠C,∴△DMC≌△DMB,∴DC=DB,所以③错误;故选B.点评:本题考查了全等三角形的判定与性质:有两组角对应相等,并且有一条边对应相等相等的两个三角形全等;全等三角形的对应边相等,对应角相等.也考查了直角三角形全等的判定.7.(4分)下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,14考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵5+6<11,∴不能组成三角形,故本选项错误;B、∵8+8=16,∴不能组成三角形,故本选项错误;C、∵5+4<10,∴不能组成三角形,故本选项错误;D、∵6+9>14,∴能组成三角形,故本选项正确.故选D.点评:本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.8.(4分)如图,△ABC中,BC=10,边BC的垂直平分线DE分别交AB、BC于点E、D,BE=6,则△BCE的周长是()A.16 B.22 C.26 D.21考点:线段垂直平分线的性质.分析:由DE垂直平分线BC,可求得CE=BE=6,继而求得△BCE的周长.解答:解:∵DE垂直平分线BC,∴CE=BE=6,∵BC=10,∴△BCE的周长是:BE+CE+BC=22.故选B.点评:此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.9.(4分)三角形中下列结论可能存在的有()①最小内角是20°②最大内角是100°③最小内角为89°④三个内角都等于60°⑤有两个内角都等于80°.A.①②③④B.①③④⑤C.②③④⑤D.①②④⑤考点:三角形内角和定理.分析:根据三角形内角和定理对各小题进行逐一分析即可.解答:解:①若最小内角为20°,则其余两角的和等于160°,故本小题正确;②若最大内角是100°,则其余两角的和等于80°,故本小题正确;③若最小内角为89°,则3×89°=267°>180°,故本小题错误;④三个内角都等于60°,则此三角形是等边三角形,故本小题正确;⑤若两个内角都等于80°,则另一个内角等于20°,故本小题正确.所以正确的有:①②④⑤.故选D.点评:本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.10.(4分)画△ABC一边上的高,下列画法正确的是()A.B.C.D.考点:三角形的角平分线、中线和高.分析:根据三角形的高线的定义对各选项分析判断后利用排除法求解.解答:解:A、AB、CD不垂直,所以CD不是AB边上的高,故本选项错误;B、AD、BC不垂直,所以AD不是BC边上的高,故本选项错误;C、AD⊥BC,所以CD是AB边上的高,故本选项正确;D、AD、BC不垂直,所以AD不是BC边上的高,故本选项错误.故选C.点评:本题考查了三角形的高线的定义,是基础题,熟记高线的定义及图形是解题的关键.二、填空题.(5分×6=30分)11.(5分)等腰三角形中,有一个底角是65°,则另外两个角分别为65°,50°.考点:等腰三角形的性质.分析:因为等腰三角形的两个底角相等,三角形的内角和是180°,从而可以分别求另外两个内角的度数.解答:解:另一个底角是65°,则顶角的度数:180°﹣65°×2=50°;则另外两个角分别为65°,50°.故答案为:65°,50°.点评:此题主要考查三角形的内角和及等腰三角形的性质:等腰三角形的两个底角相等.12.(5分)两边长分别为为4cm、8cm的等腰三角形的周长是20cm.考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为4cm和8cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:①8cm为腰,4cm为底,此时周长为20cm;②8cm为底,4cm为腰,则两边和等于第三边无法构成三角形,故舍去.∴其周长是20cm.故答案为:20cm.点评:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(5分)(2004•哈尔滨)一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.考点:多边形内角与外角.专题:计算题;压轴题.分析:任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n﹣2)•180°即可求得内角和.解答:解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.点评:本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.14.(5分)如图,在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=DE时,既可以得到△ABC≌△FED.(只需填写一个你认为正确的条件)考点:全等三角形的判定.专题:开放型.分析:添加条件BC=DE,根据AD=CF可得AC=DF,再加上条件AD=FC,AB=FE可用SSS定理证明△ABC≌△FED.解答:解:添加条件BC=DE,理由:∵AD=CF,∴AD+DC=CF+DC,即AC=DF,在△ABC和△FED中,,∴△ABC≌△FED(SSS).故答案为:DE=BC.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.(5分)在△ABC中,∠A:∠B:∠C=1:2:3,则∠A=30°,∠B=60°,∠C=90°.考点:三角形内角和定理.分析:设∠A=x°,∠B=2x°,∠C=3x°,根据∠A+∠B+∠C=180°得出方程x+2x+3x=180,求出x即可.解答:解:∵∠A:∠B:∠C=1:2:3,∴设∠A=x°,∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°,∴x+2x+3x=180,x=30,∴∠A=30°,∠B=60°,∠C=90°,故答案为:30°,60°,90°.点评:本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.16.(5分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.考点:轴对称的性质.分析:P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.解答:解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.三、作图题.(保留作图痕迹,本题8分)17.(8分)已知:△ABC,求作:△A′B′C′,使△A′B′C′≌△ABC.考点:作图—复杂作图;全等三角形的判定.分析:作AC=A′C′,A′B′=AB,BC=B′C′.根据全等三角形的判定可得△A′B′C′≌△ABC.解答:解:如图所示:点评:此题主要考查了复杂作图,关键是掌握三边对应相等的两个三角形全等.四、解答题.(共72分)18.(8分)已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.考点:全等三角形的判定;全等三角形的性质.分析:根据SSS推出△ABD≌△CDB,根据全等三角形性质推出即可.解答:证明:在△ABD和△CDB中,∴△ABD≌△CDB(SSS),∴∠A=∠C.点评:本题考查了全等三角形性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.19.(8分)如图,PM⊥OA于M,PN⊥OB于N,PM=PN,∠BOC=30°,求∠AOB的度数.考点:角平分线的性质.分析:根据角平分线性质得出P在∠AOB的角平分线上,推出∠AOB=2∠BOC,求出即可.解答:解:∵PM⊥OA于M,PN⊥OB于N,PM=PN,∴P在∠AOB的角平分线上,∴∠AOB=2∠BOC=2×30°=60°.点评:本题考查了角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.20.(10分)如图,AB=AC,BD⊥AC于点D,∠A=50°,求∠DBC的度数.考点:等腰三角形的性质.分析:根据等腰三角形的性质和已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=50°,∴∠ABC=∠ACB=65°∵BD⊥AC,∴∠DBC=90°﹣65°=25°.故∠DBC的度数是25°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.21.(10分)(2012•横县一模)已知:如图,∠1=∠2,∠3=∠4.求证:AC=AD.考点:全等三角形的判定与性质.专题:证明题.分析:已知∠3=∠4,可知∠ABD=∠ABC,然后根据角边角定理可判断△ABD≌△ABC,即可求证AC=AD.解答:证明:∵∠3=∠4,∴∠ABD=∠ABC(等角的补角相等),在△ABD与△ABC中,,∴△ADB≌△ACB(ASA),∴AC=AD.点评:此题主要考查学生对全等三角形的判定与性质的理解和掌握,解答此题的关键是根据等角的补角相等的性质求出∠ABD=∠ABC.22.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.考点:全等三角形的判定与性质.分析:(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD﹣DE.解答:(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.(12分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.考点:角平分线的性质;全等三角形的判定与性质.专题:证明题.分析:(1)根据角平分线性质可证ED=EC,从而可知△CDE为等腰三角形,可证∠ECD=∠EDC;(2)由OE平分∠AOB,EC⊥OA,ED⊥OB,OE=OE,可证△OED≌△OEC,可得OC=OD;(3)根据SAS证出△DOF≌△COF,得出DF=FC,再根据ED=EC,OC=OD,可证OE是线段CD的垂直平分线.解答:证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴Rt△OED≌Rt△OEC(HL),∴OC=OD;(3)在△DOF和△COF中,∵,∴△DOF≌△COF,∴DF=FC,∵ED=EC,∴OE是线段CD的垂直平分线.点评:本题考查了角平分线性质,线段垂直平分线的判定,等腰三角形的判定,三角形全等的相关知识.关键是明确图形中相等线段,相等角,全等三角形.24.(12分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.考点:全等三角形的判定与性质.分析:(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.解答:(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴△BHF∽△CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.点评:此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握判定与性质是解本题的关键.参与本试卷答题和审题的老师有:CJX;sd2011;sjzx;星期八;lf2-9;zhjh;HJJ;自由人;zjx111;dbz1018;zcx;HLing;zzz;hnaylzhyk;caicl;gsls;fxx;zhangCF(排名不分先后)菁优网2013年12月31日。
(第3题)(第4题)(第6题)(第8题)温州市瓯海区2013-2014学年上学期期中检测八年级数学试卷2013.11温馨提示:试卷满分100分, 考试时间100分钟, 共3大题, 24小题, 6页; 细心审题,谨慎答题,相信你能表现最好!一、选择题(本大题有10小题,每小题3分,共30分) 1. 下列为轴对称图形的是( ).2. 下列各数可能是一个三角形的边长的是( ). A. 1,3,5B. 3,4,5C. 2,2,4D. 1,23. 如图,∠A =70º,∠2=130º,则∠1=( ).A. 130ºB. 120ºC. 140ºD. 110º 4. 用直尺和圆规作一个角等于已知角的示意图如下, 其中说明△COD ≌△D O C '''的依据是( ). A. SSS B. SASC. ASAD. AAS5. 下列命题中,是假.命题的是( ). A. 等边三角形只有一条对称轴B. 若a ∥b ,a ∥c ,则b ∥cC. 成轴对称的两个图形是全等图形D. 等腰三角形两腰上的中线相等6. 如图,在ΔABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M , 交AC 于N ,若 BM+CN=9,则线段MN 的长为( ). A. 6 B. 7C. 8D. 97. 满足下列条件的△ABC 中,不是..直角三角形的是( ). A. ∠A +∠B =∠C B. ∠A =3∠B =4∠C C. ∠A ∶∠B ∶∠C =2∶3∶5D. 一个外角等于和它相邻的一个内角8. 如图,CD 是ABC Rt ∆斜边AB 上的高,将∆BCD 沿CD 折叠, B 点恰好落在AB 的中点E 处,则∠A 等于( ). A. 25B. 30C. 45D. 609. 等腰三角形的一个外角是130︒,则它的底角..等于( ). A. 50︒B. 50︒或70︒C. 65︒D. 50︒或65︒10. 如图,已知每个小方格的边长为1,A 、B 、C 三点都在小方格的顶点上,则点C 到AB 所在直线的距离等于( ).(第10题)A.810 B.108 C. 10 D. 8二、填空题(本大题有6小题,每小题3分,共18分)11. 在Rt △ABC 中,一个锐角为25°, 则另一个锐角为________.12. 如图所示,要测量河两岸相对的两点A 、B 的距离,在AB 的垂线BF 上取两点C 、D ,使BC=CD ,过D 作BF 的垂线DE ,与AC 的延长线交于点E ,若测得DE 的长为25 米, 则河宽AB 长为_________.13. 如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是:_______________.14. △ABC 中,∠A 与∠B 的平分线相交于点P ,若点P 到AB 的距离为10,则它到AC 的距离为 .15. 如图,Rt △ABC 中,AC = BC = 4, 点D 、E 分别是AB 、AC 的中点,在CD 上找一点P ,使PA + PE 最小,则这个最小值是 .16. 如图,图①是一块边长为1,周长记为P 1的等边三角形纸板,沿图①的底边剪去一块边长为12的正等边角形纸板后得到图②,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉等边三角形纸板边长的12)后,得图③,④,…,记图n(n≥3) 的纸板周长为P n ,则P n -P n-1= .三、解答题(本大题有8小题,共52分)17. (6分) 如图,在△ABC 中,AB =AC ,∠ABC =72°.(1) 用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2) 在(1) 中作出∠ABC 的平分线BD 后,求∠BDC 的度数.B D CAEF……① ② ③④第16题第15题第12题 第13题18. (6分) 如图,∠B=∠E=Rt ∠,AB=AE ,∠1=∠2,请证明∠3=∠4 .19. (6分) 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD =∠BCE =90°,AE 交DC 于F ,BD 分别交CE ,AE 于点G 、H . 试猜测线段AE 和BD 数量关系,并说明理由.+20. (6分) 如图,在△ABC 中,AB =AC ,AD 和BE 是高,它们相交于点H ,且AE =BE . 求证:AH =2BD .AEDC B12 3 4第17题第18题第20题 第19题第20题21. (6分) 如图,在ABC ∆中,32B ︒∠=,48C ︒∠=,AD BC ⊥于点D ,AE 平分BAC ∠ 交BC 于点E ,DF AE ⊥于点F ,求ADF ∠的度数.22. (6分) 如图所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S ∆ =4,则BEF S ∆ 的值为多少。
23. (8分) 如图,在四边形ABCD 中,DC ∥AB , BD 平分∠ADC , ∠ADC=60°,过点B第21题 第22题M EGF DBA第24题EFD CBA 作BE ⊥DC ,过点A 作AF ⊥BD ,垂足分别为E 、F ,连接EF.判断△BEF 的形状,并 说明理由.(第23题)24. (8分) 如图,在ABC ∆中,BAD DAC ∠=∠,DF AB ⊥,DM AC ⊥,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点 向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为. (1) 求证:在运动过程中,不管取何值,都有2AED DGC S S ∆∆=; (2) 当取何值时,DFE ∆与DMG ∆全等.参考答案一、选择题(本大题有10小题,每小题3分,共30分) 1.A 2.B 3.B 4.A 5.A 6.D 7.B 8.B 9.D 10.B二、填空题(本大题有6小题,每小题3分,共18分)………………………………密……………………………………封………………11.65° 12. 25米(没有单位不扣分) 13.略 14.10 15.( 2) 16.()n-1三、解答题(本大题有8小题,共52分) 17.(6分)(1)略(3分)(2) ∵∠ABC=72°,AB=AC ∴∠C=72°......1分∵BD 平分∠ABC∴∠DBC=∠ABC=36°.....1分 ∴∠BDC=180-∠C-∠DBC=72°.....1分18.(6分)∵∠1=∠2 ∴AC=AD .....2分 ∵∠B=∠E=Rt∠,AB=AE ∴△ABC △AED(HL) .....3分 ∴ ∠3=∠4 .....1分19.(6分)∵△ACD 和△BCE 都是等腰直角三角形,∠ACD =∠BCE =90°∴AC=DC ,BC=CE .....2分又∵∠ACD+∠DCE =∠BCE ∠DCE 即∠ACE=∠DCB .....1分 ∴△AC △DCB(SAS) .....2分 ∴AE=DB .....1分20.(6分)∵AD 是高,BE 是高∴∠EBC+∠C=∠CAD+∠C=90°∴∠EBC=∠CAD ........2分 又∵AE =BE ∠AEH=∠BEC∴△AEH △BEC(ASA) ........2分 ∴AH =BC∵AB =AC ,AD 是高 ∴BC=2BD ∴AH =2BD ........2分DEDC BA1 23 4M E FA21. (6分)∵在ABC ∆中,32B ︒∠=,48C ︒∠=,∴∠BAC =100°........1分∵AE 平分BAC ∠ ∴∠CAE =50°........1分 ∵AD BC ⊥ ∴∠CAD=42°........1分 ∴∠DAE=8°........1分 ∵DF AE ⊥ ∴∠ADF=82°........2分22(6分).∵点D 是BC 的中点 ∴BD=DC ∴=........2分 同理:,== ∴===1 ∴=2........2分 ∵点F 是EC 的中点 ∴==1........2分23.(8分)等边三角形,理由如下 ∵∠ADC=60°,BD 平分∠ADC ∴∠ADE=∠BDE=30°........1分 ∵DC ∥AB∴∠ABD=∠BDC ........1分 ∵AF ⊥BD∴DF=BF ........1分 ∵BE ⊥DC∴DF=BF=EF ........1分 ∴∠FDE=∠FED=30°........1分 ∴∠BFE=∠BDE+∠FED=60°........1分 ∴BFE 是等边三角形........2分 24. (8分)(1)22AE tGC t ===2AED DGC S S ∆∆∴= ………(4分)EFDCBA(2) DEF DMG ∆≅∆ EF MG ∴=4MG t =-当时,1024t t -=- 6t ∴=当6t =时,20MG =-<,所以3t =舍去………(6分)4MG t =-当时,1024t t -=-143t ∴=综上所述,当143t =时,DEF ∆与DMG ∆全等………(8分)∵。