【人教版】2014中考多边形与平行四边形复习题及答案
- 格式:doc
- 大小:88.50 KB
- 文档页数:5
中考数学复习多边形与平行四边形专题训练1. 一个多边形每个外角都为72°,该多边形的边数是( )A.4 B.5 C.6 D.72. 如图,▱ABCD的对角线AC,BD相交于点O,则下列说法一定正确的是( )A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB3.如图,在▱ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为( )A.53° B.37° C.47° D.123°4.在四边形ABCD中,对角线AC,BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( )A.1组 B.2组 C.3组 D.4组5. 如图,从一个等边三角形纸片中剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180° B.200° C.220° D.240°6. 如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于( )A .2B .3C .4D .67. 如图,将▱ABCD 折叠,使顶点D 恰好落在AB 边上的点M 处,折痕为AN ,那么对于结论:①MN ∥BC ;②MN =AM.下列说法正确的是( )A .①②都对B .①②都错C .①对②错D .①错②对8. 如图,▱ABCD 的顶点B ,D 都在反比例函数y =(x>0)的图象上,点D 的k x坐标为(2,6),AB 平行于x 轴,点A 的坐标为(0,3),将▱ABCD 先向左平移2个单位,再向下平移3个单位后,点C 的坐标为( )A .(1,3)B .(4,3)C .(1,4)D .(2,4)9. 如图,在▱ABCD 中,CD =2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连结EF ,BF.下列结论:①∠ABC =2∠ABF ;②EF =BF ;③S 四边形DEBC =2S △EFB ;④∠CFE =3∠DEF.其中正确的个数为( )A .1B .2C .3D .410. 如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =.11. 如图,点D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,连结DE ,EF ,FD ,则图中平行四边形的个数为 .12. 如图,把▱ABCD 绕点A 逆时针旋转30°,得到▱AB′C′D′,点B′恰好落在BC 边上,则∠C = °.13. 如图,已知▱OABC 的顶点A ,C 分别在直线x =1和 x =4上,O 是坐标原点,则对角线OB 长的最小值为 .14. 如图,分别以Rt △ABC 的直角边AC 及斜边AB 为边向外作等边三角形ACD 、等边三角形ABE ,EF ⊥AB ,垂足为F ,连结DF ,当= AC AB时,四边形ADFE 是平行四边形.15. 如图,在▱ABCD 中,连结BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连结AF ,CE.求证:AF ∥CE.16. 如图,四边形ABCD为平行四边形,∠BAD的平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连结BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.17. 如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连结BE.(1)求证:四边形BCED′是平行四边形;(2)若BE平分∠ABC,求证:AB2=AE2+BE2.答案与解析1. B2. C3. B4. C5. D6. C7. A8. B 解析:∵点D(2,6)在反比例函数y =(x>0)的图象上,∴k =xy =2×6=k x12,∴反比例函数的表达式为y =.∵点A 的坐标为(0,3),∴点B 的纵坐标12x为3,∴3=,解得x =4,∴点B(4,3).∵四边形ABCD 是平行四边形,12x∴点C(6,6),∴将▱ABCD 先向左平移2个单位,再向下平移3个单位后,点C 的坐标为 (4,3).故选B .9. D解析:如图,延长EF 交BC 的延长线于点G ,取AB 的中点H ,连结FH.∵CD =2AD ,DF =FC ,∴CF =CB ,∴∠CFB =∠CBF.∵CD ∥AB ,∴∠CFB =∠FBH ,∴∠CBF =∠FBH ,∴∠ABC =2∠ABF ,故①正确;∵DE ∥CG ,∴∠D =∠FCG.∵DF =FC ,∠DFE =∠CFG ,∴△DFE ≌△CFG ,∴FE =FG.∵BE ⊥AD ,∴∠AEB =90°.∵AD ∥BC ,∴∠AEB =∠EBG =90°,∴BF =EF =FG ,故②正确;∵S △DFE =S △CFG ,∴S 四边形DEBC =S △EBG =2S △BEF ,故③正确;∵AH =HB ,DF =CF ,AB =CD ,∴CF =BH.∵CF ∥BH ,∴四边形BCFH 是平行四边形.∵CF =BC ,∴四边形BCFH 是菱形,∴∠BFC =∠BFH.∵FE =FB ,FH ∥AD ,BE ⊥AD ,∴FH ⊥BE ,∴∠BFH =∠EFH =∠DEF ,∴∠EFC =3∠DEF ,故④正确.故选D .10. 36°11. 312. 10513. 5 解析:当点B 在x 轴上时,对角线OB 的长最小.如图,直线x =1与x 轴交于点D ,直线x =4与x 轴交于点E ,根据题意,得∠ADO =∠CEB =90°,OD =1,OE =4.∵四边形ABCO 是平行四边形,∴OA ∥BC ,OA =BC ,∴∠AOD =∠CBE ,∴△AOD ≌△CBE ,∴OD =BE =1,∴OB =OE +BE =5.14. 解析:若四边形ADFE 是平行四边形,则EF =AD =AC .32∵△ABE 是等边三角形,EF ⊥AB ,AF =AB =AE.由勾股定理,得EF =12123AF ,∴===.AC AB EF AE 3AF 2AF 3215. 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠1=∠2.∵BF =DE ,∴BF +BD =DE +BD ,即DF =BE.在△ADF 和△CBE 中,{AD =CB ,∠1=∠2,DF =BE ,)∴△ADF ≌△CBE ,∴∠AFD =∠CEB ,∴AF ∥CE.16. (1) 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB =CD ,∴∠E =∠DAE.∵AE 是∠BAD 的平分线,∴∠BAE =∠DAE ,∴∠BAE =∠E ,∴AB =BE ,∴BE =CD .(2) 解:∵AB =BE ,∠BEA =60°,∴△ABE 是等边三角形,∴AE =AB =4.∵BF ⊥AE ,∴AF =EF =2,∴BF ===2.∵AD ∥BC ,∴∠AB 2-AF 242-223D =∠ECF ,∠DAF =∠E.在△ADF 和△ECF 中,∴△ADF ≌{∠D =∠ECF ,∠DAF =∠E ,AF =EF ,)△ECF(AAS),∴△ADF 的面积=△ECF 的面积,∴平行四边形ABCD 的面积=△ABE 的面积=AE·BF =×4×2=4.12123317. (1) 证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∠ABC =∠D .由折叠的性质,可得∠AD′E =∠D ,∴∠ABC =∠AD′E ,∴BC ∥ED′.∵CE ∥BD′,∴四边形BCED′是平行四边形.(2) 证明:由折叠的性质,可得∠DEA =∠D′EA .又∵四边形BCED′是平行四边形,BE 平分∠ABC ,∴∠CEB =∠D′EB ,∴∠D′EA +∠D′EB =90°,即∠AEB =90°, ∴AB 2=AE 2+BE 2.。
多边形和平行四边形一、填空题1.如图,□ABCD中,∠B=50°,AB=5cm,BC=7cm,则∠D=度,□ABCD的周长为cm.2.如图:□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为cm.3.如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为.二、选择题4.如图,已知□ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(﹣2,3),则点C的坐标为()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)5.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AD=BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OD=OB 6.如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥DC,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对7.如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC三、解答题8.如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.9.已知:□ABCD的对角线交于点O,点P是直线BD上任意一点(异于B、O、D三点),过P点作平行于AC的直线,交直线AD于E,交直线AB于F.(1)若点P在线段BD上(如图所示),试说明:AC=PE+PF;(2)若点P在BD或DB的延长线上,试探究AC、PE、PF满足的等量关系式(只写出结论,不作证明).10.如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长.11.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD 所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S的最大值.12.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是.13.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)14.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).多边形和平行四边形参考答案与试题解析一、填空题1.如图,□ABCD中,∠B=50°,AB=5cm,BC=7cm,则∠D=50度,□ABCD的周长为24cm.【考点】平行四边形的性质.【分析】根据平行边形性质中对角、对边相等可知,∠B=∠D=50°,平行四边形的周长=2(AB+BC).【解答】解:①∵四边形ABCD是平行四边形,∴∠D=∠B∵∠B=50°∴∠D=50°②∵四边形ABCD是平行四边形,∴AD=BC,AB=CD∵AB=5cm,BC=7cm∴□ABCD的周长为:2(AB+BC)=24cm.故答案为50、24.【点评】本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.2.如图:□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为8cm.【考点】平行四边形的性质.【分析】平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=28,则AB+BC=14cm,而△ABC的周长=AB+BC+AC=22,所以AC=22﹣14=8cm.【解答】解:∵□ABCD的周长是28 cm∴AB+AD=14cm∵△ABC的周长是22cm∴AC=22﹣(AB+AC)=8cm故答案为8.【点评】在应用平行四边形的性质解题时,要根据具体问题,有选择地使用,避免混淆性质,以致错用性质.3.如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为2.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】作EF∥AB,交AD于F,可证ABEF、CDFE为平行四边形,又AE平分∠BAD,可进一步证明AB=BE,ABEF为菱形,则AF=AB=3,DF=5﹣3=2,则EC=2.【解答】解:过点E作EF∥AB,交AD于F∵在□ABCD,EF∥AB∴AB=EF,AF=BE∵∠FAE=∠BAE∴△AFE≌△ABE∴AB=BE=EF=AF∴ABEF为菱形∴EC=AD﹣AB=2.故答案为:2.【点评】此题综合性较强,考查了平行四边形的判定及性质、菱形的判定、角平分线的定义等知识点.二、选择题(共4小题,每小题4分,满分16分)4.如图,已知□ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(﹣2,3),则点C的坐标为()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)【考点】平行四边形的性质;坐标与图形性质.【分析】根据平行四边形是中心对称的特点可知,点A与点C关于原点对称,所以C的坐标为(2,﹣3).【解答】解:∵在平行四边形ABCD中,A点与C点关于原点对称∴C点坐标为(2,﹣3).故选D.【点评】主要考查了平行四边形的性质和坐标与图形的关系.要会根据平行四边形的性质得到点A与点C关于原点对称的特点,是解题的关键.5.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AD=BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OD=OB【考点】平行四边形的判定.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.不能判定四边形ABCD是平行四边形的是C【解答】解:A、根据一组对边平行且相等的四边形是平行四边形,可以判定,故正确;B、根据平行四边形的定义即可判定,故正确;C、一组对边平行,另一组对边相等的四边形,等腰梯形满足条件.故该选项错误.D、根据对角线互相平分的四边形是平行四边形可以判定.故正确.故选C.【点评】此题主要考查对平行四边形的判定掌握的熟练程度.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.6.如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥DC,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对【考点】平行四边形的性质.【专题】应用题;压轴题.【分析】由于在平行四边形中,已给出条件MN∥AB∥DC,EF∥DA∥CB,因此,MN、EF把一个平行四边形分割成四个小平行四边形,所以红、紫四边形的高相等,由此可证明S1S4=S2S3.【解答】解:设红、紫四边形的高相等为h1,黄、白四边形的高相等,高为h2,则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,因为DE=AF,EC=FB,故A错误;S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,故B错误;S1S4=DE•h1•FB•h2=AF•h1•FB•h2,S2S3=AF•h2•EC•h1=AF•h2•FB•h1,所以S1S4=S2S3,故C正确;故选:C.【点评】本题考查的是平行四变形的性质,平行四边形两组对边分别平行且相等,同时充分利用等量相加减原理解题,否则容易从直观上判断B是正确的.7.如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC【考点】平行四边形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】本题要综合分析,但主要依据都是平行四边形的性质.【解答】解:A、∵AD∥BC∴△AFD∽△EFB∴====4S△EFB;故S△AFDB、由A中的相似比可知,BF=DF,正确.C、由∠AEC=∠DCE可知正确.D、利用等腰三角形和平行的性质即可证明.故选:A.【点评】解决本题的关键是利用相似求得各对应线段的比例关系.三、解答题8.如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题;探究型.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.【点评】本题考查了等边三角形的性质及平行四边形的判定.多种知识综合运用是解题中经常要遇到的.9.已知:□ABCD的对角线交于点O,点P是直线BD上任意一点(异于B、O、D三点),过P点作平行于AC的直线,交直线AD于E,交直线AB于F.(1)若点P在线段BD上(如图所示),试说明:AC=PE+PF;(2)若点P在BD或DB的延长线上,试探究AC、PE、PF满足的等量关系式(只写出结论,不作证明).【考点】平行线分线段成比例;平行四边形的判定与性质.【专题】证明题;探究型.【分析】(1)先判定四边形AFGC是平行四边形,再根据平行四边形的对边相等的性质知AC=FG;然后由被平行线所截的线段对应成比例(==)求出PE与PG的数量关系,解答到此,来证明AC=PE+PF的问题就迎刃而解了.(2)推理类同于(1).【解答】证明:(1)延长FP交DC于点G,∵AB∥CD,AC∥FG,∴四边形AFGC是平行四边形,∴AC=FG(平行四边形的对边相等),∵EG∥AC,∴==(被平行线所截的线段对应成比例);又∵OA=OC,∴PE=PG,∴AC=FG=PF+PG=PE+PF;(2)若点P在BD延长线上,AC=PF﹣PE.如下图所示若点P在DB延长线上,AC=PE﹣PF.如下图所示..【点评】本题主要考查了平行四边形的判定与性质.10.如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长.【考点】翻折变换(折叠问题);解一元二次方程﹣公式法;勾股定理;平行四边形的判定;相似三角形的判定与性质.【专题】几何综合题.【分析】(1)根据:两组对边分别平行的四边形是平行四边形,证明AG∥CE,AE∥CG 即可;(2)解法1:在Rt△AEF中,运用勾股定理可将EF的长求出;解法2,通过△AEF∽△ACB,可将线段EF的长求出.【解答】(1)证明:在矩形ABCD中,∵AD∥BC,∴∠DAC=∠BCA.由题意,得∠GAH=∠DAC,∠ECF=∠BCA.∴∠GAH=∠ECF,∴AG∥CE.又∵AE∥CG,∴四边形AECG是平行四边形.(2)解法1:在Rt△ABC中,∵AB=4,BC=3,∴AC=5.∵CF=CB=3,∴AF=2.在Rt△AEF中,设EF=x,则AE=4﹣x.根据勾股定理,得AE2=AF2+EF2,即(4﹣x)2=22+x2.解得x=,即线段EF长为cm.解法2:∵∠AFE=∠B=90°,∠FAE=∠BAC,∴△AEF∽△ACB,∴.∴,解得,即线段EF长为cm.【点评】本题考查图形的折叠变化,关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.11.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD 所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S的最大值.【考点】二次函数综合题;平行四边形的性质.【专题】压轴题.【分析】(1)在三角形AEP中,AP=2,∠A=60°,利用三角函数可求出AE和PE,即可求出面积;(2)①此题应分情况讨论,因为两个动点运动速度不同,所以有点P与点Q都在AB 上运动、点P在BC上运动点Q仍在AB上运动、点P和点Q都在BC上运动三种情况,在每种情况下可利用三角函数分别求出我们所需要的值,进而求解.②在①的基础上,首先①求出函数关系式之后,根据t的取值范围不同函数最大值也不同.【解答】解:(1)当点P运动2秒时,AP=2cm,由∠A=60°,知AE=1,PE=.(2分)=;∴S△APE(2)①当0≤t<6时,点P与点Q都在AB上运动,如图所示:设PM与AD交于点G,QN与AD交于点F,则AQ=t,AF=,QF=t,AP=t+2,AG=1+,PG=+t.∴此时两平行线截平行四边形ABCD的面积为S=t+;②当6≤t<8时,点P在BC上运动,点Q仍在AB上运动.如图所示:设PM与DC交于点G,QN与AD交于点F,则AQ=t,AF=,DF=4﹣,QF=t,BP=t﹣6,CP=10﹣t,PG=(10﹣t),而BD=4,故此时两平行线截平行四边形ABCD的面积为S=﹣t2+10t﹣34,③当8≤t≤10时,点P和点Q都在BC上运动.如图所示:设PM与DC交于点G,QN与DC交于点F,则CQ=20﹣2t,QF=(20﹣2t),CP=10﹣t,PG=(10﹣t).∴此时两平行线截平行四边形ABCD的面积为S=.(14分)故S关于t的函数关系式为;②(附加题)当0≤t<6时,S的最大值为,(1分)当6≤t<8时,S的最大值为6,(舍去),(2分)当8≤t≤10时,S的最大值为6,(3分)所以当t=8时,S有最大值为6.(如正确作出函数图象并根据图象得出最大值,同样给4分)【点评】此题解答需数形结合,把函数知识和几何知识紧密联系在一起,难易程度适中.12.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是S1×S3=S2×S4或.【考点】作图—应用与设计作图.【专题】压轴题;新定义;开放型.【分析】(1)在BD上任选一点E(不与B、D重合),连接AE、CE即可;(2)根据等底等高,可得结论:①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或等.②S1×S3=S2×S4或等.【解答】解:(1)比如:(2)①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或等.②∵分别作△ABD与△BCD的高,h1,h2,则=,=,∴S1×S3=S2×S4或等.【点评】此题主要考查学生的阅读理解能力和对等底等高知识的灵活应用.13.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题;新定义.【分析】(1)根据菱形的对角线互相垂直平分,根据线段垂直平分线的性质,则只需要在其中一条对角线上找到和对角线的交点不重合的点即可;(2)根据到线段两个端点距离相等的点在线段的垂直平分线上,则可作对角线BD的垂直平分线和另一条对角线所在的直线的交点即为所求作;(3)只需说明PD=PB即可.根据已知的条件可以根据AAS证明△DCF≌△BCE,则∠CDB=∠CBD,进而得到∠PDB=∠PBD,证明结论即可;(4)根据上述确定准等距点的方法:即作其中一条对角线的垂直平分线和另一条对角线所在的直线的交点.所以分析讨论的时候,主要是根据两条对角线的位置关系进行分析讨论.【解答】解:(1)如图2,点P即为所画点;(1分)(2)如图3,点P即为所作点(作法不唯一);(2分)(3)连接DB.在△DCF与△BCE中,∠DCF=∠BCE,∠CDF=∠CBE,CF=CE.∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD,∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC,∴点P是四边形ABCD的准等距点.(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.(7分)【点评】关键是熟悉菱形的性质,能够根据线段垂直平分线的性质的逆定理进行分析作图,能够根据找准等距点的方和四边形中两条对角线的位置关系判断准等距点的个数.14.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).【考点】平行四边形的性质;全等三角形的判定与性质.【专题】压轴题;探究型.【分析】连接BE,根据边角边可证△PAM和△EBM全等,可得EB和PA既平行又相等,而PA和CD既平行且相等,所以DE和BC平行相等,又因为BC⊥AC,所以DE也和AC 垂直.以下几种情况虽然图象有所变化,但是证明方法一致.【解答】解:(1)DE∥BC,DE=BC,DE⊥AC.(2)如图4,如图5.(3)方法一:如图6,连接BE,∵PM=ME,AM=MB,∠PMA=∠EMB,∴△PMA≌△EMB.∵PA=BE,∠MPA=∠MEB,∴PA∥BE.∵平行四边形PADC,∴PA∥DC,PA=DC.∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.方法二:如图7,连接BE,PB,AE,∵PM=ME,AM=MB,∴四边形PAEB是平行四边形.∴PA∥BE,PA=BE,余下部分同方法一:方法三:如图8,连接PD,交AC于N,连接MN,∵平行四边形PADC,∴AN=NC,PN=ND.∵AM=BM,AN=NC,∴MN∥BC,MN=BC.又∵PN=ND,PM=ME,∴MN∥DE,MN=DE.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC.∴DE⊥AC.(4)如图9,DE∥BC,DE=BC.【点评】此题主要考查了平行四边形的性质和判定,以及全等的应用,难易程度适中.。
多边形与平行四边形一.选择题1.(,广东)下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形答案:A.分析:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
60,则这个正多边形是2.(,湖北孝感)已知一个正多边形的每个外角等于A.正五边形B.正六边形C.正七边形D.正八边形考点:多边形内角与外角..分析:多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成60°n,列方程可求解.解答:设所求正n边形边数为n,则60°•n=360°,解得n=6.故正多边形的边数是6.故选B.点评:本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.3.(•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.4.(•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC 的周长是()A.8 B.10 C.12 D.14考点:三角形中位线定理.分析:首先根据点D、E分别是边AB,BC的中点,可得DE是三角形BC的中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长的含义,判断出△ABC的周长和△DBE的周长的关系,再结合△DBE的周长是6,即可求出△ABC的周长是多少.解答:解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.点评:(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.5.(•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC考点:三角形中位线定理.分析:根据三角形中位线定理逐项分析即可.解答:解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.点评:本题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.6.(•安顺)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2考点:平行四边形的性质;相似三角形的判定与性质.专题:几何图形问题.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.7.(•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm考点:平行四边形的性质.分析:由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.解答:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为:C.点评:本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.8.(•玉林)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1 B. 2 C. 3 D. 4考点:平行四边形的性质.分析:根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是14,求出CD=5,得到DM的长.解答:解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.点评:本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD 是解题的关键,注意等腰三角形的性质的正确运用.9.(•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个考点:平行四边形的性质;等腰三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解答:解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.10.(•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B. 6 C.8 D.10考点:平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.专题:计算题.分析:由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.解答:解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.点评:本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.11.(•本溪)如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm考点:平行四边形的性质.分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.12.(•福建)如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC考点:平行四边形的性质.分析:根据平行四边形的性质推出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.点评:本题考查了平行四边形的性质的应用,能熟记平行四边形的性质是解此题的关键,注意:平行四边形的对边相等且平行,平行四边形的对角线互相平分.13.(•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61° B.63° C.65° D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.14.(•巴彦淖尔)如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24 B.12 C.6 D.3考点:平行四边形的性质;三角形中位线定理.分析:过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC 相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ 面积,即为△PDC面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.解答:解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.点评:此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.15.(•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.16.(•常州)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB考点:平行四边形的性质.分析:根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.解答:解:对角线不一定相等,A错误;对角线不一定互相垂直,B错误;对角线互相平分,C正确;对角线与边不一定垂直,D错误.故选:C.点评:本题考查度数平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.17.(•淄博)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个B.3个C.2个D.1个考点:平行四边形的性质;等边三角形的判定;翻折变换(折叠问题).分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.解答:解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点评:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.18.(•连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形考点:平行四边形的判定;矩形的判定;正方形的判定.分析:由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.解答:解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.点评:本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.19.(•绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.分析:根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.解答:解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.点评:本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.二.填空题1. (广东)正五边形的外角和等于(度).【答案】360.【解析】n边形的外角和都等于360度。
中考数学总复习《平行四边形与多边形》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________命题点1多边形及其性质1(2022河北)如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为α,β,则正确的是()A.α-β=0°B.α-β<0°C.α-β>0°D.无法比较α与β的大小2(2022怀化)一个多边形的内角和为900°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形3(2022烟台)一个正多边形每个内角与它相邻外角的度数比为3∶1,则这个正多边形是() A.正方形 B.正六边形C.正八边形D.正十边形4(2022丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(-√3,3),则A点的坐标是.(第4题) (第5题)5(2022株洲)如图所示,已知∠MON=60°,正五边形ABCDE的顶点A,B在射线OM上,顶点E在射线ON上,则∠AEO=度.6(2022遂宁)如图,正六边形ABCDEF的顶点A,F分别在正方形BMGH的边BH,GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.(第6题) (第7题)7(2021上海)如图,六个含30°角的直角三角板拼成一个正六边形,直角三角板的最短边为1,则中间正六边形的面积为.命题点2平行四边形的判定8(2022河北)依据所标数据,下列一定为平行四边形的是()9(2022临沂)如图,在正六边形ABCDEF中,M,N是对角线BE上的两点,添加下列条件中的一个:①BM=EN;②∠FAN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是(填上所有符合要求的条件的序号).10(2022株洲)如图所示,点E在四边形ABCD的边AD上,连接CE,并延长CE交BA的延长线于点F,已知AE=DE,FE=CE.(1)求证:△AEF≌△DEC.(2)若AD∥BC,求证:四边形ABCD为平行四边形.11(2021连云港)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE,求证:四边形ACED是矩形.命题点3与平行四边形有关的证明与计算12(2021南充)如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是() A.OE=OF B.AE=BFC.∠DOC=∠OCDD.∠CFE=∠DEF(第12题) (第13题)13(2022内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为() A.2 B.4 C.6 D.814(2022泰安)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接EO并延长交AD于点F,∠ABC=60°,BC=2AB.下列结论:①AB⊥AC;②AD=4OE;③四边形AECF是菱形;④S△BOE =14S△ABC.其中正确结论的个数是()A.4B.3C.2D.1(第14题) (第15题)15(2022无锡) 如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD上,∠EBA=60°,则EDCD的值是()A.23B.12C.√32D.√2216(2022邵阳)如图,在等腰三角形ABC中,∠A=120°,顶点B在▱ODEF的边DE 上,已知∠1=40°,则∠2=.(第16题) (第17题)17(2022泰安)如图,四边形ABCD为平行四边形,则点B的坐标为..过点D作DE⊥AB,垂足为18(2021广东)如图,在▱ABCD中,AD=5,AB=12,sin A=45E,连接CE,则sin∠BCE=.19(2022连云港)如图,在▱ABCD中,∠ABC=150°.利用尺规在BC,BA上分别截取EF的长为半径作弧,两弧在∠CBA内BE,BF,使BE=BF;分别以E,F为圆心,大于12交于点G;作射线BG交DC于点H.若AD=√3+1,则BH的长为.20(2022广西北部湾经济区)如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);(3)连接BE,若∠DBE=25°,求∠AEB的度数.21(2022无锡)如图,在▱ABCD中,点O为对角线BD的中点,EF过点O且分别交AB,DC于点E,F,连接DE,BF.求证:(1)△DOF≌△BOE;(2)DE=BF.22(2022温州) 如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连接DE,EF,FG.(1)求证:四边形DEFG是平行四边形.时,求FG的长.(2)当AD=5,tan∠EDC=5223(2022扬州)如图,在▱ABCD中,BE,DG分别平分∠ABC,∠ADC,交AC于点E,G.(1)求证:BE∥DG,BE=DG.(2)过点E作EF⊥AB,垂足为F.若▱ABCD的周长为56,EF=6,求△ABC的面积.24(2021绍兴)问题:如图,在▱ABCD中,AB=8,AD=5,∠DAB,∠ABC的平分线分别与直线CD交于点E,F,求EF的长.答案:EF=2.探究:(1)把“问题”中的条件“AB=8”去掉,其余条件不变.①当点E与点F重合时,求AB的长;②当点E与点C重合时,求EF的长.(2)把“问题”中的条件“AB=8,AD=5”去掉,其余条件不变,当点C,D,E,F相邻两点间的距离相等时,求AD的值.AB分类训练16平行四边形与多边形1.A【解析】∵任意多边形的外角和为360°,∴α=β=360°,∴α-β=0.2.A【解析】设该多边形的边数为n,由题意得(n-2)×180°=900°,解得n=7.3.C【解析】∵该正多边形每个内角与它相邻外角的度数比为3∶1,∴设这个多边形的每个外角是x°,则每个内角是3x°.根据题意得x+3x=180,解得x=45,故该正多边形的边数为360°÷45°=8.4.(√3,-3)【解析】如图,连接AO,BO,易得OB=OA,∠BOA=30°+120°+30°=180°,∴A,B关于点O对称,∴A(√3,-3).5.48【解析】∵五边形ABCDE是正五边形,∴∠BAE=108°,∴∠OAE=180°-108°=72°.在△AOE中,∠AEO=180°-∠MON-∠OAE=180°-60°-72°=48°.6.4 【解析】 ∵六边形ABCDEF 是正六边形,∴∠HAF=60°.又∵∠AHF=90°,∴∠AFH=30°,∴AF=2AH.设AB=AF=x ,则AH=6-x ,∴x=2(6-x ),解得x=4,∴AB=4,即正六边形的边长为4. 7.3√32【解析】 如图,连接BD ,DF ,BF ,过点A 作AG ⊥BF 于点G.易知△ABF ≌△CDB ≌△EFD ,AB=AF=1,∠BAF=120°,△BDF 是等边三角形,∴∠ABF=∠AFB=30°,BG=GF ,∴AG=12,BG=GF=√32,∴BF=√3,∴S △ABF =12×√3×12=√34,S △BDF =√34×(√3)2=3√34,∴S 正六边形ABCDEF=3S △ABF +S △BDF =3√34+3√34=3√32.8.D 【解析】 逐项分析如下.故选D .选项分析是否符合题意 A 可判定上下两边平行,左右两边不平行,故不是平行四边形. 否B 只能判定左右两边平行,故不一定是平行四边形.否C 只能判定左右两边相等,故不一定是平行四边形. 否D上下两边既平行又相等,故是平行四边形.是9.①②④ 【解析】 ∵六边形ABCDEF 是正六边形,∴AB=DE ,∠ABM=∠DEN=60°.若添加BM=EN ,则BN=EM ,∴△ABN ≌△DEM ,∴AN=DM ,∠ANB=∠DME ,∴AN ∥DM ,∴四边形AMDN 是平行四边形.若添加∠FAN=∠CDM ,则∠BAN=∠EDM ,∴△ABN ≌△DEM.同上可证四边形AMDN 是平行四边形.若添加AM=DN ,无法证明四边形AMDN 是平行四边形.若添加∠AMB=∠DNE ,则∠AMN=∠DNM,∴AM∥DN.∵AB=DE,∠AMB=∠DNE,∠ABM=∠DEN,∴△ABM ≌△DEN,∴AM=DN,∴四边形AMDN是平行四边形.10.【参考答案】证明:(1)在△AEF和△DEC中{AE=DE,∠AEF=∠DEC, FE=CE,∴△AEF≌△DEC(SAS).(2)∵△AEF≌△DEC∴∠AFE=∠DCE∴AF∥CD,即AB∥CD.∵AD∥BC∴四边形ABCD为平行四边形.11.【参考答案】(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE又∵AD∥CE,∴四边形ACED是平行四边形.(2)证明:∵四边形ABCD是平行四边形,∴AB=DC.∵AB=AE,∴DC=AE.又∵四边形ACED是平行四边形∴四边形ACED是矩形.12.A【解析】在▱ABCD中,AD∥BC.∵点O是AC,BD的交点,∴OA=OC,∴OE=OF.易得△OAE≌△OCF,∴AE=CF,点F不一定为BC的中点,∴AE=BF不一定成立.∵AD∥BC,∴∠CFE+∠DEF=180°.因∠CFE不一定为直角,故∠CFE=∠DEF不一定成立.显然,∠DOC=∠OCD不一定成立.故选A.13.B【解析】∵四边形ABCD是平行四边形,∴CD=AB=12,BC=AD=8,AB∥CD,∴∠ABM=∠CMB.又∵BM是∠ABC的平分线,∴∠CBM=∠ABM=∠CMB,∴MC=BC=8,∴DM=CD-MC=12-8=4.14.A【解析】∵点E为BC的中点,∴BC=2BE=2CE.又∵BC=2AB,∴AB=BE.又∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠BEA=60°,AE=BE=EC,∴∠EAC=∠ECA=30°,∴∠BAC=∠BAE+∠EAC=90°,即AB⊥AC,故结论①正确.在平行四边形ABCD中,AD=BC=2AB,AO=CO,BE=EC,∴OE是△ABC的中位线,∴AB=2OE,∴AD=4OE,故结论②正确.∵AD∥BC,AO=OC,∴OF=OE,∴四边形AECF是平行四边形,又AE=EC,∴平行四边形AECF 是菱形,故结论③正确.∵OA=OC ,BE=EC ,∴S △BOE =12S △BOC =14S △ABC ,故结论④正确.综上所述,正确的结论有4个.15.D 【解析】 ∵四边形ABCD 是平行四边形,∴CD=AB ,CD ∥AB ,∴∠A=180°-∠ADC=75°.又∵∠ABE=60°,∴∠AEB=180°-∠A-∠ABE=45°.如图,过点B 作BF ⊥AD 于点F ,则BF=FE.∵AD=BD ,∴∠ABD=∠A=75°,∴∠ADB=30°.设BF=EF=x ,则BD=2x ,DF=√3x ,∴DE=DF-EF=(√3-1)x ,AF=AD-DF=BD-DF=(2-√3)x.由勾股定理,得AB 2=AF 2+BF 2=(2-√3)2x 2+x 2=(8-4√3)x 2,∴DE 2AB 2=√3-1)22(8-4√3)x 2=12,∴DE AB =√22.又∵AB=CD ,∴DE CD =√22.故选D.16.110° 【解析】 在等腰三角形ABC 中,∠A=120°,∴∠ABC=30°.又∵∠1=40°,∴∠ABE=70°.∵四边形ODEF 是平行四边形,∴OF ∥DE ,∴∠2=180°-∠ABE=180°-70°=110°.17.(-2,-1) 【解析】 易知点C (2,-1)向左平移4个单位长度与点B 重合,∴B (-2,-1). 18.9√1050【解析】 在Rt △ADE 中,DE=AD sin A=5×45=4,∴AE=√AD 2-DE 2=3,∴BE=12-3=9.在Rt △DCE 中,CE=√CD 2+DE 2=4√10.设点B 到CE 的距离为h ,则S △BCE =12×h×CE=12×BE×DE ,∴h=BE×DE CE=4√10=9√1010,则sin ∠BCE=ℎBC =9√10105=9√1050. 19.√2 【解析】 如图,过点H 作HM ⊥BC 于点M.由题意可知,BH 平分∠ABC ,∴∠ABH=∠CBH.∵四边形ABCD 是平行四边形,∴BC=AD=√3+1,AB ∥CD ,∴∠CHB=∠ABH ,∠C=180°-∠ABC=30°,∴∠CBH=∠CHB ,∴CH=BC=√3+1,∴HM=12CH=√3+12,CM=√32CH=3+√32,∴BM=BC-CM=√3+1-3+√32=√3-12,∴BH=√HM 2+BM 2=√2.20.【参考答案】 (1)证明:∵四边形ABCD 是平行四边形∴AB=CD ,AD=BC. 又∵BD=BD∴△ABD ≌△CDB (SSS). (2)如图所示.(3)∵EF 垂直平分BD∴BE=DE ,∴∠BDE=∠DBE=25° ∴∠AEB=∠BDE+∠DBE=50°.21.【参考答案】 证明:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点∴AB ∥DC ,OB=OD ∴∠OBE=∠ODF. 在△DOF 和△BOE 中{∠ODF =∠OBE ,OD =OB ,∠DOF =∠BOE ,∴△DOF ≌△BOE. (2)∵△DOF ≌△BOE∴FO=EO. 又∵OB=OD∴四边形BEDF 是平行四边形 ∴DE=BF.22.【参考答案】 (1)证明:∵E ,F 分别是AC ,AB 的中点∴EF ∥BC∴∠FEO=∠DGO ,∠EFO=∠GDO.∵O 是DF 的中点 ∴FO=DO∴△EFO ≌△GDO (AAS) ∴EF=GD∴四边形DEFG 是平行四边形. (2)∵AD ⊥BC ,E 是AC 的中点∴DE=12AC=EC ∴∠EDC=∠C ∴tan C=tan ∠EDC=52 ∴AD DC =52. ∵AD=5,∴CD=2 ∴AC=√52+22=√29 ∴DE=12AC=√292. 由平行四边形的性质可得FG=DE=√292. 23.【参考答案】 (1)证明:∵四边形ABCD 是平行四边形∴AD ∥BC ,AD=BC ,∠ABC=∠ADC ∴∠DAC=∠BCA.又∵BE ,DG 分别平分∠ABC ,∠ADC∴∠ADG=∠CBE. 在△ADG 和△CBE 中{∠DAG =∠BCE ,AD =BC ,∠ADG =∠CBE ,∴△ADG ≌△CBE ∴BE=DG ,∠AGD=∠CEB.∵∠DGE=180°-∠AGD ,∠BEG=180°-∠CEB ∴∠DGE=∠BEG ,∴BE ∥DG.(2)如图,过点E 作EH ⊥BC 于点H又∵BE平分∠ABC,EF⊥AB ∴EH=EF=6.∵▱ABCD的周长为56∴AB+BC=28∴S△ABC =12AB·EF+12BC·EH=12EF(AB+BC)=12×6×28=84.24.【参考答案】(1)①如图(1).∵四边形ABCD是平行四边形图(1)∴AB∥CD,BC=AD=5∴∠DEA=∠EAB.∵AE平分∠DAB∴∠DAE=∠EAB∴∠DAE=∠DEA∴DE=AD=5.同理可得CF=BC=5.∵点E与点F重合∴AB=CD=10.②如图(2),由①可知CF=BC=5.图(2)∵点E与点C重合∴EF=CF=5.(2)分3种情况讨论.①当DE=EF=CF时,如图(3).图(3) ∵AD=DE,AB=DC∴ADAB =DE CD=13.②当DF=EF=CE时,如图(4).图(4) ∵AD=DE∴ADAB =DE CD=23.③当DF=CD=CE时,如图(5).图(5) ∵AD=DE∴ADAB =DECD=2.综上可知,ADAB 的值是13,23或2.。
第五节多边形与平行四边形基础训练1.(2017苏州中考)如图,在正五边形ABCDE中,连接BE,贝iJZABE的度数为(B)A.30°B.36°C.54°D.72°“(第1题图)2.(湘西屮考)下列说法错误的是(D)A.对角线互相平分的四边形是平行四边形2两组对边分别相等的四边形是平行四边形C 一组对边平行冃相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形3・(2015石家屮四十三屮模拟)如图,在口ABCD屮,延长AB到点E,使BE = AB,连接DE交BC于点F,则下列结论不一定成立的是(D)A. ZE=ZCDF B・ EF=DFC. AD = 2BFD. BE=2CF4.(2017 丽水中考)如图,在口ABCD 中,连接AC, ZABC= ZCAD=45° , AB =2,则BC的长是(C)A.y[2B. 2C. 2^2 D・ 45.(荷泽中考)在口ABCD中,AB = 3, BC=4,当口ABCD的面积最大时,下列结论正确的有(B)①AC = 5;②ZA+ZC=180° ;③AC丄BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6・(孝感中考)在口ABCD中,AD = 8, AE平分ZBAD交BC于点E” DF平分ZADC 交BC于点F,且EF=2,则AB的长为(D)儿 3 B. 5C 2或3 〃・3或57.平行四边形ABCD与等边AAEF如图放置,如果ZB = 45° ,那么ZBAE 的大小是(A)A.75°B.70°C.65°D.60°8.(北京中考)如图是由射线AB, BC, CD, DE, EA组成的平面图形,则Z1 + Z2+Z3+Z4+Z5= 360°9・(江西中考)如图所示,在oABCD中,ZC = 40° ,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则ZBEF的度数为§0。
中考总复习:多边形与平行四边形--知识讲解(基础)【知识网络】【考点梳理】考点一、多边形1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n -2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.【要点诠释】(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形.(2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题.考点二、平面图形的镶嵌1.镶嵌的定义用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.【要点诠释】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.考点三、三角形中位线定理1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.考点四、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.两条平行线间的距离:定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.性质:夹在两条平行线间的平行线段相等.【要点诠释】1.平行四边形的面积=底×高;2.同底(等底)同高(等高)的平行四边形面积相等.【典型例题】类型一、多边形与平面图形的镶嵌1.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55° D.50°【思路点拨】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【答案】A【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【总结升华】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.举一反三:【变式】如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=_________.【答案】40°.2.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是( )A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【思路点拨】注意各正多边形的内角度数.【答案】A.【解析】正方形和正六边形的每个内角分别为90°和120°,要镶嵌则需要满足90°m+120°n=360°,但是m、n没有正整数解,故选A.【总结升华】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.举一反三:【变式】现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A.2种 B.3种 C.4种 D.5种【答案】 B.类型二:平行四边形及其他知识的综合运用3.如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE⊥BD,BM⊥AC、DN⊥AC,CF⊥BD垂足分别是E、M、N、F,求证:EN∥MF.【思路点拨】连接ME,FN,由四边形ABCD为平行四边形,得到对角线互相平分,利用AAS得到三角形AOE与三角形COF全等,利用全等三角形对应边相等得到OE=OF,同理得到三角形BOM与三角形DON全等,得到OM=ON,进而确定出四边形MEFN为平行四边形,利用平行四边形的对边平行即可得证.【答案与解析】证明:连接ME,FN,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵AE⊥BD,CF⊥BD,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,同理△BOM≌△DON,得到OM=ON,∴四边形EMFN为平行四边形,∴EN∥MF.【总结升华】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.4.如图所示,△ABC中,∠BAC=90°,延长BA到D,使,点E、F分别为边BC、AC 的中点.(1)求证:DF=BE;(2)过点A作AG∥BC,交DF于G,求证:AG=DG.【思路点拨】(1)E、F分别为BC、AC中点,则EF为△ABC的中位线,所以EF∥AB,.而.则EF=AD.从而易证△DAF≌△EFC, 则DF=CE=BE.(2) AG与DG在同一个三角形中,只需证∠D=∠DAG即可.【答案与解析】(1)∵点E、F分别为BC、AC的中点,∴ EF是△ABC的中位线.∴ EF∥AB,.又∵,∴ EF=AD.∵ EF∥AB,∴∠EFC=∠BAC=90°,∵∠BAC=90°,∴∠DAF=90.又∵ F是AC的中点,∴AF=CF,∴△DAF≌△EFC.∴DF=EC=BE.(2)由(1)知∵△DAF≌△EFC,∴∠D=∠FEC.又∵ EF∥AB,∴∠B=∠FEC.又∵ AG∥BC,∴∠DAG=∠B,∴∠ DAG=∠FEC∴∠D=∠DAG.∴AG=DG.【总结升华】三角形中位线定理的作用:位置关系——可以证明两条直线平行;数量关系——可以证明线段的相等或倍分.此外应注意三角形共有三条中位线,并且它们又重新构成一个新的三角形.举一反三:【变式】如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C.5.如图:六边形ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD ⊥BD.已知FD=4cm,BD=3cm.则六边形ABCDEF的面积是_________cm2.【思路点拨】连接AC交BD于G,AE交DF于H.根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC.易得AC=FD,EH=BG.计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积.【答案与解析】连接AC交BD于G,AE交DF于H.∵AB平行且等于ED,AF平行且等于CD,∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,∴AE=BD,AC=FD,∵FD⊥BD,∴∠GDH=90°,∴四边形AHDG是矩形,∴AH=DG∵EH=AE-AH,BG=BD-DG∴EH=BG.∴六边形ABCDEF的面积=平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=3×4=12cm2.故答案为:12.【总结升华】注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.6 .已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若3,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+32-4,求BC的长.【思路点拨】(1)连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;(2)根据三角形中位线定理可得PF∥AO,且PF=12AO,然后根据两直线平行,同位角相等可得∠AOD=∠PFD=90°,再根据同位角相等,两直线平行可得PE∥OD,所以PE也是△AOD的中位线,然后证明四边形ABCD是正方形,根据正方形的对角线与边长的关系列式计算即可得解.【答案与解析】(1)如图,连接PO,∵PE⊥AC,PE=3,EO=1,∴tan∠EPO=3 EOPE=,∴∠EPO=30°,∵PE⊥AC,PF⊥BD,∴∠PEO=∠PFO=90°,在Rt△PEO和Rt△PFO中,PO PO PE PF=⎧⎨=⎩,∴Rt△PEO≌Rt△PFO(HL),∴∠FPO=∠EPO=30°,∴∠EPF=∠FPO+∠EPO=30°+30°=60°;(2)如图,∵点P是AD的中点,点F是DO的中点,∴PF ∥AO ,且PF=12AO , ∵PF ⊥BD ,∴∠PFD=90°, ∴∠AOD=∠PFD=90°,又∵PE ⊥AC ,∴∠AEP=90°,∴∠AOD=∠AEP ,∴PE ∥OD ,∵点P 是AD 的中点,∴PE 是△AOD 的中位线,∴PE=12OD , ∵PE=PF ,∴AO=OD ,且AO ⊥OD ,∴平行四边形ABCD 是正方形,设BC=x ,则x+12x ,∵ -4,∴x , 解得x=4,即BC=4.【总结升华】 本题考查了平行四边形的性质,三角形的中位线定理,正方形的判定与性质,(2)中判定出平行四边形ABCD 是正方形是解题的关键.举一反三:【变式】如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2)是双曲线上的一点,Q 为坐标平面上的一动点,PA ⊥x 轴,QB ⊥y 轴,垂足分别为A 、B .(1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,是否可以使△OBQ 与△OAP 面积相等?(3)如图2,点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ周长的最小值.图1 图2【答案】(1)正比例函数解析式为,反比例函数解析式为.(2)当点Q在直线MO上运动时,设点Q的坐标为,,解得.所以点Q的坐标为和.(3)因为P(,),由勾股定理得OP=,平行四边形OPCQ周长=.因为点Q在第一象限中的双曲线上,所以可设点Q的坐标为,由勾股定理可得,通过图形分析可得:OQ有最小值2,即当Q为第一象限中的双曲线与直线的交点时,线段OQ的长度最小.所以平行四边形OPCQ周长的最小值:.。
多边形与平行四边形一、单选题(共12题;共24分)1、下列说法正确的是()A、同位角相等B、过一点有且只有一条直线与已知直线平行C、过一点有且只有一条直线与已知直线垂直D、只用一种图形进行镶嵌,三角形、四边形、六边形都可以镶嵌2、下列正多边形中,绕其中心旋转72°后,能和自身重合的是()A、正方形B、正五边形C、正六边形D、正八边形3、下列图形中,不能镶嵌成平面图案的是 ( )A、正三角形B、正四边形C、正五边形D、正六边形4、梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )A 、B 、C 、D 、5、如图,在梯形ABCD中,AD//BC,∠B=70°∠C=40°,DE//AB交BC于点E.若AD=3,BC=10,则CD的长是()A、7B、10C、13D、14 6、如图,AB∥CD∥EF,BC∥AD,AC为∠BAD的平分线,图中与∠AOE相等(不含∠AOE)的角有()A、2个B、3个C、4个D、5个7、正六边形的边心距为,这个正六边形的面积为()A、2B、4C、6D、128、把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点K,则∠BKI的大小为()A、90°B、84°C、72°D、88°9、(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A、4B、61C、8D、1010、(2015•德阳)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A、150°B、160°C、130°D、60°11、(2016•义乌)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A、①,②B、①,④C、③,④D、②,③12、如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A、(3,-1)B、(-1,-1)C、(1,1)D、(-2,-1)二、填空题(共5题;共5分)13、(2015•烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是________.14、现有一个正六边形的纸片,该纸片的边长为20cm,张萌想用一张圆形纸片将该正六边形纸片完全覆盖住,则圆形纸片的直径不能小于________ cm.15、如图,已知四边形ABCD中,∠C=72°,∠D=81°.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,则∠1+∠2=________°.16、如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=________17、如图,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数共有________个三、综合题(共5题;共63分)18、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.19、(2016•滨州)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.20、(2016•安徽)如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.21、(2016•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.22、(2016•江西)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.(3)图1、图2中的“叠弦角”的度数分别为________,________;(4)图n中,“叠弦三角形”________等边三角形(填“是”或“不是”)3(5)图n中,“叠弦角”的度数为________(用含n的式子表示)答案解析部分一、单选题【答案】C【考点】垂线,同位角、内错角、同旁内角,平面镶嵌(密铺)【解析】【分析】A、只有一条直线截2条平行线得到的同位角才相等,故错误,不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故错误,不符合题意;C、过直线上或直线外一点均有且只有一条直线与已知直线垂直,正确,符合题意;D、只用一种图形进行镶嵌,三角形、四边形都可以镶嵌,六边形不一定能组成镶嵌,故错误,不符合题意;故选C.【答案】B【考点】正多边形的定义【解析】【解答】解:A、正方形的最小旋转角度为90°,故本选项错误;B、正五边形的最小旋转角度为=72°,故本选项正确;C、正六边形的最小旋转角度为=60°,故本选项错误;D、正八边形的最小旋转角度为=45°,故本选项错误;故选B.【分析】求出各个选项图形的最小旋转角度,即可做出判断.【答案】C【考点】平面镶嵌(密铺)【解析】【解答】∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴只用上面正多边形,不能进行平面镶嵌的是正五边形.故选C.【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.【答案】B【考点】等边三角形的判定与性质,平行四边形的判定与性质,等腰梯形的判定【解析】【分析】画出草图分析,作AE∥CD于E点,则AECD是平行四边形,△ABE是等边三角形,据此易求BC的长.【解答】如图所示:作AE∥CD于E点,∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形,∴AE=CD=2,EC=AD=2又AB=CD,∠B=60°,∴△ABE是等边三角形,BE=2,∴BC=4.故选B.【点评】此题考查了梯形中常作的辅助线:平移腰,把梯形转化为平行四边形和三角形求解,体现了数学的化归思想.【答案】A【考点】三角形内角和定理,等腰三角形的判定与性质,平行四边形的判定与性质,梯形【解析】【解答】∵DE//AB,∠B=70°,∴∠DEC=∠B=70°.又∵∠C=40°,∴∠CDE=70°.∴CD=CE.∵AD//BC,DE//AB,∴四边形ABED是平行四边形.∴BE=AD=3.∴CD=CE=BC-BE=BC-AD=10-3=7.故选A.【分析】根据平行线的性质,得∠DEC=∠B=70°,根据三角形的内角和定理,得∠CDE=70°,再根据等角对等边,得CD=CE.根据两组对边分别平行,知四边形ABED是平行四边形,则BE=AD=3,从而求解.【答案】D【考点】角平分线的定义,对顶角、邻补角,平行线的性质,平行四边形的性质,平行四边形的判定【解析】【解答】由AB∥CD∥EF,根据两直线平行,同位角相等,内错角相等,可得:∠AOE=∠OAB=∠ACD,又由AC平分∠BAD与BC∥AD,可得:∠DAC=∠ACB,又由对顶角相等,可得5与∠AOE(∠AOE除外)相等的角有5个。
多边形与平行四边形
A 级 基础题
1.(2013年福建漳州)用下列一种多边形不能铺满地面的是( ) A .正方形 B .正十边形 C .正六边形 D .等边三角形
2.(2013年湖南长沙)下列多边形中,内角和与外角和相等的是( ) A .四边形 B .五边形 C .六边形 D .八边形 3.(2013年海南)如图4-3-9,在▱ABCD 中,AC 与BD 相交于点O ,则下列结论不一定
成立的是( )
A .BO =DO
B .CD =AB
C .∠BA
D =∠BCD D .AC =BD
图4-3-9 图4-3-10 图4-3-11 图4-3-12 图4-3-13
4.(2013年黑龙江哈尔滨)如图4-3-10,在▱ABCD 中,AD =2AB ,CE 平分∠BCD ,并
交AD 边于点E ,且AE =3,则AB 的长为( )
A .4
B .3 C.5
2
D .2
5.若以A (-0.5,0),B (2,0),C (0,1)三点为顶点画平行四边形,则第四个顶点不可能在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 6.(2013年山东烟台)如图4-3-11,▱ABCD 的周长为36,对角线AC ,BD 相交于点O ,
点E 是CD 的中点,BD =12,则△DOE 的周长为____________.
7.(2013年江西)如图4-3-12,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为__________.
8.(2013年福建泉州)如图4-3-13,顺次连接四边形 ABCD 四边的中点E ,F ,G ,H ,
则四边形 EFGH 的形状一定是__________.
9.(2012年四川德阳)已知一个多边形的内角和是外角和的3
2
,则这个多边形的边数是
________.
10.(2013年四川南充)如图4-3-14,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F .求证:OE =OF .
图4-3-14
11.(2013年福建漳州)如图4-3-15,在▱ABCD 中,E ,F 是对角线BD 上两点,且BE
=DF .
(1)图中共有______对全等三角形;
(2)请写出其中一对全等三角形:________≌__________,并加以证明.
图4-3-15
B级中等题
12.(2013年广东广州)如图4-3-16,已知四边形ABCD是平行四边形,把△ABD沿对角线BD翻折180°得到△A′BD.
(1)利用尺规作出△A′BD(要求保留作图痕迹,不写作法);
(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.
图4-3-16
13.(2012年辽宁沈阳)如图4-3-17,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.
(1)求证:△AEM≌△CFN;
(2)求证:四边形BMDN是平行四边形.
图4-3-17
C级拔尖题
14.(1)如图4-3-18(1),▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.
(2)如图4-3-18(2),将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.
(1)(2)
图4-3-18
多边形与平行四边形
1.B 2.A 3.D 4.B 5.C 6.15 7.25° 8.平行四边形 9.5
10.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,AB ∥CD .∴∠OAE =∠OCF .
∵∠AOE =∠COF ,∴△OAE ≌△OCF (ASA). ∴OE =OF . 11.解:(1)3
(2)①△ABE ≌△CDF .
证明:在▱ABCD 中,AB ∥CD ,AB =CD , ∴∠ABE =∠CDF .
又∵BE =DF ,∴△ABE ≌△CDF (SAS). ②△ADE ≌△CBF .
证明:在▱ABCD 中,AD ∥BC ,AD =BC , ∴∠ADE =∠CBF ,∵BE =DF , ∴BD -BE =BD -DF ,即DE =BF . ∴△ADE ≌△CBF (SAS). ③△ABD ≌△CDB .
证明:在▱ABCD 中,AB =CD ,AD =BC , 又∵BD =DB ,∴△ABD ≌△CDB (SSS). (任选其中一对进行证明即可) 12.解:(1)略
(2)∵四边形ABCD 是平行四边形, ∴AB =CD ,∠BAD =∠C ,
由折叠性质,可得∠A ′=∠A ,A ′B =AB ,
设A ′D 与BC 交于点E ,∴∠A ′=∠C ,A ′B =CD , 在△BA ′E 和△DCE 中, ⎩⎪⎨⎪
⎧
∠A ′=∠C ,∠BEA ′=∠DEC ,BA ′=DC ,
∴△BA ′E ≌△DCE (AAS).
13.证明:(1)∵四边形ABCD 是平行四边形, ∴∠DAB =∠BCD .∴∠EAM =∠FCN . 又∵AD ∥BC ,∴∠E =∠F . 又∵AE =CF ,
∴△AEM ≌△CFN (ASA).
(2)∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD .
又由(1),得AM =CN ,∴BM =DN .
又∵BM ∥DN ∴四边形BMDN 是平行四边形. 14.证明:(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,OA =OC .∴∠1=∠2. 又∵∠3=∠4,
∴△AOE ≌△COF (ASA).∴AE =CF . (2)∵四边形ABCD 是平行四边形, ∴∠A =∠C ,∠B =∠D . 由(1),得AE =CF .
由折叠的性质,得AE =A 1E ,∠A 1=∠A ,∠B 1=∠B , ∴A 1E =CF ,∠A 1=∠C ,∠B 1=∠D .
又∵∠1=∠2,∴∠3=∠4.
∵∠5=∠3,∠4=∠6,∴∠5=∠6. 在△A 1IE 与△CGF 中, ⎩⎪⎨⎪
⎧
∠A 1=∠C ,∠5=∠6,A 1E =CF ,
∴△A 1IE ≌△CGF (AAS).∴EI =FG .。