三轴压缩实验
- 格式:docx
- 大小:115.42 KB
- 文档页数:4
三轴压缩试验简介三轴压缩试验是测定土抗剪强度的一种较为完善的方法。
三轴压缩仪的突出优点是能较为严格地控制排水条件以及可以量测试件中孔隙水压力的变化。
此外,试件中的应力状态也比较明确,破裂面是在最弱处,而不像直接剪切仪那样限定在上下盒之间。
一、实验目的1、了解实验的设备系统组成。
2、学会三轴实验的土样制作方法和安装方法。
3、掌握了解三轴实验的实验过程和要求。
4、分析实验数据和图形。
二、实验仪器设备全自动三轴仪由三轴仪主机、围压反压控制器和微机(含土工试验微机数据采集处理系统软件)组成。
包含了压力室、轴向加荷系统、施加周围压力系统、孔隙水压力量测系统、软件控制系统等。
三、实验步骤1、按照规范要求制备不少于3个原状土试样或扰动土试样。
2、称试样质量,并取切下的余土测定其含水量。
3、在压力室底座上依次放上不透水板、试样及不透水试样帽,将橡皮膜用承膜筒套在试样外,并用橡皮圈将橡皮膜两端与底座及试样帽分别扎紧。
4、将压力室罩顶部活塞提高,安放压力室罩,将活塞对准试样帽顶部中心,旋紧压力室罩。
5、在微机上启动“土工试验微机数据采集处理系统”软件,在“采集”菜单中选择三轴试验。
6、输入试验参数。
试验编号和土样编号同组保持不变。
一般取:试样高度:8.00,试样直径:.3.91,轴向应变:20,加荷级数:1,采样步长:0.2,试验方法:UU,剪切速率:1,围压:100。
7、在显示屏黄色压力室处点击“开始注水”,向压力室加注纯水,待顶部排气孔有水溢出时,点击“停止操作”,拧紧排气孔螺旋。
8、在绿色框内点击“开始试验”,仪器首先进行自检,然后施加周围压力,并开始剪切试验,按语音提示进行。
9、试验完成后,语音提示试验结束,自动卸除围压。
点击黄色压力室处“开始抽水”,待水抽空后,点击“停止操作”,取下压力室罩,取下试样,准备安装下一个试样。
10、以后的试验仅改变“围压”一项,其他参数和试验步骤不便。
依次完成3~4个试样的剪切试验。
三轴压缩试验原理什么是三轴压缩试验?三轴压缩试验是一种广泛用于土力学和岩石力学领域的实验方法,用于研究材料在压力作用下的物理和力学特性。
这种试验可以模拟土壤、岩石等材料在地下深处承受地压的情况。
在三轴压缩试验中,样品在垂直荷载(轴向)和水平荷载(径向)的作用下进行。
三轴压缩试验的装置三轴压缩试验的主要装置包括试样室、应力应变控制器、荷载施加系统和数据采集系统。
试样室试样室是一个密封的容器,用于容纳试样。
它通常由钢制或钢铝复合材料制成,并配有绝缘材料以防止能量散失。
试样室内应具有足够的刚度和密封性,以确保试验结果的准确性。
应力应变控制器应力应变控制器用于控制试样受到的载荷。
它通常由液压系统组成,包括液压油源、传感器和控制器。
应力应变控制器通过施加压力来产生试样的轴向和径向应力,并通过测量压力和变形来控制试样的应变状态。
荷载施加系统荷载施加系统用于施加试样的轴向和径向荷载。
它通常由液压活塞和液压缸组成,液压活塞用于施加轴向荷载,而液压缸用于施加径向荷载。
荷载施加系统还包括各种传感器和仪器,用于测量施加的载荷大小。
数据采集系统数据采集系统用于记录试验过程中的各种数据。
它可以包括压力传感器、变形传感器、温度传感器等。
通过数据采集系统,可以实时监测试验过程中的应力、应变、位移和温度变化,从而获取准确的试验结果。
三轴压缩试验的原理三轴压缩试验是基于以下原理进行的:1.应力平衡原理:在试样受到轴向和径向荷载的同时,试样内部各点的应力应满足平衡条件。
轴向应力和径向应力之间存在一定的关系。
2.孔隙水压力原理:在试样内部存在孔隙水。
孔隙水的存在会影响试样的应力分布和强度特性。
通过控制孔隙水压力,可以模拟实际情况下试样的应力状态。
3.应力应变关系:应力应变关系描述了试样在不同应力作用下的变形特性。
通过测量应力和变形,可以得到试样的应力应变曲线,从而了解材料的力学性质。
三轴压缩试验流程三轴压缩试验通常包括以下步骤:1.准备试样:选择合适的材料制备试样。
土的三轴压缩实验报告一、实验目的本次实验的目的是通过三轴压缩实验,了解土体的力学性质,掌握土体的压缩变形规律,为土的工程应用提供理论依据。
二、实验原理三轴压缩实验,是指在三个互相垂直的轴向上施加压力,测定土体在不同应力状态下的压缩变形及强度参数。
实验中,应变量为土体的轴向应变和径向应变,应力量为轴向应力。
三、实验设备本次实验所需的设备有:三轴试验机、应变仪、振动筛、天平、刷子、塑料袋等。
四、实验步骤1.制样:按照标准规定,取一定量的土样,经过筛分、清洗、调节含水率等处理后,制成规定尺寸的试样。
2.装置:将试样放入试验机中,放置在三轴压缩装置中央。
3.施压:逐渐施加压力,保持速率均匀,直到试样产生明显的压缩变形。
4.记录:在试验过程中,记录轴向压力、轴向应变、径向应变和应变速率等数据。
5.实验结束:当试样变形趋于稳定时,停止施压,记录最大轴向应力和最大径向应变。
6.清理:将试样从试验机中取出,清洁试验机和周围环境。
五、实验结果通过对实验数据的处理和分析,得出了土体的应力-应变曲线和压缩模量等力学参数。
六、实验注意事项1.试样应制备均匀,避免出现裂隙和空洞。
2.施加压力的速率应逐渐加大,避免过快或过慢。
3.实验过程中应注意安全,避免发生意外事故。
七、实验结论本次实验通过三轴压缩实验,测定了土体在不同应力状态下的压缩变形及强度参数,得出了土体的应力-应变曲线和压缩模量等力学参数。
实验结果表明,土体的压缩变形呈现出明显的非线性特性,随着轴向应力的增大,土体的压缩变形逐渐增大,压缩模量逐渐减小。
此外,不同土体的力学性质也存在差异,这需要在工程应用中进行针对性分析和处理。
三轴压缩试验一、试验目的测定土的抗剪强度,提供计算地基强度和稳定使用的土的强度指标内摩擦角j和内聚力c。
二、试验方法一般有不固结不排水试验(UU)、固结不排水试验(CU)和固结排水试验(CD)。
三、仪器设备1.三轴压缩议:应变控制式,由周围压力系统、反压力系统、孔隙水压力量测系统和主机组成。
2.附属设备:包括击实器、饱和器、切土器、分样器、切土盘、承膜筒和对开圆模。
3.天平:称量200 g,感量0.01 g;称量1000 g,感量0.1 g。
4.橡皮膜:应具有弹性,厚度应小于橡皮膜直径的1/100,不得有漏气孔。
四、试样制备(1)本试验需要3~4个试样,分别在不同周围压力下进行试验。
(2)试样尺寸:最小直径为φ35 mm,最大直径为φ101 mm,试样高度宜为试样直径的2~2.5倍。
对于有裂缝、软弱面和构造面的试样,试样直径宜大于60 mm。
(3)原状试样制备,应将土切成圆柱形试样,试样两端应平整并垂直于试样轴,当试样侧面或端部有小石子或凹坑时,允许用削下的余土修整,试样切削时应避免扰动,并取余土测定试样的含水量。
(4)扰动试样制备,应根据预定的干密度和含水量,在击实器内分层击实,粉质土宜为3~5层,粘质土宜为5~8层,各层土料数量应相等,各层接触面应刨毛。
(5)对于砂性土应先在压力室底座.全依次放上不透水板,橡皮膜和对开圆膜。
将砂料填入对开圆膜内,分3层按预定干密度击实。
当制备饱和试样时,在对开圆膜内注入纯水至1/3高度,将煮沸的砂料分3层填入,达到预定高度。
放上不透水板、试样帽,扎紧橡皮膜。
对试样内部施加5 kPa负压力使试样能站立,折除对开圆膜。
(6)对制备好的试样,应量测其直径和高度。
试样的平均直径应按下式计算:式中D l,D2,D3分别为试样上、中、下部位的直径。
五、三轴试验操作步聚1、试样的安装步骤:2、试样排水固结步骤:施加周围压力;开孔隙水压力阀,测定孔隙水压力。
开排水阀。
当需测定排水过程时,测记排水管水面及孔隙水压力值,直至孔隙水压力消散95%以上。
三轴压缩试验原理一、引言三轴压缩试验是土工试验中最常见的一种试验方法,它是用来研究岩石和土壤在三轴状态下的力学性质。
该试验方法可以测定材料的强度、变形和应力-应变关系等重要参数,是岩土工程设计和施工中不可或缺的一项基础性试验。
二、试验设备及样品准备1. 仪器设备:三轴压缩试验机、荷重传感器、变形计等。
2. 样品准备:样品应具有代表性,通常采用直径为5cm,高度为10cm左右的圆柱形样品。
在制备过程中需要注意保证样品密实度和湿度,避免空隙和水分对试验结果的影响。
三、试验原理1. 应力状态:三轴压缩试验是将圆柱形样品置于两个平行平板之间,在垂直于样品轴线方向施加垂直荷载,并在两个侧面施加水平荷载,使得样品受到均匀的三向应力作用。
这种应力状态被称为三向压缩或三向受压状态。
2. 应变状态:在三轴压缩试验中,样品会发生不同形式的变形。
主要包括径向收缩和轴向延伸两种形式。
径向收缩是指样品直径在垂直荷载作用下的减小,轴向延伸则是指样品高度在水平荷载作用下的增加。
3. 应力-应变关系:三轴压缩试验可以得到材料在三向压缩状态下的应力-应变关系曲线。
该曲线可以反映出材料的强度和变形特性,并且可以用于岩土工程设计中的计算和分析。
四、试验步骤1. 样品制备:按照标准规范制备圆柱形样品。
2. 试验前处理:将样品放入恒温室中保持一定湿度,避免干燥或过湿对试验结果的影响。
3. 试验装置:将样品放置于三轴压缩试验机中,并连接荷重传感器和变形计等设备。
4. 荷载施加:根据试验要求,施加垂直荷载和水平荷载,使得样品受到均匀的三向应力作用。
5. 数据采集:记录荷重传感器和变形计等设备的数据,得到材料在三向压缩状态下的应力-应变关系曲线。
6. 数据处理:根据试验结果进行数据处理和分析,得出样品的强度、变形和应力-应变关系等参数。
五、试验误差及注意事项1. 样品制备过程中需要注意保证样品密实度和湿度,避免空隙和水分对试验结果的影响。
2. 试验装置需要严格按照标准规范进行校准和调整,避免设备误差对试验结果的影响。
三轴压缩试验
一、试验目的
同直剪
二、基本原理
根据摩尔-库仑强度理论,用3-4个试样,分别在不同的恒定围压下施加轴向压力,进行剪切直至破坏,从而确定土的抗剪强度指标c 、Ф。
三、试验方法
1. 不固结不排水剪试验(UU )
2. 固结不排水剪试验(CU )
3. 固结排水剪试验(CD )
四、仪器设备
1. 静力三轴仪
2. 附属设备:饱和器、切土器、承膜筒、对开模等
3. 橡皮膜。
五、操作步骤(UU )
1. 仪器检查
(1) 孔隙水压力量测系统内的气泡应完全排除。
(2) 保证各管路畅通。
(3) 检查橡皮膜是否有破损。
2. 对压力室底座充水,在底座上放置不透水板、并依次放置试样、不透水板及加压冒。
3. 通过承膜筒将橡皮膜套在试样上,并扎紧两端。
4. 装上压力室外罩,并将压力室充满水。
5. 施加设计围压。
6. 按照剪切应变速率0.5-1.0%/min 对试样进行剪切至破坏,一般应变达到15%停止试验。
六、数据处理
1. 以132σσ+为圆心,132
σσ-为半径,在τσ-应力平面上绘制应力圆。
2.绘制不同围压下应力圆的公切线,该切线倾角为内摩擦角ϕ,与纵轴的截距为粘聚力c 。
实验六 三 轴 压 缩 试 验一、三轴压缩实验是测定土的抗剪强度的一种方法,它通常用3~4个圆柱形试样,分别在受压室内施加一定的恒定周围压力(即小主应力σ3)下,再施加轴向压力[即产生主应力差(σ1~σ3)],进行剪切直至试样破坏为止;然后根据摩尔-库仑理论,求得抗剪强度参数(内摩擦角和内聚力)。
二、实验方法:根据排水条件不同,本试验分为:1. 不固结不排水剪(UU ):试验是在施加周围压力和增加轴向压力直至破坏过程中均不 允许试样排水。
本试验可以测得总抗剪强度参数u c 、u ϕ。
2. 固结不排水剪(CU 或CU ):试验是试样先在某一周围压力作用下排水固结,然后在保持不排水的情况下, 增加轴向压力直至破坏。
本试验可以测得总抗剪强度参数cu c 、cu ϕ或有效抗剪强度参数c '、ϕ'和孔隙压力参数。
3. 固结排水剪(CD ):试验是试样先在某一周围压力作用下排水固结,然后在允许试样充分排水的情况下, 增加轴向压力直至破坏。
本试验可以测得有效抗剪强度参数d c 、d ϕ和变形参数。
三、仪器设备1. 应变控制式三轴剪力仪:试样控制在一定的变形速率下完成剪切过程,并装有孔隙水压力的量测设备。
三轴仪的基本构造可分为试样压力室、轴向加压装置、周围压力的恒压设备、真空抽气饱和设备、试样体积变化的量测部分和孔隙水压力测量装置等构成;2.旋转式的切土器;3.承膜筒;4.橡皮膜(厚度在0.2mm左右不透水橡皮膜);5.其他:钢丝锯、切土刀、烘箱、称量盒、干燥器、天平、滤纸、游标卡尺、止水橡皮圈以及活络扳手等工具。
四、不固结不排水剪切试验的操作步骤1.制备三个以上圆柱形试样(原状或人工)。
将人工制备的扰动土或原状土的土样毛坯应大于试样的直径和高度,小心地放在旋转式的切土器内,用钢丝锯或切土刀边转边削的切成所要求的圆柱形试样(试样直径为Ø 39.1mm、Ø 61.8mm 、和Ø101.0mm,高度为直径的二倍至二倍半),并同时测定其容重和代表性含水率。
三轴压缩试验原理
三轴压缩试验是一种常用的土壤力学试验,用于研究土壤在压缩加载下的力学性质。
它可以提供土壤的压缩特性参数,如压缩模量、压缩系数等,对土壤的工程性质和行为有重要的指导意义。
三轴压缩试验的原理是将土壤样品置于一个密封的试验装置中,施加压力使其受到均匀的压缩。
这个装置有三个轴向:竖向轴向、水平轴向和径向轴向。
竖向轴向施加垂直于土壤样品顶面的压力,水平轴向施加与土壤样品顶面平行的压力,而径向轴向则施加径向压力。
在试验开始之前,需要根据土壤的特性和试验要求来选择合适的轴向应力水平。
然后,在施加轴向压力的同时,还需要施加水平和径向围压力来保持土壤样品的水平和径向约束。
通过改变轴向应力和围压力的大小,可以模拟不同的实际地下应力状态。
在试验过程中,可以通过测量土壤样品的变形和应力来获得其力学性质。
一般来说,使用变形计和应变计来测量土壤的变形和应力。
变形计可以测量土壤样品的竖向和水平变形,应变计则可以测量土壤样品的应力应变关系。
通过对三轴压缩试验的分析,可以得到土壤的压缩模量、压缩系数、剪切强度等力学参数。
这些参数对土壤的工程设计和施工有重要意义。
此外,通过三轴压缩试验,还可以研究土壤的孔隙结构、渗透性等性质,为土壤的水文特性和环境工程提供参考。
三轴压缩实验
一、实验原理:
三轴试验采用圆柱形试样,可以对试样的空间三个坐标方向上施加压力。
试验时先通过压力室内的有压液体,使试样在三个轴向受到相同的周围压力
(其大小由压力计测
3
定),并维持整个试验过程不变。
然后通过活塞向试样施加垂直轴向压力,直到试样剪坏。
二、实验过程
1、仪器准备
(1)应变控制式三轴仪:包括压力室、轴向位移计等装备
(2)天平、其他:击实筒、饱和器、承膜筒、橡皮膜等
2、操作步骤
试样安装:(1)检查排水管路是否通畅;活塞在套内滑动是否正常;连接处有无漏水、漏气现象。
检查完成后关闭周围压力阀、孔隙压力阀和排水阀,以备使用。
(2)组件击样筒:将三瓣膜拼装好,夹板拧紧,并放置好透水石,在击样筒内部涂抹油
(3)制作土样:(本实验才去的土样为沿海淤泥土),将淤泥土分层放入击样土中并击实,每层击实至相同高度,击实用力均匀,直至击完最后一层。
将击样筒中的式样两端整平,去除称其质量。
(4)将橡皮膜套在承膜筒内,两端翻出膜外,从吸嘴稀奇,使膜紧贴承膜筒内壁,然后要在式样外,放弃,翻起橡皮膜取出承膜筒。
将包裹着土样的橡皮膜分别扎紧放在一起底座和试样帽上。
(5)装上压力室外罩。
装是应将活塞提高,以防碰撞试样,然后将活塞你试样帽中心,病均匀地旋紧螺丝,再将轴向测力计对准活塞
(6)开排气孔,向压力室冲水,当压力室快注满水时,降低进水速度,水从排气孔溢出时,关闭排气孔
(7)开周围压力阀,施加所需的周围压力。
周围压力应与工程的实际荷重相适应,并尽可能使最大周围压力与土体的最大实际荷重大致相等。
(8)旋转手轮,当量力环的量表微动时表示活塞已与试样帽接触,然后将量力环的量表和变形量表的指针调整到零位。
试样剪切:(1)打开周围压力阀,关闭体变管阀、排水管阀、孔隙压力阀、量管阀。
(2)开动马达,接上离合器,进行剪切。
开始阶段,试样每产生垂直应变0.3~0.4%测记量力环量表读数和垂直变形量表读数各一次。
当垂直应变达3%以后,读数间隔可延长为0.7~0.8%各测记一次。
当接近峰值时应加密读数,如果试样特别硬脆或软弱,可酌情加密或减少测读的次数。
(3)当出现峰值后,再继续剪3~5%垂直应变;若量力环的量表读数无明显减少,则当垂直应变进行到15~20%时,停止剪切。
(4)试验结束后关闭马达,关周围压力阀,拨开离合器,倒转手轮,然后打开排气孔,排去压力室内的水,拆除压力室外罩,擦干试样周围的余水,脱去试样外的橡皮膜,描述破坏后形状,称试样质量,测定试验后含水率。
三、计算与记录
1.轴向应变:
ε
1
=
1000
1⨯∆h
h %
式中:ε1——轴向应变;%
h 1——试样剪切时高度变化,cm h 0 ——试样原始高度,cm 2.试样面积的校正,应按下式计算:
1
1ε-=
A A a 式中 a A -剪切过程中校正断面积(cm 2
)
0A -土样初始断面积(cm 2
) 1ε-轴向应变(%) 3.主应力差应按下式计算
1031⨯⋅=
-a
A R
C σσ
式中:σ1—大主应力,kPa ;
σ3—小主应力,kPa ;
C —测力计率定系数(N/0.01mm 或N/mV ); R —测力计读数(0.01mm 或mV ); A a —试样剪切时的校正面积,cm 2;
10 —单位换算系数。
4.以主应力差为纵坐标,轴向应变为横坐标,绘制以主应力差与轴向应变关系曲线。
取曲线上主应力差的峰值作为破坏点,无峰值时,取
15%轴向应变的主应力差值作为破坏点。
5.以法向应力σ为横坐标,剪应力τ为纵坐标。
在横坐标上以(σ1f
+σ3f )/2为圆
心,(σ
1f
-σ3f )/2为半径,绘制破坏总应力圆,该包线的倾角为内摩擦角φu 或φcu ,包
线上纵轴上的截距为粘聚力C u 或C cu 。
在横坐标轴上以()
2/31f f '+'σσ为圆心,以(σ
1f
-
σ3f )/2 为半径绘制有效破坏应力圆,包线的倾角为有效内摩擦角φ′,包线在纵轴上的截距为有效粘聚力C ,如下图所示
四、试样记录
10。