2016届江西省南昌市高三摸底考试数学试卷(文科)
- 格式:pdf
- 大小:341.64 KB
- 文档页数:9
— 高三文科数学 (模拟二)参考答案第1页 —NCS20170607项目第二次模拟测试卷文科数学参考答案及评分标准一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一1、C 【解析】因为{{320}{}{0,1}2A x y x N x x x ==∈->=<=,{22}B x x =-≤≤, 所以{0,1}A B =I ,故答案选C .2、A 【解析】因为i i (12i)=i -2t a t t +=⋅+,则122t a a t =⎧⇒=-⎨=-⎩.所以1(2)1t a +=+-=-,故答案选A .3、B 【解析】由茎叶图可知甲、乙小区空置房套数的中位数分别为79和76,故答案选B .4、C 【解析】根据命题否定的写法可知C 是正确的.故答案选C .5、A 【解析】考虑进入循环状态,根据程序框图可知,当1i =时,有27S =;当2i =时,有47S =;当3i =时,有17S =;当4i =时,有27S =;当5i =时,有47S =;当6i =时,有17S =;所以可知其循环的周期为3T =,当退出循环结构时632i ==⨯,所以输出的17S =,故答案选A .6、D 【解析】函数()f x 是定义在R 上的奇函数,且导函数是'()cos 10f x x =-≤,所以()sin f x x x =-是减函数,不等式(2)(12)0f x f x ++-<⇒(2)(21)f x f x +<-, 即2213x x x +>-⇒<,故答案选D .7、D 【解析】双曲线过点C 时,1c AB e a CA CB===-,故答案选D . 8、D 【解析】因为,n n αγ⊥⊂,则αγ⊥;同时,n m αα⊥⊂,则m n ⊥,所以D 选项是正确的;对于A 选项中的直线m 与平面γ的位置关系无法判断,B 选项中的直线n 也可能落在平面β内;C 选项中的平面β与平面β也可能相交,故答案选D .9、C 【解析】设竹九节由上往下的容量分别为123456789,,,,,,,,a a a a a a a a a ,由题意可知:123478934a a a a a a a +++=⎧⎨++=⎩11322766a d ⎧=⎪⎪⇒⎨⎪=⎪⎩,所以问题中的中间..两节容量和为56129a a a d +=+4722= 3222=.故答案选C . 10、B 【解析】满足条件的四面体如右图, 依题意投影到yOz 平面为正投影,所以左(侧)视方向如图所示,所以得到左视图效果如右图,故答案选B .— 高三文科数学 (模拟二)参考答案第2页 —11、A 【解析】因为函数22sin ()11xy f x x==+可化简为222sin ()1x x f x x =+可知函数为奇函数关于原点对称,可排除答案C ;同时有42224sin 2cos 2cos ''()(1)x x x x x xy f x x ++==+ 3222(2sin cos cos )(1)x x x x x x x ++=+,可知函数在(0,)2x π∈时'()0f x >,则(0,)2x π∈上单调递增,排除答案B 和D ,故答案选A .12、D 【解析】要使符合题意,则圆上所有点在直线12:340,:3490l x y a l x y -+=--=之间, 因为圆心到直线2l的距离21d ==>且314190⨯-⨯-<,则所有圆心到直线1l的距离11d =≥,且31410a ⨯-⨯+≥,解得6a ≥,故答案选D .二、填空题:本大题共4小题,每小题5分,满分20分.13.7【解析】因为(3,3)a b x -=-,所以()a b a -⊥⇒(3)33407x x -⨯+⨯=⇒=, 故答案为7.14.1【解析】由sin 2cos 0θθ+=得tan 2θ=-,所以221sin 2sin cos ()cos cos θθθθθ++=2(tan 1)1θ=+=,故答案为1.15.40【解析】由765430S S S -+=可得76653()0S S S S ---=7630a a ⇒-=,所以3q =.所以4414(1)1340113a q S q --===--,故答案为40. 16.37.5【解析】由题得213t x =--(13)x <<,所以利润为:(48)3232ty x x t x=+---11163163232t x x x =--=-+--145.5[16(3)]3x x =--+-45.537.5≤-=,当且仅当114x =时取等号,即月最大利润为37.5万元.另解:利润1632t y x =--(利润=12⨯进价- 12⨯安装费-开支),也可留t 作为变量求最值.三、解答题:本大题共6小题,共70分. 解答应写出文字说明.证明过程或演算步骤.17.【解析】(Ⅰ)2()cos sin f x x x x =+1112cos 2sin(2)2262x x x π=-+=-+, 递增得到222,262k x k k Z πππππ-≤-≤+∈,解得,63k x k k z ππππ-≤≤+∈,所以递增区间是[,]()63k k k z ππππ-+∈;— 高三文科数学 (模拟二)参考答案第3页 —GSACD EF(Ⅱ)3()sin(2)126f A A π=⇒-= ,得到22,623A k A k k z πππππ-=+⇒=+∈, 由02A π<<得到3A π=,所以角6BAD π∠=,由正弦定理得sin sin sin 2BD AD B BAD B =⇒=∠所以4B π=,cos cos()sinsincoscos34344C A B ππππ=-+=-=18.【解析】(Ⅰ)222()100(20204020)400400100()()()()604060405760000n ad bc K a b c d a c b d -⨯⨯-⨯⨯⨯===++++⨯⨯⨯ 2.778 2.706≈>所以有90%以上的把握认为“是否愿意被外派与年龄有关”. (Ⅱ)设70后员工中报名参加活动有愿意被外派的3人为123,,Y Y Y ,不愿意被外派的3人为123,, N N N ,现从中选4人,如图表所示,用⨯表示没有被选到,则“愿意被外派人数不少于不愿意被外派人数”即“愿意被外派人数为2人或3人”共12种情况,则其概率124155P ==. 19.【解析】(Ⅰ)连接AC ,设AC BE G =,则平面SAC平面EFB FG =,//SA 平面EFB ,//SA FG ∴,GEA GBC ∆∆,12AG AE GC BC ∴==, 1123SF AG SF SC FC GC ∴==⇒=,13λ∴=.(Ⅱ),2SA SD SE AD SE ==∴⊥=,又2,60,AB AD BAD BE ==∠=︒∴=222SE BE SB ∴+=,SE BE ∴⊥,SE ∴⊥平面ABCD ,所以211122sin 6023333F BCE S EBC S ABCD V V V ---===⨯⨯⨯︒⨯=.— 高三文科数学 (模拟二)参考答案第4页 —20.【解析】(Ⅰ)当12k =时,1BF x ⊥轴,得到点2(,)b B c a --,所以2222221()21a a bb a ac c a b c ⎧==⎧⎪⎪⎪=⇒=⎨⎨+⎪⎪=⎩⎪=+⎩,所以椭圆C 的方程是22143x y +=. (Ⅱ)因为1sin 2623111sin 2PAM PBN PA PM APMS PM PMS PN PN PB PN BPN ∆∆⋅⋅∠⋅===⇒=⋅⋅⋅∠,所以3PM PN =-.设1122(,),(,)M x y N x y ,则1122(,1),(,1)PM x y PN x y =+=+,有1212313(1)x x y y =-⎧⎨+=-+⎩.由(Ⅰ)可知(0,1)P -,设MN 方程为1y kx =-,联解方程221143y kx x y =-⎧⎪⎨+=⎪⎩得:22(43)880k x kx +--=.由韦达定理可得122122843843k x x k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,将123x x =-代入可得2222282438343k x k x k ⎧-=⎪⎪+⎨⎪=⎪+⎩,即222483()4343k k k -=++.所以232k k =⇒=.即直线2l的方程为1y =±-. 21.【解析】(Ⅰ)22'()(2)(22)(2)x x x f x e x x a e x e x a =-++-=+-, 当2a ≥时,'()0f x ≥恒成立,函数()f x 的递增区间是R ;当2a <时,2'()02f x x a x ≥⇔≥-⇔≤或x ≥,函数()f x的递增区间是(,)-∞+∞,递减区间是(;(Ⅱ)2()()a f a e a a =-,2'()(2)af a e a a =+-,所以直线l 的方程为:22()(2)()a a y e a a e a a x a --=+--,令0x =得到: 截距3()ab e a a =-+,记3()()ag a e a a =-+,32'()(31)ag a e a a a =--++, 记322()31'()3610(13)h a a a a h a a a a =--++⇒=--+<≤≤所以()h a 递减,()(1)20h a h ≤=-<,'()0g a ∴<,即()g a 在区间[1,3]上单调递减,(3)()(1)g g a g ∴≤≤,即截距的取值范围是:3[24,0]e -.22.【解析】(Ⅰ)直线l的普通方程是1)y x =-即y =,曲线C的直角坐标方程是22440x y x +--+=即22(2)(3x y -+=;(Ⅱ)直线l 的极坐标方程是3πθ=,代入曲线C 的极坐标方程得:2540ρρ-+=,— 高三文科数学 (模拟二)参考答案第5页 —所以||||||4A B OA OB ρρ⋅==.23.【解析】(Ⅰ)不等式()2f x <等价于32(23)(21)2x x x ⎧<-⎪⎨⎪-++-<⎩或3122(23)(21)2x x x ⎧-≤≤⎪⎨⎪++-<⎩ 或12(23)(21)2x x x ⎧>⎪⎨⎪+--<⎩,得32x <-或302x -≤<,即()2f x <的解集是(,0)-∞; (Ⅱ)()|(23)(21)|4f x x x ≤+--=,max ()4f x ∴=,|32|4a ∴-<,解得实数a 的取值范围是2(,2)3-.。
绝密★启封并使用完毕前江西师大附中2016届高三第三次模拟考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|(3)0}A x Z x x =∈-≤,{|ln 1}B x x =<,则A B =( )A .{0,1,2}B .{1,2,3}C .{1,2}D .{2,3}2.定义运算bc ad d c b a -=,,,若21,2,z i i =,则复数z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.已知a R ∈,“函数31x y a =+-有零点”是“函数log a y x =在(0,)+∞上为减函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.我国古代有用一首诗歌形式提出的数列问题:远望巍巍塔七层,红灯向下成倍增,共灯三百八十一,请问塔顶几盏灯?( )A .5B .4C .3D .25.在ABC ∆中,设CB a =,AC b =,且||2,||1,1a b a b ==⋅=-,则||AB =( )A .1BCD .26.已知函数()sin(2)3f x x π=-,则下列结论错误的是( )A .函数()f x 的最小正周期为πB .函数()f x 在区间[0,]4π上是增函数C .函数()f x 的图象可由()sin 2g x x =的图象向右平移6π个单位得到 D .函数()f x 的图象关于直线3x π=对称7.以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若数据123,,,,n x x x x 的方差为1,则1232,2,2,,2n x x x x 的方差为2;③两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;④对分类变量x 与y 的随机变量2K 的观测值k 来说,k 越小,判断“x 与y 有关”的把握越大.其中真命题的个数为( )A .1B .2C .3D .48.如图所示的程序框图中,若()sin f x x =,()cos g x x =,[0,]2x π∈,且()h x m ≥恒成立,则m 的最大值是( )A .1B .2C .12D .09.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(2,0,2),(2,2,0),(0,2,2),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A B C D10.若实数,x y 满足约束条件104x y x y ≥⎧⎪≥⎨⎪+≤⎩则22x y z =的最小值为( ) A .16 B .1 C .12 D .1411.已知定义在R 上的函数()f x 满足()()f x f x -=-,(1)(1)f x f x +=-,且当[0,1]x ∈,2()log (1)f x x =+,则(31)f =( ) A .0 B .1 C .2 D .1-12.已知偶函数()f x 是定义在{}|0x R x ∈≠上的可导函数,其导函数为()f x '.当0x <时,()()f x f x x '>恒成立.设1m >,记4(1)1mf m a m +=+,b =,4(1)()1m c m f m =++,则,,a b c 的大小关系为( ) A .a b c << B .a b c >> C .b a c << D .b a c >>第II 卷本卷包括必考题和选考题两部分。
2016年江西省南昌市高考数学二模试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={y|y=sinx,x∈R},B={x|<()x<3},则A∩B等于()A.{x|﹣1≤x≤1}B.{x|﹣1≤x<1}C.{x|﹣1<x≤1}D.{x|﹣1≤x<2} 2.已知x∈R,y为纯虚数,若(x﹣y)i=2﹣i,则x+y等于()A.1 B.﹣1﹣2i C.﹣1+2i D.1﹣2i3.命题“对任意x∈(1,+∞),都有x3>x”的否定是()A.存在x0∈(﹣∞,1],使x<B.存在x0∈(1,+∞),使x<C.存在x0∈(﹣∞,1],使x≤D.存在x0∈(1,+∞),使x≤4.如图所示是一样本的频率分布直方图,若样本容量为100,则样本数据在区间B.∪∪[,+∞)二、填空题(共4小题,每小题5分,满分20分)13.已知由实数组成等比数列{a n}中,a2=9,a6=1,则a4等于.14.以点(﹣1,3)为圆心且与直线x﹣y=0相切的圆的方程为.15.从1,2,3,…,n中这n个数中取m(m,n∈N*,3≤m≤n)个数组成递增等差数列,所有可能的递增等差数列的个数记为f(n,m),则f(20,5)等于.16.一几何体的三视图如图(网络中每个正方形的边长为1),若这个几何体的顶点都在球O 的表面上,则球O的表面积是.三、解答题(共5小题,满分60分)17.如图,直角三角形ACB的斜边AB=2,∠ABC=,点P是以点C为圆心1为半径的圆上的动点.(Ⅰ)当点P在三角形ABC外,且CP⊥AB时,求sin∠PBC;(Ⅱ)求•的取值范围.18.一课题组对日平均温度与某种蔬菜种子发芽多少之间的关系进行分析研究,记录了连续五天的日平均温度与实验室每天每100颗种子中的发芽数,得到如下资料:日期第一天第二天第三天第四天第五天日平均温度x(℃)12 11 13 10 8发芽数y(颗)26 25 30 23 15该课题组的研究方案是:先从这五组数据中选取3组,用这3组数据求线性回归方程,再对剩下2组数据进行检验,若由线性回归方程得到的数据与剩下的2组数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的(Ⅰ)求选取的3组数据中有且只有2组数据是相邻2天数据的概率;(Ⅱ)若选取恰好是前三天的三组数据,请根据这三组数据,求出y关于x的线性回归方程=bx+a,并判断该线性回归方程是否可靠(参考公式b=.19.如图,斜四棱柱ABCD﹣A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.(Ⅰ)求证:平面AB1C⊥平面BDC1;(Ⅱ)求四面体AB1C1C的体积.20.已知椭圆+=1(a>b>0)的焦距为2,直线l1:y=kx(k≠0)与椭圆相交于点A,B,过点B且斜率为k的直线l2与椭圆C的另一个交点为D,AD⊥AB.(1)求椭圆C的方程;(2)设直线l2与x轴,y轴分别相交于点M,N,求△OMN面积的最大值.21.已知函数f(x)=e x+ax2+bx(e为自然对数的底,a,b为常数),曲线y=f(x)在x=0处的切线经过点A(﹣1,﹣1)(Ⅰ)求实数b的值;(Ⅱ)是否存在实数a,使得曲线y=f(x)所有切线的斜率都不小于2?若存在,求实数a的取值集合,若不存在,说明理由.22.如图,A,B,D三点共线,以AB为直径的圆与以BD为半径的圆交于E,F,DH切圆B于点D,DH交AF于H.(1)求证:AB•AD=AF•AH.(2)若AB﹣BD=2,AF=2,求△BDF外接圆的半径.23.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ﹣2cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)已知曲线l(t为参数)与曲线C交于A,B两点,求|AB|.24.已知函数f(x)=|ax+1|+|2x﹣1|(a∈R).(1)当a=1时,求不等式f(x)≥2的解集;(2)若f(x)≤2x在x∈[,1]时恒成立,求a的取值范围.2016年江西省南昌市高考数学二模试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={y|y=sinx,x∈R},B={x|<()x<3},则A∩B等于( )A.{x|﹣1≤x≤1}B.{x|﹣1≤x<1}C.{x|﹣1<x≤1}D.{x|﹣1≤x<2} 【考点】交集及其运算.【分析】求出集合A中函数的值域,确定出A,求出集合B中不等式的解集,确定出B,找出两集合的公共部分,即可求出两集合的交集.【解答】解:由集合A中的函数y=sinx,得到﹣1≤y≤1,∴A=,由集合B中的不等式<()x<3,解得:﹣1<x<2,∴B=(﹣1,2),则A∩B=(﹣1,1].故选:C.2.已知x∈R,y为纯虚数,若(x﹣y)i=2﹣i,则x+y等于()A.1 B.﹣1﹣2i C.﹣1+2i D.1﹣2i【考点】复数相等的充要条件.【分析】由复数代数形式的除法运算化简,然后再根据复数相等求出答案即可.【解答】解:x∈R,y为纯虚数,设y=ai,∵(x﹣y)i=2﹣i,∴xi+a=2﹣i,∴x=﹣1,a=2,∴x+y=﹣1+2i,故选:C.3.命题“对任意x∈(1,+∞),都有x3>x”的否定是()A.存在x0∈(﹣∞,1],使x<B.存在x0∈(1,+∞),使x<C.存在x0∈(﹣∞,1],使x≤D.存在x0∈(1,+∞),使x≤【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题““对任意x∈(1,+∞),都有x3>x”的”的否定是:存在x0∈(1,+∞),使x≤,故选:D.4.如图所示是一样本的频率分布直方图,若样本容量为100,则样本数据在区间B.∪∪[,+∞)【考点】椭圆的简单性质.【分析】去绝对值可得x≥0时,y=2x﹣4;当x<0时,y=﹣2x﹣4,数形结合可得曲线必相交于(±2,0),分别联立方程结合一元二次方程根的分布可得.【解答】解:由2|x|﹣y﹣4=0可得y=2|x|﹣4,当x≥0时,y=2x﹣4;当x<0时,y=﹣2x﹣4,∴函数y=2|x|﹣4的图象与方程x2+λy2=4的曲线必相交于(±2,0)∴为了使函数y=2|x|﹣4的图象与方程x2+λy2=1的曲线恰好有两个不同的公共点,则y=2x﹣4代入方程x2+λy2=1,整理可得(1+4λ)x2﹣16λx+16λ﹣4=0,当λ=﹣时,x=2满足题意,由于△>0,2是方程的根,∴<0,解得﹣<λ<时,方程两根异号,满足题意;y=﹣2x﹣4代入方程x2+λy2=1,整理可得(1+4λ)x2+16λx+16λ﹣4=0当λ=﹣时,x=﹣2满足题意,由于△>0,﹣1是方程的根,<0,解得﹣<λ<时,方程两根异号,满足题意;综上知,实数λ的取值范围是22.如图,A,B,D三点共线,以AB为直径的圆与以BD为半径的圆交于E,F,DH切圆B于点D,DH交AF于H.(1)求证:AB•AD=AF•AH.(2)若AB﹣BD=2,AF=2,求△BDF外接圆的半径.【考点】与圆有关的比例线段.【分析】(1)由题意可得∠BDH=∠BFH,可得B、D、F、H四点共圆,可得AB•AD=AF•AH.(2)由已知结合切割弦定理求得AD,进一步求得BD,然后利用△AFB∽△ADH求得DH,则由勾股定理可得△BDF外接圆的半径.【解答】(1)证明:设圆B交线段AB于点C,∵AB为圆O一条直径,∴BF⊥FH.又DH⊥BD,故B、D、F、H四点在以BH为直径的圆上,∴B、D、F、H四点共圆.∴AB•AD=AF•AH.(2)解:∵AH与圆B相切于点F,由切割线定理得AC=AB﹣BD=2,AF2=AC•AD,即,AD=4,∴,BF=BD=1.又△AFB∽△ADH,则,得,连接BH,由(1)可知BH为DBFH的外接圆直径,,故△BDF的外接圆半径为.23.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ﹣2cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)已知曲线l(t为参数)与曲线C交于A,B两点,求|AB|.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)曲线C的极坐标方程为ρ=2sinθ﹣2cosθ,可得ρ2=2ρsinθ﹣2ρcosθ,把代入即可得出直角坐标方程.(II)把曲线l(t为参数)代入曲线C的方程化为:t2﹣2t=0,利用|AB|=|t2﹣t1|=即可得出.【解答】解:(I)曲线C的极坐标方程为ρ=2sinθ﹣2cosθ,可得ρ2=2ρsinθ﹣2ρcosθ,∴直角坐标方程为:x2+y2=2y﹣2x.(II)把曲线l(t为参数)代入曲线C的方程化为:t2﹣2t=0,∴t1+t2=2,t1t2=0.∴|AB|=|t2﹣t1|==2.24.已知函数f(x)=|ax+1|+|2x﹣1|(a∈R).(1)当a=1时,求不等式f(x)≥2的解集;(2)若f(x)≤2x在x∈[,1]时恒成立,求a的取值范围.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(1)分类讨论即可求出不等式的解集;(2)由绝对值不等式的性质,不等式可化为|ax+1|≤1,即﹣≤a≤0,根据x的范围,求出﹣的范围,即可得到a的范围.【解答】解:(1)当a=1时,不等式f(x)≥2可化为|x+1|+|2x﹣1|≥2①当x≥时,不等式为3x≥2,解得x≥,故x≥;②当﹣1≤x<时,不等式为2﹣x≤2,解得x≤0,故﹣1≤x≤0;③当x<﹣1时,不等式为﹣3x≥2,解得x≤﹣,故x<﹣1;综上原不等式的解集为(﹣∞,0]∪[,+∞);(2)f(x)≤2x在x∈[,1]时恒成立时恒成立,当x∈[,1]时,不等式可化为|ax+1|≤1,解得﹣2≤ax≤0,所以﹣≤a≤0,因为x∈[,1],所以﹣∈,所以a的取值范围是[﹣2,0}.2016年6月14日。
20.椭圆C:=1 〔 a> b> 0〕的两焦点与短轴的一个端点的连线构成等边三角形,直线x+y+2﹣1=0与以椭圆C 的右焦点为圆心,椭圆的长半轴为半径的圆相切.〔1〕求椭圆C 的方程;〔2〕设点 B, C, D是椭圆上不同于椭圆顶点的三点,点B 与点 D 关于原点O对称,设直线CD, CB, OB, OC的斜率分别为k1, k2, k3,k4,且 k1k2=k3k4.2 2(i〕求 k1k2的值;〔 ii 〕求 OB+OC的值.【考点】直线与圆锥曲线的综合问题.【专题】综合题;方程思想;整体思想;综合法;圆锥曲线的定义、性质与方程.【分析】〔1〕设出椭圆右焦点坐标,由题意可知,椭圆右焦点F2到直线 x+y+2﹣1=0 的距离为 a,再由椭圆 C的两焦点与短轴的一个端点的连线构成等边三角形得到a,b,c 的关系,结合焦点 F2到直线 x+y+2﹣ 1=0 的距离为 a 可解得 a, b,c 的值,那么椭圆方程可求;〔2〕〔 i 〕由题意设 B〔 x, y 〕, C〔 x , y 〕,那么 D〔﹣ x ,﹣y〕,由两点求斜率公式可112211得是,把纵坐标用横坐标替换可得答案;〔ii〕由 k1k2=k3k4.得到.两边平方后用x 替换 y 可得.结合点 B, C在椭圆上得到22.那么 OB+OC的值可求.【解答】解:〔 1〕设椭圆 C 的右焦点 F2〔 c, 0〕,那么 c2=a2﹣ b2〔c>0〕,由题意,以椭圆 C 的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为〔 x﹣c〕2+y2=a2,∴圆心到直线 x+y+2 ﹣1=0 的距离①,∵椭圆 C 的两焦点与短轴的一个端点的连线构成等边三角形,∴, a=2c,代入①式得,,故所求椭圆方程为;〔2〕〔 i 〕设 B〔 x1, y1〕, C〔 x2, y2〕,那么 D〔﹣ x1,﹣y1〕,19于是=;〔ii〕由〔 i 〕知,,故.∴,即,∴.又=,故.22.∴OB+OC=【点评】此题考察椭圆方程的求法,考察了直线与圆锥曲线位置关系的应用,表达了整体运算思想方法,考察化归与转化思想方法,是中档题.21.函数f 〔 x〕 =lnx ﹣ ax2﹣ a+2〔 a∈ R, a 为常数〕〔1〕讨论函数f 〔 x〕的单调性;〔2〕假设存在 x0∈〔 0,1] ,使得对任意的a∈〔﹣ 2, 0] ,不等式a〕> 0〔其中 e me+f 〔 x0为自然对数的底数〕都成立,XX数m的取值X围.【考点】函数恒成立问题;函数单调性的判断与证明.【专题】综合题;函数思想;综合法;函数的性质及应用;导数的综合应用.【分析】〔1〕求出原函数的导函数,然后对 a 分类分析原函数的单调性;〔2〕由〔 1〕可得,当 a∈〔﹣ 2, 0] , f 〔 x〕在〔 0, 1] 上为增函数,求出 f 〔 x〕在〔 0,1] 上的最大值,把存在x0∈〔 0,1] ,使得对任意的 a∈〔﹣ 2, 0] ,不等式ame+f 〔 x0〕> 0都成立,转化为对任意的aa∈〔﹣ 2,0] ,不等式 me+f 〔 x0〕> 0 都成立,别离参数 m,再由导数求得最值后得答案.【解答】解:〔 1〕函数 f 〔 x〕的定义域为〔0,+∞〕,,当 a≤0时, f ′〔 x〕≥ 0,∴函数f 〔 x〕在区间〔 0,+∞〕上单调递增;20...当 a> 0 时,由 f ′〔 x〕≥ 0,且 x> 0 时,解得,∴函数 f 〔x〕在区间上单调递增,在区间上单调递减;〔2〕由〔 1〕知,当a∈〔﹣ 2, 0] 时,函数f 〔 x〕在区间〔 0, 1] 上单调递增,∴x∈〔 0,1] 时,函数 f 〔 x〕的最大值是f 〔 1〕=2﹣ 2a,a对任意的a∈〔﹣ 2, 0] ,都存在x0∈〔 0, 1] ,不等式me+f 〔 x0〕> 0 都成立,等价于对任意的a∈〔﹣ 2, 0] ,不等式me a+f 〔 x0〕> 0 都成立,a即对任意的a∈〔﹣ 2, 0] ,不等式me+2﹣ 2a> 0 都成立,a不等式 me+2﹣ 2a> 0可化为,记〔a∈〔﹣ 2, 0] 〕,那么 g′〔 a〕 =,∴g〔 a〕> g〔﹣ 2〕=﹣ 6e2,∴实数 m的取值X围是 [ ﹣ 6e2,+∞〕.【点评】此题考察利用导数研究函数的单调性,训练了恒成立问题的解决方法,考察别离变量法,解答此题的关键在于把恒成立问题转化为关于a 的不等式,属难度较大题目.[ 选修 4-1 :几何证明选讲] 共 1 小题,总分值10 分〕22.如图,圆M与圆 N 交于 A,B 两点,以A为切点作两圆的切线分别交圆M和圆 N于 C,D 两点,延长延长DB交圆 M于点 E,延长 CB交圆 N 于点 F. BC=5, DB=10.(1〕求 AB的长;(2〕求.【考点】弦切角;与圆有关的比例线段.【专题】立体几何.【分析】〔1〕根据弦切角定理,推导出△ABC∽△ DBA,由此能求出AB 的长.∴函数 f 〔x〕在区间上单调递增,在区间上单调递减;〔2〕由〔 1〕知,当a∈〔﹣ 2, 0] 时,函数f 〔 x〕在区间〔 0, 1] 上单调递增,∴x∈〔 0,1] 时,函数 f 〔 x〕的最大值是f 〔 1〕=2﹣ 2a,a对任意的a∈〔﹣ 2, 0] ,都存在x0∈〔 0, 1] ,不等式me+f 〔 x0〕> 0 都成立,等价于对任意的a∈〔﹣ 2, 0] ,不等式me a+f 〔 x0〕> 0 都成立,a即对任意的a∈〔﹣ 2, 0] ,不等式me+2﹣ 2a> 0 都成立,a不等式 me+2﹣ 2a> 0可化为,记〔a∈〔﹣ 2, 0] 〕,那么 g′〔 a〕 =,∴g〔 a〕> g〔﹣ 2〕=﹣ 6e2,∴实数 m的取值X围是 [ ﹣ 6e2,+∞〕.【点评】此题考察利用导数研究函数的单调性,训练了恒成立问题的解决方法,考察别离变量法,解答此题的关键在于把恒成立问题转化为关于a 的不等式,属难度较大题目.[ 选修 4-1 :几何证明选讲] 共 1 小题,总分值10 分〕22.如图,圆M与圆 N 交于 A,B 两点,以A为切点作两圆的切线分别交圆M和圆 N于 C,D 两点,延长延长DB交圆 M于点 E,延长 CB交圆 N 于点 F. BC=5, DB=10.(1〕求 AB的长;(2〕求.【考点】弦切角;与圆有关的比例线段.【专题】立体几何.【分析】〔1〕根据弦切角定理,推导出△ABC∽△ DBA,由此能求出AB 的长.∴函数 f 〔x〕在区间上单调递增,在区间上单调递减;〔2〕由〔 1〕知,当a∈〔﹣ 2, 0] 时,函数f 〔 x〕在区间〔 0, 1] 上单调递增,∴x∈〔 0,1] 时,函数 f 〔 x〕的最大值是f 〔 1〕=2﹣ 2a,a对任意的a∈〔﹣ 2, 0] ,都存在x0∈〔 0, 1] ,不等式me+f 〔 x0〕> 0 都成立,等价于对任意的a∈〔﹣ 2, 0] ,不等式me a+f 〔 x0〕> 0 都成立,a即对任意的a∈〔﹣ 2, 0] ,不等式me+2﹣ 2a> 0 都成立,a不等式 me+2﹣ 2a> 0可化为,记〔a∈〔﹣ 2, 0] 〕,那么 g′〔 a〕 =,∴g〔 a〕> g〔﹣ 2〕=﹣ 6e2,∴实数 m的取值X围是 [ ﹣ 6e2,+∞〕.【点评】此题考察利用导数研究函数的单调性,训练了恒成立问题的解决方法,考察别离变量法,解答此题的关键在于把恒成立问题转化为关于a 的不等式,属难度较大题目.[ 选修 4-1 :几何证明选讲] 共 1 小题,总分值10 分〕22.如图,圆M与圆 N 交于 A,B 两点,以A为切点作两圆的切线分别交圆M和圆 N于 C,D 两点,延长延长DB交圆 M于点 E,延长 CB交圆 N 于点 F. BC=5, DB=10.(1〕求 AB的长;(2〕求.【考点】弦切角;与圆有关的比例线段.【专题】立体几何.【分析】〔1〕根据弦切角定理,推导出△ABC∽△ DBA,由此能求出AB 的长.∴函数 f 〔x〕在区间上单调递增,在区间上单调递减;〔2〕由〔 1〕知,当a∈〔﹣ 2, 0] 时,函数f 〔 x〕在区间〔 0, 1] 上单调递增,∴x∈〔 0,1] 时,函数 f 〔 x〕的最大值是f 〔 1〕=2﹣ 2a,a对任意的a∈〔﹣ 2, 0] ,都存在x0∈〔 0, 1] ,不等式me+f 〔 x0〕> 0 都成立,等价于对任意的a∈〔﹣ 2, 0] ,不等式me a+f 〔 x0〕> 0 都成立,a即对任意的a∈〔﹣ 2, 0] ,不等式me+2﹣ 2a> 0 都成立,a不等式 me+2﹣ 2a> 0可化为,记〔a∈〔﹣ 2, 0] 〕,那么 g′〔 a〕 =,∴g〔 a〕> g〔﹣ 2〕=﹣ 6e2,∴实数 m的取值X围是 [ ﹣ 6e2,+∞〕.【点评】此题考察利用导数研究函数的单调性,训练了恒成立问题的解决方法,考察别离变量法,解答此题的关键在于把恒成立问题转化为关于a 的不等式,属难度较大题目.[ 选修 4-1 :几何证明选讲] 共 1 小题,总分值10 分〕22.如图,圆M与圆 N 交于 A,B 两点,以A为切点作两圆的切线分别交圆M和圆 N于 C,D 两点,延长延长DB交圆 M于点 E,延长 CB交圆 N 于点 F. BC=5, DB=10.(1〕求 AB的长;(2〕求.【考点】弦切角;与圆有关的比例线段.【专题】立体几何.【分析】〔1〕根据弦切角定理,推导出△ABC∽△ DBA,由此能求出AB 的长.。
南昌三中2015—2016学年度第三次模拟考试高三数学(文)试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置.)1.设集合1{|216}4xA x N =∈≤≤,2{|ln(3)}B x y x x ==-,则A B 中元素的个数是( )A .1B .2C .3D .4 2.复数z 满足()1i z i+=,则z =( )A .1+iB .1i -C .1i --D .1+i -3.有3个不同的社团,甲、乙两名同学各自参加其中1个社团,每位同学参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为( )A .13B .12C .23D .344.下列判断错误的是( )A .若q p ∧为假命题,则q p ,至少之一为假命题B 。
命题“01,23≤--∈∀x x R x ”的否定是“01,23>--∈∃x x R x ” C .“若c a //且c b //,则b a //”是真命题D .“若22bm am <,则b a <"的否命题是假命题5.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点与抛物线x y 202=的焦点重合,且其渐近线方程为x y 34±=,则双曲线C 的方程为( )A .221916x y -=B .221169x y -=C .2213664x y -=D .2216436x y -=6。
将函数sin 6y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标压缩为原来的12倍(纵坐标不变),所得函数在下面哪个区间单调递增( )A .,36ππ⎛⎫- ⎪⎝⎭B .,22ππ⎛⎫- ⎪⎝⎭C .,33ππ⎛⎫- ⎪⎝⎭D .2,63ππ⎛⎫- ⎪⎝⎭7. 已知nS 是公差不为0的等差数列{}n a 的前n 项和,且1S ,2S ,4S 成等比数列,则231a a a +等于( )A .4B .6C .8D .108. 若实数x ,y 满足错误!则z =3x +4y 的最大值是( )A .3B .8C .14D .15 9。
正(主)视侧(左)视俯视图2015—2016学年南昌市八一中学高三文科数学三模试卷一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}Ry y xM=∈=,{}2Ry y xN=∈=,则M N=()A.R B.∅C.[)0,+∞D.()0,+∞2.221ii⎛⎫=⎪-⎝⎭()A.2i-B.4i-C.2i D.4i3.已知各项均为正数的等比数列{}n a中,2312,21,3aaa成等差数列,则1081311aaaa++=()A.27B.3C.-1或3D.1或274.已知平面向量)1,0(-=a,)2,2(=b,2=+baλ,则λ的值为( )A. B. C.2 D.15.已知yx,的取值如下表:若y与x线性相关,且axy+=5.0,则a=()A.2.2B.2.6C.2.8D.3.06.已知命题:p,x R∃∈使23x x>;命题:(0,),tan sin2q x x xπ∀∈>,下列是真命题的是( )A.()p q⌝∧ B.()()p q⌝∨⌝C.()p q∧⌝ D.()p q∨⌝7.如果执行如图的程序框图,那么输出的值是( )A. 2016B. 2C.12D.1-8.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A 1B 2C 3D 49.已知函数)2,0)(sin()(πϕωϕω<>+=xxf的最小正周期为π, 若将其图像向右平移3π个单位后得到的图像关于原点对称,则函数)(xf的图像( )A.关于直线12π=x对称 B.关于直线125π=x对称C.关于点)0,12(π对称 D.关于点)0,125(π对称 10.变量x,y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且z=5y-x 的最大值为a,最小值为b,则a-b 的值是( )A.48B.30C.24D.1611.定义在R 上的函数24)(,42)1(,2)()()(+>+=>'+xe xf e ef x f x f x f 则不等式满足 (其中e 为自然对数的底数)的解集为( )A.),1(+∞B.),1()0,(+∞-∞C.),0()0,(+∞-∞D.)1,(-∞12.设1F ,2F 分别为双曲线22221x y a b-=(0,0)a b >>的左,右焦点.若在双曲线右支上存在一点P ,满足212PF FF =,且2F 到直线1PF的距离等于双曲线的实轴长,则该双曲线的离心率为( ) A.34 B.35 C.45 D.441二、填空题:本大题共4小题.每小题5分,共20分.把答案填在题中横线上. 13.点内部的点是圆1)1(),(22=-+y x y x P ,则y x ≥的概率___________. 14.设数列{}n a 满足1042=+a a ,点),(n n a n P 对任意的+∈N n ,都有向量1(1,2)n n P P +=,则数列{}n a 的前n 项和n S = .15.在半径为10的球面上有C B A ,,三点,如果38=AB ,060=∠ACB ,则球心O 到平面ABC 的距离为___________.16.已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程 03)(32))((2=++bx af x f 的不同实根个数为三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤。
2015-2016学年江西省南昌三中高三(上)第四次月考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的.1.已知集合A={1,2,4},B={y|y=log2x,x∈A},则A∪B=()A.{0,1,2}B.{1,2}C.{0,1,2,4} D.{0,1,4}2.若复数z=(2﹣i)i的虚部是()A.1 B.2i C.2 D.﹣23.“a=1”是“函数f(x)=|x﹣a|在区间[2,+∞)上为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知函数f(x)=,则f(4)的值为()A.4 B.5 C.6 D.75.下列说法错误的是()A.命题“若x2﹣5x+6=0,则x=2”的逆否命题是“若x≠2,则x2﹣5x+6≠0”B.已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假C.若x,y∈R,则“x=y”是“xy≥”的充要条件D.若命题p:∃x0∈R,x02+x0+1<0,则¬p:∀x∈R,x2+x+1≥06.直线y=kx+1与曲线y=ax3+x+b相切于点(1,5),则a﹣b=()A.﹣2 B.0 C.2 D.67.在△ABC中,M为边BC上任意一点,N为AM中点,,则λ+μ的值为()A.B.C.D.18.已知点A(3,),O是坐标原点,点P(x,y)的坐标满足,在上的投影的最大值为()A.B.3 C.2D.69.一个几何体的三视图如图所示,则这个几何体的体积是()A.B.1 C.D.210.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.3 B.4 C.D.11.设f(x)是连续的偶函数,且当x>0时f(x)是单调函数,则满足的所有x之和为()A.﹣3 B.3 C.﹣8 D.812.已知函数f(x)=(a为常数),对于下列结论①函数f(x)的最大值为2;②当a<0时,函数f(x)在R上是单调函数;③当a>0时,对一切非零实数x,xf′(x)<0(这里f′(x)是f(x)的导函数);④当a>0时,方程f[f(x)]=1有三个不等实根.其中正确的结论是()A.①③④ B.②③④ C.①④D.②③二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知{a n}为等差数列,若a1+a5+a9=8π,则cos(a3+a7)的值为.14.已知正数x,y满足x+2y=1,则的最小值为.15.在三棱柱ABC﹣A1B1C1中侧棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC﹣A1B1C1的体积为3,则三棱柱ABC﹣A1B1C1的外接球的表面积为.16.已知函数y=f(x)为奇函数,且对定义域内的任意x都有f(1+x)=﹣f(1﹣x).当x ∈(2,3)时,f(x)=log2(x﹣1),给出以下4个结论:①函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;②函数y=|f(x)|是以2为周期的周期函数;③当x∈(﹣1,0)时,f(x)=﹣log2(1﹣x);④函数y=f(|x|)在(k,k+1)(k∈Z)上单调递增.其中所有正确结论的序号为.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.某高中有高一、高二、高三共三个学年,根据学生的综合测评分数分为学优生和非学优生两类,某月三个学年的学优生和非学优生的人数如表所示(单位:人),若用分层抽样的5010(2)用随机抽样的方法从高二学年学优生中抽取8人,经检测他们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8人的得分看作一个总体,从中任取一个分数a.记这8人的得分的平均数为,定义事件E={|a﹣|≤0.5,且f(x)=ax2﹣ax+2.31没有零点},求事件E发生的概率.18.已知向量=(cos,﹣1),=(sin,cos2),设函数f(x)=+1.(1)求函数f(x)的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,且满足a2+b2=6abcosC,sin2C=2sinAsinB,求f(C)的值.19.已知公差不为零的等差数列{a n},等比数列{b n},满足b1=a1+1=2,b2=a2+1,b3=a4+1.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)若c n=a n•b n,求数列{c n}的前n项和.20.已知直三棱柱ABC﹣A1B1C1中,AC=BC,点D是AB的中点.(1)求证:BC1∥平面CA1D;(2)求证:平面CA1D⊥平面AA1B1B;(3)若底面ABC为边长为2的正三角形,BB1=,求三棱锥B1﹣A1DC的体积.21.已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,且f(x)在区间[0,2]有表达式f(x)=x(x﹣2)(I)求出f(﹣1),f(2.5)的值;(Ⅱ)若函数f(x)在区间[﹣2,2]的最大值与最小值分别为m,n,且m﹣n=3,求k的值.22.已知f(x)=xlnx.(Ⅰ)求函数f(x)在定义域上的最小值;(Ⅱ)求函数f(x)在[t,t+2](t>0)上的最小值;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx>成立.2015-2016学年江西省南昌三中高三(上)第四次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的.1.已知集合A={1,2,4},B={y|y=log2x,x∈A},则A∪B=()A.{0,1,2}B.{1,2}C.{0,1,2,4} D.{0,1,4}【考点】并集及其运算.【分析】求出B中y的范围确定出B,找出A与B的并集即可.【解答】解:由y=log2x,x∈A={1,2,4},得到y=0,1,2,即B={0,1,2},则A∪B={0,1,2,4}.故选:C.2.若复数z=(2﹣i)i的虚部是()A.1 B.2i C.2 D.﹣2【考点】复数的基本概念.【分析】由复数的运算法则知复数z=(2﹣i)i=1+2i,由此能求出复数z=(2﹣i)i的虚部.【解答】解:∵复数z=(2﹣i)i=2i﹣i2=1+2i,∴复数z=(2﹣i)i的虚部是2.故选C.3.“a=1”是“函数f(x)=|x﹣a|在区间[2,+∞)上为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】函数f(x)=|x﹣a|的图象是关于x=a对称的折线,在[a,+∞)上为增函数,由题意[2,+∞)⊆[a,+∞),可求a的范围,由充要条件的定义可得答案.【解答】解:若“a=1”,则函数f(x)=|x﹣a|=|x﹣1|在区间[1,+∞)上为增函数,当然满足在区间[2,+∞)上为增函数;而若f(x)=|x﹣a|在区间[2,+∞)上为增函数,则a≤2,所以“a=1”是“函数f(x)=|x﹣a|在区间[2,+∞)上为增函数”的充分不必要条件,故选A.4.已知函数f(x)=,则f(4)的值为()A.4 B.5 C.6 D.7【考点】函数的值.【分析】根据分段函数的表达式直接代入即可得到结论.【解答】解:由分段函数可得f(4)=f(3)+1=f(2)+2=f(1)+3=f(0)+4,∵f(0)=log24=2,∴f(0)+4=2+4=6,故选:C5.下列说法错误的是()A.命题“若x2﹣5x+6=0,则x=2”的逆否命题是“若x≠2,则x2﹣5x+6≠0”B.已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假C.若x,y∈R,则“x=y”是“xy≥”的充要条件D.若命题p:∃x0∈R,x02+x0+1<0,则¬p:∀x∈R,x2+x+1≥0【考点】命题的真假判断与应用.【分析】由四种命题及关系判断A;根据复合命题p∨q的真假,可判断B;由充分必要条件的定义来判断C;由存在性命题的否定是全称性命题,可判断D.【解答】解:A.由“若p则q”的逆否命题是“若¬q则¬p”,得A正确;B.已知命题p和q,若p∨q为假命题,则p,q均为假命题,若p∨q为真命题,则p,q 中至少一个为真命题,故B不正确;C.若x,y∈R,则“x=y”.可推出“xy≥”,又“xy≥”可推出“x2+y2﹣2xy≤0”即“(x﹣y)2≤0”即“x=y”,故C正确;D.由命题的否定方法得D正确.故选:B.6.直线y=kx+1与曲线y=ax3+x+b相切于点(1,5),则a﹣b=()A.﹣2 B.0 C.2 D.6【考点】利用导数研究曲线上某点切线方程.【分析】先根据曲线y=ax3+x+b过点(1,5)得出a、b的关系式,再根据切线过点(1,5)求出k,然后求出x=1处的导数并求出a,从而得到b,即可得到a﹣b的值.【解答】解:∵y=ax3+x+b过点(1,5),∴a+b=4,∵直线y=kx+1过点(1,5),∴k+1=5,即k=4,又∵y′=3ax2+1,∴k=y′|x=1=3a+1=4,即a=1,∴b=4﹣a=4﹣1=3,∴a﹣b=1﹣3=﹣2.故选:A.7.在△ABC中,M为边BC上任意一点,N为AM中点,,则λ+μ的值为()A.B.C.D.1【考点】向量的共线定理.【分析】设,将向量用向量、表示出来,即可找到λ和μ的关系,最终得到答案.【解答】解:设则====()∴∴故选A.8.已知点A(3,),O是坐标原点,点P(x,y)的坐标满足,在上的投影的最大值为()A.B.3 C.2D.6【考点】简单线性规划;平面向量数量积的运算.【分析】作出不等式组对应的平面区域,利用向量投影的定义计算z的表达式,利用数形结合即可得到结论.【解答】解:设z表示向量在方向上的投影,∴z===,即y=,作出不等式组对应的平面区域如图:平移直线y=,当y=经过点B时直线y=的截距最大,此时z最大,当y=经过点C(﹣2,0)时,直线的截距最小,此时z最小.此时2z=+y,z min=﹣,由,得,即B(1,),此时最大值z=,故选:A9.一个几何体的三视图如图所示,则这个几何体的体积是()A.B.1 C.D.2【考点】由三视图求面积、体积.【分析】由已知中三视图,我们可以判断出几何体的形状及几何特征,求出其底面面积、高等关键几何量后,代入棱锥体积公式,即可得到答案.【解答】解:由已知易得该几何体是一个以正视图为底面,以1为高的四棱锥由于正视图是一个上底为1,下底为2,高为1的直角梯形故棱锥的底面面积S==则V===故选A10.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.3 B.4 C.D.【考点】基本不等式.【分析】首先分析题目由已知x >0,y >0,x +2y +2xy=8,求x +2y 的最小值,猜想到基本不等式的用法,利用代入已知条件,化简为函数求最值.【解答】解:考察基本不等式, 整理得(x +2y )2+4(x +2y )﹣32≥0即(x +2y ﹣4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4故选B .11.设f (x )是连续的偶函数,且当x >0时f (x )是单调函数,则满足的所有x 之和为( )A .﹣3B .3C .﹣8D .8【考点】偶函数.【分析】f (x )为偶函数⇒f (﹣x )=f (x ),x >0时f (x )是单调函数⇒f (x )不是周期函数.所以若f (a )=f (b )则a=b 或a=﹣b【解答】解:∵f (x )为偶函数,且当x >0时f (x )是单调函数∴若时,必有或,整理得x 2+3x ﹣3=0或x 2+5x +3=0,所以x 1+x 2=﹣3或x 3+x 4=﹣5.∴满足的所有x 之和为﹣3+(﹣5)=﹣8,故选C .12.已知函数f (x )=(a 为常数),对于下列结论 ①函数f (x )的最大值为2;②当a <0时,函数f (x )在R 上是单调函数;③当a >0时,对一切非零实数x ,xf ′(x )<0(这里f ′(x )是f (x )的导函数); ④当a >0时,方程f [f (x )]=1有三个不等实根.其中正确的结论是( )A .①③④B .②③④C .①④D .②③【考点】分段函数的应用.【分析】画出函数f (x )的图象,通过图象观察得到,通过a >0,a <0即可判断①;通过a <0的图象,即可判断②;通过a >0的图象,结合单调性与导数的关系,即可判断③;通过a >0的图象运用换元法,即可解出方程,从而判断④.【解答】解:画出函数f (x )的图象,通过图象观察得到:①当a >0时,函数f (x )的最大值为2,当a <0时,无最大值.故①错;②当a <0时,函数f (x )在R 上是单调函数且为减函数,故②对;③当a>0时,x<0,f(x)为单调增函数;x>0时,f(x)为减函数.故当a>0时,对一切非零实数x,xf′(x)<0成立,故③正确;④当a>0时,方程f[f(x)]=1,令f(x)=t,则f(t)=1,解得t=﹣,则x=﹣﹣,则方程仅有一解,故④错.故选D.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知{a n}为等差数列,若a1+a5+a9=8π,则cos(a3+a7)的值为﹣.【考点】等差数列的性质.【分析】由条件利用等差数列的性质求得a5=,可得a3+a7 =2a5=,再由cos(a3+a7)=cos,利用诱导公式求得结果.【解答】解:{a n}为等差数列,若a1+a5+a9=8π,则有3a5 =8π,∴a5=.∴a3+a7 =2a5=,∴cos(a3+a7)=cos=﹣cos=﹣,故答案为:﹣.14.已知正数x,y满足x+2y=1,则的最小值为18.【考点】基本不等式.【分析】利用“乘1法”和基本不等式即可得出.【解答】解:∵正数x,y满足x+2y=1,∴=(x+2y)=10+=18,当且仅当x=4y=时取等号.∴的最小值为18.故答案为:18.15.在三棱柱ABC﹣A1B1C1中侧棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC﹣A1B1C1的体积为3,则三棱柱ABC﹣A1B1C1的外接球的表面积为16π.【考点】球的体积和表面积.【分析】根据棱柱的体积公式求得棱柱的侧棱长,再利用三棱柱的底面是直角三角形可得外接球的球心为上、下底面直角三角形斜边中点连线的中点O,从而求得外接球的半径R,代入球的表面积公式计算.【解答】解:∵三棱柱ABC﹣A1B1C1中侧棱垂直于底面,设侧棱长为H,又三棱柱的底面为直角三角形,BC=1,∠BAC=30°,∴AC=,AB=2,∴三棱柱的体积V=××H=3,∴H=2,△ABC的外接圆半径为AB=1,三棱柱的外接球的球心为上、下底面直角三角形斜边中点连线的中点O,如图:∴外接球的半径R==2,∴外接球的表面积S=4π×22=16π.故答案为:16π.16.已知函数y=f(x)为奇函数,且对定义域内的任意x都有f(1+x)=﹣f(1﹣x).当x ∈(2,3)时,f(x)=log2(x﹣1),给出以下4个结论:①函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;②函数y=|f(x)|是以2为周期的周期函数;③当x∈(﹣1,0)时,f(x)=﹣log2(1﹣x);④函数y=f(|x|)在(k,k+1)(k∈Z)上单调递增.其中所有正确结论的序号为①②③.【考点】抽象函数及其应用.【分析】根据奇函数的性质和f(1+x)=﹣f(1﹣x),求出函数的周期,再由所给的解析式和周期性,求出函数在一个周期性的解析式,再画出函数在R上的图象,由图象进行逐一判断.【解答】解:令x取x+1代入f(1+x)=﹣f(1﹣x)得,f(x+2)=﹣f(﹣x)∵函数y=f(x)为奇函数,∴f(x+2)=f(x),则函数是周期为2的周期函数,设0<x<1,则2<x+2<3,∵当x∈(2,3)时,f(x)=log2(x﹣1),∴f(x)=f(x+2)=log2(x+1),设﹣1<x<﹣0,则0<﹣x<1,由f(x)=﹣f(﹣x)得,f(x)=﹣log2(﹣x+1),根据奇函数的性质和周期函数的性质画出函数的图象:由上图得,函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;且函数y=|f(x)|的图象是将y=f(x)的图象在x轴下方的部分沿x轴对称过去,其他不变,则函数y=|f(x)|是以2为周期的周期函数;故①②③正确,而函数y=f(|x|)=,则图象如下图:由图得,图象关于y轴对称,故y=f(|x|)在(k,k+1)(k∈Z)上不是单调递增的,故④不正确,故答案为:①②③.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.某高中有高一、高二、高三共三个学年,根据学生的综合测评分数分为学优生和非学优生两类,某月三个学年的学优生和非学优生的人数如表所示(单位:人),若用分层抽样的(2)用随机抽样的方法从高二学年学优生中抽取8人,经检测他们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8人的得分看作一个总体,从中任取一个分数a.记这8人的得分的平均数为,定义事件E={|a﹣|≤0.5,且f(x)=ax2﹣ax+2.31没有零点},求事件E发生的概率.【考点】古典概型及其概率计算公式;分层抽样方法;众数、中位数、平均数.【分析】第(1)问涉及分层抽样知识,第(2)问涉及古典概型与平均数的计算.【解答】解:(1)根据分层抽样的特征,有,解得z=400.(2)由题意,.由||≤0.5,得8.5≤a≤9.5.由f(x)=ax2﹣ax+2.31没有零点,得0<a<9.24.所以,符合上述两个条件的a=8.6,9.2,8.7,9.0,共4个值,故所求概率为.18.已知向量=(cos,﹣1),=(sin,cos2),设函数f(x)=+1.(1)求函数f(x)的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,且满足a2+b2=6abcosC,sin2C=2sinAsinB,求f(C)的值.【考点】余弦定理;平面向量数量积的运算;三角函数中的恒等变换应用.【分析】(1)由两向量的坐标,利用平面向量的数量积运算法则列出f(x)解析式,利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的递增区间即可确定出f(x)的递增区间;(2)已知第二个等式利用正弦定理化简,再利用余弦定理表示出cosC,将第一个等式及化简得到的关系式代入求出cosC的值,确定出C的度数,即可求出f(C)的值.【解答】解:(1)∵=(cos,﹣1),=(sin,cos2),∴f(x)=+1=sin cos﹣cos2=sinx﹣cosx+=sin(x﹣)+,令2kπ﹣≤x﹣≤2kπ+(k∈Z),得到2kπ﹣≤x≤2kπ+(k∈Z),所以所求增区间为[2kπ﹣,2kπ+](k∈Z);(2)由a2+b2=6abcosC,由sin2C=2sinAsinB,利用正弦定理化简得:c2=2ab,∴cosC===3cosC﹣1,即cosC=,又∵0<C<π,∴C=,∴f(C)=f()=sin(﹣)+=+=1.19.已知公差不为零的等差数列{a n},等比数列{b n},满足b1=a1+1=2,b2=a2+1,b3=a4+1.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)若c n=a n•b n,求数列{c n}的前n项和.【考点】数列的求和.【分析】(Ⅰ)根据等差数列和等比数列的条件建立方程组,即可求数列{a n}、{b n}的通项公式;(Ⅱ)利用错误相减法即可求数列{c n}的前n项和.【解答】解:(Ⅰ)∵b1=a1+1=2,∴a1=2﹣1=1,∴b2=a2+1=2+d,b3=a4+1=2+3d.∴,即(2+d)2=2(2+3d),即d2=2d,解得d=0(舍去)或d=2,∴a n=2n﹣1,∵b2=2+d=2+2=4,∴公比q=,∴.即a n=2n﹣1,.(Ⅱ)∵,,,∴,,∴.20.已知直三棱柱ABC﹣A1B1C1中,AC=BC,点D是AB的中点.(1)求证:BC1∥平面CA1D;(2)求证:平面CA1D⊥平面AA1B1B;(3)若底面ABC为边长为2的正三角形,BB1=,求三棱锥B1﹣A1DC的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)连接AC1交A1C于点E,连接DE,由直三棱柱的几何特征及三角形中位线定理,可得DE∥BC1,进而由线面平行的判定定理得到结论;(2)先利用面面垂直的性质定理证明直线CD⊥平面AA1B1B,再由面面垂直的判定定理证明所证结论即可(3)三棱锥B1﹣A1DC的体积=,求出棱锥的底面面积和高,代入棱锥体积公式,可得答案.【解答】证明:(1)连接AC1交A1C于点E,连接DE∵四边形AA1C1C是矩形,则E为AC1的中点又∵D是AB的中点,DE∥BC1,又DE⊂面CA1D,BC1⊄面CA1D,∴BC1∥平面CA1D;(2)AC=BC,D是AB的中点,∴AB⊥CD,又∵AA1⊥面ABC,CD⊂面ABC,∴AA1⊥CD,∵AA1∩AB=A,∴CD⊥面AA1B1B,又∵CD⊂面CA1D,∴平面CA1D⊥平面AA1B1B(3)则由(2)知CD⊥面ABB1B,∴三棱锥B1﹣A1DC底面B1A1D上的高就是CD=,又∵BD=1,BB1=,∴A1D=B1D=A1B1=2,=,∴三棱锥B1﹣A1DC的体积===121.已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,且f(x)在区间[0,2]有表达式f(x)=x(x﹣2)(I)求出f(﹣1),f(2.5)的值;(Ⅱ)若函数f(x)在区间[﹣2,2]的最大值与最小值分别为m,n,且m﹣n=3,求k的值.【考点】抽象函数及其应用;函数的最值及其几何意义.【分析】(1)直接根据定义得f(x+2)=f(x),求得f(2.5)和f(﹣1);(2)先求出f(x)的解析式f(x)=,再求出各分段的值域,得出m,n的值.【解答】解:(1)因为f(x)=kf(x+2),所以,f(x+2)=f(x),因此,f(2.5)=f(0.5)=﹣,f(﹣1)=kf(1)=﹣k;(2)根据题意,当x∈[0,2],f(x)=x(x﹣2),当x∈[﹣2,0]时,x+2∈[0,2],所以f(x)=kf(x+2)=k(x+2)x,其中,k<0,因此,x∈[﹣2,2]时,f(x)=,当x∈[0,2],f(x)=(x﹣1)2﹣1∈[﹣1,0],当x∈[﹣2,0],f(x)=k[(x+1)2﹣1]∈[0,﹣k],所以,函数的最大值为m=﹣k,最小值为n=﹣1,如右图,因为,m﹣n=3,﹣k+1=3,解得k=﹣2.22.已知f(x)=xlnx.(Ⅰ)求函数f(x)在定义域上的最小值;(Ⅱ)求函数f(x)在[t,t+2](t>0)上的最小值;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx>成立.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出导数,极值点和单调区间,可得极小值和最小值;(Ⅱ)讨论时,时,运用单调性,即可得到所求最小值;(Ⅲ)问题等价于证明.由(1)设,求出导数,求出最大值即可.【解答】解:(Ⅰ)由f(x)=xlnx,x>0得f'(x)=lnx+1,令f'(x)=0,得.当时,f'(x)<0,f(x)单调递减;当时,f'(x)>0,f(x)单调递增.可得最小值为﹣…(Ⅱ)当,即时,…当,即时,f(x)在[t,t+2]上单调递增,此时f(x)min=f(t)=tlnt…所以…(Ⅲ)问题等价于证明.由(1)知f(x)=xlnx,x>0的最小值是,当且仅当时取到,设,则,易知,当且仅当x=1时取到.从而对一切x∈(0,+∞),都有成立.…2016年11月4日。
江西省南昌市2016届高三数学下学期第二次模拟考试试题文(扫描版)NCS20160607项目第二次模拟测试卷 数学(文科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CCDCDABADABB二、填空题:本大题共4小题,每小题5分,共20分. 13.3;14.22(1)(3)8x y ++-=;15.40;16.20π 三、解答题:本大题共6个题,共70分.17.解:(Ⅰ)当点P 在三角形ABC 外,且CP AB ⊥时,23BCP π∠=, 又1,cos 36CP BC AB π==⋅=,所以22||19213cos133BP π=+-⨯⨯=,………4分 所以11339sin 2sin 26sin 3BCP BCP π=⇒∠=∠;……………………………………6分(Ⅱ)以点C 为原点,过点C 且平行于AB 的直线为x 轴,建立直角坐标系,则33333(,),(,)2222A B ---,设(cos ,sin )P θθ,则33333(cos ,sin )(cos ,sin )2222PA PB θθθθ⋅=++⋅-+u u u r u u u r 2299cos 3cos sin 3sin 3sin 3cos 144θθθθθθ=--+++=-+23sin()16πθ=-+,……………………………………………………………………10分所以PA PB ⋅u u u r u u u r的取值范围是[231,231]-++.……………………………………12分18.解:(Ⅰ)因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中有且只有2组数据是相邻2天数据的情况有6种, 所以63105P ==;………………………………………………………………………6分 (Ⅱ)由数据,求得12,27x y ==.由公式,求得52b =,3a y bx =-=-.所以y 关于x 的线性回归方程为5ˆ32y x =-. ……………………………………9分 当x =10时,5ˆ103222y =⨯-=,|22-23|1≤; 同样,当x =8时,5ˆ83172y=⨯-=,|17-15|1>. 所以,该研究所得到的线性回归方程是不可靠的. ………………………………12分19.(Ⅰ)证明:2221112cos 603AB AB BB AB BB =+-⋅︒=,所以22211AB AB BB +=,所以1B A AB ⊥,又因为侧面11AA B B ⊥底面ABCD ,所以1B A ⊥底面ABCD ,所以1B A BD ⊥,……………………………………3分 又因为ABCD 是正方形,所以AC BD ⊥,所以BD ⊥平面1AB C ,所以平面1AB C ⊥平面1BDC ;……………………………………………………6分(Ⅱ)因为11//C D B A ,所以1C D //平面1AB C ,……………………………8分所以1111C AB C D AB C B ACD V V V ---==1133326=⨯⨯=.…………………………12分 20.解:(1)设点1122(,),(,)A x y D x y ,则11(,)B x y --,则2222112222221,1,x y x y a b a b+=+= 因为AD AB ⊥,所以1AD k k=-,因此2121212111,4y y y y k k x x x x -+-==-+,………2分 所以22222221221222222121()1144b x x y y b a x x x x a ----==⇒=--,………………………………4分 又223a b -=,解得224,1a b ==,所以椭圆C 的方程为2214x y +=.……………………………6分 (2)因为11y k x =,所以12111:()4yl y y x x x +=+,令0y =得13M x x =,令0x =得134N y y =-,……………………………………9分所以1119||||||28OMN S OM ON x y =⋅=△,因为2211111||4x y x y =+≥,且当11||2||x y =时,取等号, 所以OMN △面积的最大值是98.…………………………………………………12分21.解:(Ⅰ)'()2xf x e ax b =++,所以'(0)1f b =+,又(0)1f =,所以1(1)1210(1)b b --+==⇒=--;…………………………………5分 (Ⅱ)记()'()21xg x f x e ax ==++,曲线()y f x =所有切线的斜率都不小于2等价于()2g x ≥对任意的x R ∈恒成立,…………………………………………………7分 '()2x g x e a =+,当0a ≥时,'()0g x >,()g x 单调递增,所以当0x <时,()(0)2g x g <=,……9分当0a <时,'()0ln(2)g x x a =⇔=-,且ln(2)x a <-时,'()0g x <,ln(2)x a >-时,'()0g x >,所以函数()g x 的极小值点为ln(2)a -,又(0)2g =,所以ln(2)0a -=,所以12a =-.综上,实数a 的取值集合是1{}2-.……………………………………12分请考生在22~24三题中任选一题做答,如果多做,则按所做的第一题记分. 22. 解:(Ⅰ)设圆B 交线段AB 于点C ,因为AB 为圆O 一条直径,所以BF FH ⊥,………………………2分 又DH BD ^,故B 、D 、F 、H 四点在以BH 为直径的圆上 所以,B 、D 、F 、H 四点共圆.……………3分 所以AB AD AF AH ⋅=⋅.……………………4分 (Ⅱ)因为AH 与圆B 相切于点F ,由切割线定理得2AC AB BD =-=,2AF AC AD =⋅,即()2222AD =⋅,=4AD ,………………………………6分所以()1=112BD AD AC BF BD -===,又AFB ADH ∆∆:, 则DH AD BF AF=, 得2DH =………………………………8分 连接BH ,由(1)可知BH 为BDF D 的外接圆直径223BH BD DH =+=,故BDF D 的外接圆半径为32……………10分23.解:(Ⅰ)由2sin 2cos ρθθ=-,可得22sin 2cos ρρθρθ=-所以曲线C 的直角坐标方程为2222x y y x +=-,…………………………4分 (Ⅱ)直线l 的方程为222:22x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩, 化成普通方程为2y x =+……………………………………………………………7分由22222x y y x y x ⎧+=-⎨=+⎩,解得02x y =⎧⎨=⎩或20x y =-⎧⎨=⎩…………………………………9分所以22AB =.………………………………………………………………………10分 24.解:(Ⅰ)当1a =时,不等式()2f x ³可化为|1||21|2x x ++-?①当12x ≥时,不等式为32x ³,解得23x ≥,故23x ≥;②当112x -≤<时,不等式为22x -?,解得0x ≤,故10x -≤≤;③当1x <-时,不等式为32x -?,解得23x ≤-,故1x <-;……………4分综上原不等式的解集为20,3x x x ⎧⎫≤≥⎨⎬⎩⎭或………………………………………5分(Ⅱ)()2f x x £在1[,1]2x ∈时恒成立,当1[,1]2x ∈时,不等式可化为|1|1ax +≤,………………………………………7分解得2200ax a x-≤≤⇒-≤≤,因为1[,1]2x ∈,所以2[4,2]x-∈--,……………………………………………9分所以a 的取值范围是[2,0]-.………………………………………………………10分。