四川省宜宾县2019-2020学年九年级下期中考试数学测试题-附详细答案
- 格式:doc
- 大小:796.50 KB
- 文档页数:12
2019年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。
1.(3分)(2019•宜宾)2的倒数是()A.12B.2-C.12-D.12±2.(3分)(2019•宜宾)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为() A.65.210-⨯B.55.210-⨯C.65210-⨯D.55210-⨯3.(3分)(2019•宜宾)如图,四边形ABCD是边长为5的正方形,E是DC上一点,1DE=,将ADE∆绕着点A顺时针旋转到与ABF∆重合,则(EF=)A.41B.42C.52D.2134.(3分)(2019•宜宾)一元二次方程220x x b-+=的两根分别为1x和2x,则12x x+为( )A.2-B.b C.2D.b-5.(3分)(2019•宜宾)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.76.(3分)(2019•宜宾)如表记录了两位射击运动员的八次训练成绩:次数环数运动员第1次第2次第3次第4次第5次第6次第7次第8次甲 10 7 7 8 8 8 9 7 乙1055899810根据以上数据,设甲、乙的平均数分别为x 甲、x 乙,甲、乙的方差分别为2s 甲,2s 乙,则下列结论正确的是( )A .x x =乙甲,22s s <乙甲B .x x =乙甲,22s s >乙甲C .x x >乙甲,22s s <乙甲 D .x x <乙甲,22s s <乙甲7.(3分)(2019•宜宾)如图,EOF ∠的顶点O 是边长为2的等边ABC ∆的重心,EOF ∠的两边与ABC ∆的边交于E ,F ,120EOF ∠=︒,则EOF ∠与ABC ∆的边所围成阴影部分的面积是( )A 3B 23C 3D 3 8.(3分)(2019•宜宾)已知抛物线21y x =-与y 轴交于点A ,与直线(y kx k =为任意实数)相交于B ,C 两点,则下列结论不正确的是( ) A .存在实数k ,使得ABC ∆为等腰三角形B .存在实数k ,使得ABC ∆的内角中有两角分别为30︒和60︒C .任意实数k ,使得ABC ∆都为直角三角形D .存在实数k ,使得ABC ∆为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。
2019—2020学年度第二学期期中考试初三数学试题(考试时间:120分钟 试卷分值:150分) 命题、校对:一、选择题(每题只有一个是正确的,每题3分,共18分) 1、-12 的相反数是( )A 、12B 、-2C 、-12D 、22、在一条东西向的跑道上,小亮先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作( )A 、+2米B 、-2米C 、+18米D 、-18米 3、在下列四个几何体中,主视图与俯视图都是圆的为( )4、一组数据3,4,x ,6,8的平均数是5,则这组数据的中位数是( )A 、4B 、5C 、6D 、7 5、如图,AB 、AC 是⊙O 的两条切线,B 、C 是切点,若∠A =70°, 则∠BOC 的度数为( )A 、130°B 、120°C 、110°D 、100°6.如图,在钝角△ABC 中,分别以AB 和AC 为斜边向△ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ,EM 平分∠AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN 、DE 、DF .下列结论: ①EM=DN ; ②S △CDN =31S 四边形ABDN ; ③DE=DF ; ④DE ⊥DF .其中正确的结论的个数是( )7、实数16的算术平方根是__________.8、在函数y = 1x -2中,自变量x 的取值范围是__________.9、今年一季度东台财政收入列江苏沿海各县市区财政收入前茅达3 230 000 000元,将这个数用科学计数法表示为________________________10、分解因式:2ax ax -= .11、抛物线y =x 2-bx +3的对称轴是直线x =1,则b 的值为__________. 12、已知圆锥的底面半径为3,高为4,则这个圆锥的侧面积为 . 13、如图,在2×2的网格中,每个小正方形的边长都是1,图中的阴影部分图案是由一个点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积为 .14、在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1), 将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的 坐标为(-2,2),则点N ′的坐标为 .15、质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子 一次,则向上一面的数字是偶数的概率为 . 16、如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =﹣x +4上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2019=. 三、解答题(共11大题,合计102分) 17、(8分)计算: 203(4)(π3)2|5|-+----18、(8分)解不等式组⎩⎨⎧-≥+>+14201x x x19、(8分) 化简)31(96922a a a a -÷++-,并选一个你喜欢的a 的值代入求值。
春期期中测试试题九年级数学(全卷共8页,完卷时间120分钟,满分120分)1.答题前,必须把考号和姓名写在密封线内;2.直接在试卷上作答,不得将答案写到密封线内,不得加附页.一、选择题:(本大题共8个小题,每小题3分,共24分),以下各题均给出A 、B 、C 、D 四个选项,但其中只有一个是正确的,请将正确答案的代号直接填在题后的括号内.1.-9的相反数是( ) A .91-B .9C .91 D . -92. “一方有难,八方支援。
”2013年4月20日四川省芦山县遭遇强烈地震灾害,我市某校师生共同为地震灾区捐款135000元用于灾后重建,把135000用科学记数法表示为()A.1.35×106B. 13.5×10 5C. 1.35×105D. 13.5×1043. 下列计算正确的是( )A .1644x x x =⋅ B .()9423a a a =⋅C .()()4232ab ab ab-=-÷ D .()()13426=÷a a4. 如图,直线a 、b 被直线c 所截,若a ∥b ,∠1=60°, 那么∠2的度数为( )A .120°B .90°C .60°D .30°5. 已知一组数据3,7,9,10,x ,12的众数是9,则这组数据的中位数是( )A .9B .9.5C .3D .12 6. 分式方程xx 325=-的解是( ) A .x =3 B .x =3- C .x =34 D .x =34-7. 下面由8个完全相同的小正方体组成的几何体的主视图是( )B C D 8. 如图1,点E 为矩形ABCD 边AD 上一点,点P,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论::①AD=BE=5cm ;②当0<t ≤5时;252t y =;③直线NH 的解析式为y=-25t+27;④若△ABE 与△QBP 相似,则t=429秒。
2019-2020年九年级数学下册期中考试试题(附答案) 一、选择题(每题4分,共40分.每小题有四个选项,其中只有一个选项是正确的,将正确选项的字母填入下表相应的题号下面.) 1.-2的绝对值是( )A .-2B .-21C .2D .21 2.在△ABC 中,若sinA =23,则∠A 为( ) A .30o B .45o C .60o D .90o 3.下列函数中,当x >0时,y 随x 的增大而减小的是( )A.y=2x 2B.y=2x -1C.y=x2- D.y=-2x 2 4.函数y=(m 2+m )122--m mx 是二次函数,则m 的值为( )A .2B .-1或3C .3D .-1±25.将抛物线y =-2(x -1)2-2向左平移1个单位,再向上平移1个单位,得到的抛物线的表达式为( )A .y =-2(x -2)2-3B .y =-2(x -2)2-1C .y =-2x 2-1D .y =-2x 2-3 6.下列抛物线的图象与x 轴没有交点的是( )A .42-=x yB .1312+-=x y C .2)2(22---=x y D .x x y 32+= 7.函数c ax y +=2与x acy =在同一直角坐标系中的图象大致是( ) yx x xA B C D8、⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A . 相交B . 相切C . 相离D . 无法确定9、如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均相等的结果,那么,小球最终到达H 点的概率是( ).A .21B .41 C .61D .81 10.如图,菱形ABCD 中,∠A =600,AB =2,动点P 从点B 出发,以每秒1个单位长度的速度沿B →C →D 向终点D 运动.同时动点Q 从点A 出发,以相同的速度沿A→D →B 向终点B 运动,运动的时间为x 秒,当点P 到达点D 时,点P 、Q 同时停止运动,设△APQ 的面积为y ,则反映y 与x 的函数关系的图象是( )第9题A B C DA. B. C. D.二、填空题:(本大题6个小题,每小题4分,共24分)在每个小题中,请将每小题的正确答案填在下列方框内11.抛物线y=x 2-4x-5的顶点坐标为 ,对称轴为x= . 12.据记者日前从县财政局获得的消息,今年荣昌县地方财政收入完成330197万元,为年度预算的91.67%,同比增加增长91.68约为 元(保留两个有效数字)。
一、选择题1.(0分)[ID :11122]如图,△ABC 中,DE ∥BC ,若AD :DB =2:3,则下列结论中正确的( )A .23DE BC = B .25DE BC = C .23AE AC = D .25AE EC = 2.(0分)[ID :11103]如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x=-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .13.(0分)[ID :11100]若37a b =,则b a a -等于( ) A .34B .43C .73D .374.(0分)[ID :11099]已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( ) A .AB 2=AC •BCB .BC 2=AC •BCC .AC =512-BC D .BC =512-AC 5.(0分)[ID :11097]如图,D 是△ABC 的边BC 上一点,已知AB=4,AD=2.∠DAC=∠B ,若△ABD 的面积为a ,则△ACD 的面积为( )A .aB .12aC .13aD .23a6.(0分)[ID :11092]在△ABC 中,若|cosA −12|+(1−tanB)2=0,则∠C 的度数是( ) A .45°B .60°C .75°D .105°7.(0分)[ID:11085]如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.58.(0分)[ID:11070]河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米9.(0分)[ID:11060]在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)10.(0分)[ID:11056]如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数kyx= (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )A.92B.74C.245D.1211.(0分)[ID:11053]若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20 C.154D.80312.(0分)[ID:11050]如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°13.(0分)[ID:11044]如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE 与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )A.105 m B.(105 1.5)mC.11.5m D.10m14.(0分)[ID:11040]如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.24C.14D.1315.(0分)[ID:11036]如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <2二、填空题16.(0分)[ID :11202]如图,P (m ,m )是反比例函数9y x=在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为_____.17.(0分)[ID :11201]“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E 、南门点F 分别是AB ,AD 的中点,EG ⊥AB ,FE ⊥AD ,EG =15里,HG 经过A 点,则FH =__里.18.(0分)[ID :11167]如图,已知点A ,C 在反比例函数(0)ay a x=>的图象上,点B ,D 在反比例函(0)by b x=<的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB=5,CD=4,AB 与CD 的距离为6,则a −b 的值是_______.19.(0分)[ID :11147]如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.20.(0分)[ID:11146]如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则点C的坐标为________.21.(0分)[ID:11142]一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.22.(0分)[ID:11138]如图,等腰直角三角形ABC中, AB=4 cm.点是BC边上的动点,以AD为直角边作等腰直角三角形ADE.在点D从点B移动至点C的过程中,点E移动的路线长为________cm.23.(0分)[ID:11137]已知AB∥CD,AD与BC相交于点O.若BOOC=23,AD=10,则AO=____.24.(0分)[ID:11176]已知CD是Rt△ABC斜边上的高线,且AB=10,若BC=8,则cos∠ACD= ______.25.(0分)[ID:11218]如图,l1∥l2∥l3,AB=25AC,DF=10,那么DE=_________________.三、解答题26.(0分)[ID :11285]如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)以原点O 为位似中心,位似比为1∶2,在y 轴的左侧,画出△ABC 放大后的图形△A 1B 1C 1,并直接写出C 1点的坐标;(2)如果点D(a ,b)在线段AB 上,请直接写出经过(1)的变化后点D 的对应点D 1的坐标.27.(0分)[ID :11276]如图,在△ABC 和△ADE 中,∠BAD =∠CAE ,∠ABC =∠ADE . (1)求证:△ABC ∽△ADE ;(2)判断△ABD 与△ACE 是否相似?并证明.28.(0分)[ID :11261]已知:如图,在正方形ABCD 中,P 是BC 上的点,Q 是CD 上的点,且∠AQP =900,求证:△ADQ ∽△QCP .29.(0分)[ID :11252]如图,某市郊外景区内一条笔直的公路l 经过A 、B 两个景点,景区管委会又开发了风景优美的景点C .经测量,C 位于A 的北偏东60︒的方向上,B 的北偏东30的方向上,且10AB km =.(1)求景点B与C的距离.(2)求景点A与C的距离.(结果保留根号)30.(0分)[ID:11233]如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)在图1中画出△ABC关于x轴对称的△A1B1C1,直接写出点C的对应点C1的坐标.(2)在图2中,以点O为位似中心,将△ABC放大,使放大后的△A2B2C2与△ABC的对应边的比为2:1(画出一种即可).直接写出点C的对应点C2的坐标.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.B4.D5.C6.C7.C8.B9.B10.C11.B12.A13.C14.D15.C二、填空题16.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三17.05【解析】∵EG⊥ABFH⊥ADHG经过A点∴FA∥EGEA∥FH∴∠HFA=∠AEG=90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA=7里EG=15里∴FA=35里EA=45里∴18.【解析】【分析】利用反比例函数k的几何意义得出a-b=4•OEa-b=5•OF求出=6即可求出答案【详解】如图∵由题意知:a-b=4•OEa-b=5•OF∴OE=OF=又∵OE+OF=6∴=6∴a-19.3:2【解析】因为DE∥BC所以因为EF∥AB所以所以故答案为:3:220.【解析】【分析】直接利用位似图形的性质结合相似比得出AB的长进而得出△OAD∽△OBG进而得出AO的长即可得出答案【详解】∵正方形BEFG的边长是6∴∵两个正方形的相似比为∴∴∵AD∥BG∴△OAD21.14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14点睛:主视图是从物体的正面看得到的视图左视图是从物体的左面看得到的视图;注意主视图主要告22.【解析】试题解析:连接CE如图:∵△ABC和△ADE为等腰直角三角形∴AC=ABAE=AD∠BAC=45°∠DAE=45°即∠1+∠2=45°∠2+∠3=45°∴∠1=∠3∵∴△ACE∽△ABD∴∠23.【解析】∵AB∥CD解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键24.【解析】试题分析:根据同角的余角相等得:∠ACD=∠B利用同角的余弦得结论解:∵CD是Rt△ABC斜边上的高线∴CD⊥AB∴∠A+∠ACD=90°∵∠ACB=90°∴∠B+∠A=90°∴∠ACD=∠25.【解析】试题解析::∵l1∥l2∥l3∴∵AB=AC∴∴∵DF=10∴∴DE=4三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】运用平行线分线段成比例定理对各个选项进行判断即可.【详解】∵AD:DB=2:3,∴ADAB=25.∵DE ∥BC ,∴DE BC =AD AB =25,A 错误,B 正确; AE AC =AD AB =25,C 错误; AE EC =AD DB =23,D 错误. 故选B . 【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.2.D解析:D 【解析】 因为直线12y x b =-+与x 轴交于点A ,所以令y =0,可得:1 02x b -+=,解得2x b =, 则OA =2b ,又因为2AOB S ∆=,所以B 点纵坐标是:2b ,因为B 点在4(0)y x x=-<,所以B 点坐标为(-2b ,2b ),又因为B 点在直线12y x b =-+上,所以()2122b b b =-⨯-+,解得1b =±,因为直线12y x b =-+与y 轴交于正半轴,所以0b >,所以1b =,故选D. 3.B解析:B 【解析】由比例的基本性质可知a=37b ,因此b a a -=347337b bb -=. 故选B. 4.D解析:D 【解析】 【分析】根据黄金分割的定义得出BC AC AC AB ==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC ,∴BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误;∴AC=12AB,故C错误;AC,故D正确;故选D.【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.5.C解析:C【解析】【分析】【详解】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为a,∴△ACD的面积为13a,故选C.【点睛】本题考查相似三角形的判定与性质,掌握相关性质是本题的解题关键.6.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=12,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.7.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k 的几何意义.8.B解析:B【解析】【分析】Rt △ABC 中,已知了坡比是坡面的铅直高度BC 与水平宽度AC 之比,通过解直角三角形即可求出水平宽度AC 的长.【详解】Rt △ABC 中,BC=5米,tanA=1;∴AC=BC÷ 故选:B .【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.9.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l )向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l )向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.10.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上,∴4ab =k , ∴E (a ,k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a)=9, ∴k=245, 故选:C【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.11.B解析:B【解析】∵△ABC ∽△A ′B ′C ′,∴34ABC AB A B C A B ''=''='的周长的周长, ∵△ABC 的周长为15cm ,∴△A ′B ′C ′的周长为20cm .故选B .12.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 13.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC ,∴C DE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.14.D解析:D【解析】 【分析】过C 点作CD ⊥AB ,垂足为D ,根据旋转性质可知,∠B′=∠B ,把求tanB′的问题,转化为在Rt △BCD 中求tanB .【详解】过C 点作CD ⊥AB ,垂足为D .根据旋转性质可知,∠B′=∠B .在Rt △BCD 中,tanB=13CD BD =, ∴tanB′=tanB=13. 故选D .【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法. 15.C解析:C【解析】【分析】一次函数y 1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题16.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三解析:9332+.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得3∴OB3∴S△POB=12OB•PH933+.17.05【解析】∵EG⊥ABFH⊥ADHG经过A点∴FA∥EGEA∥FH∴∠HFA=∠AEG =90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA=7里EG=15里∴FA=35里EA=45里∴解析:05【解析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA ∽△AFH ,∴EG EA AF FH =. ∵AB =9里,DA =7里,EG =15里,∴FA =3.5里,EA =4.5里,∴15 4.53.5FH=, 解得FH =1.05里.故答案为1.05. 18.【解析】【分析】利用反比例函数k 的几何意义得出a-b=4•OEa -b=5•OF 求出=6即可求出答案【详解】如图∵由题意知:a-b=4•OEa -b=5•OF ∴OE=OF=又∵OE+OF=6∴=6∴a-解析:403【解析】【分析】利用反比例函数k 的几何意义得出a-b=4•OE ,a-b=5•OF ,求出45a b a b --+=6,即可求出答案.【详解】如图,∵由题意知:a-b=4•OE ,a-b=5•OF ,∴OE=4a b -,OF=5a b -, 又∵OE+OF=6,∴45a b a b --+=6, ∴a-b=403, 故答案为:403. 【点睛】 本题考查了反比例函数图象上点的坐标特征,能求出方程45a b a b --+=6是解此题的关键.19.3:2【解析】因为DE∥BC 所以因为EF∥AB 所以所以故答案为:3:2 解析:3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 20.【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长进而得出△OAD ∽△OBG 进而得出AO 的长即可得出答案【详解】∵正方形BEFG 的边长是6∴∵两个正方形的相似比为∴∴∵AD ∥BG ∴△OAD解析:(3,2)【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】.∵正方形BEFG 的边长是6,∴6BE EF ==. ∵两个正方形的相似比为13, ∴163CB CB EF ==. ∴2AB BC ==,.∵AD ∥BG ,∴△OAD ∽△OBG , ∴13OA OB =,即213OB OB -=. ∴3OB =.∴点C 的坐标为(3,2). 【点睛】本题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO 的长是解题关键. 21.14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14点睛:主视图是从物体的正面看得到的视图左视图是从物体的左面看得到的视图;注意主视图主要告解析:14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.22.【解析】试题解析:连接CE 如图:∵△ABC 和△ADE 为等腰直角三角形∴AC=ABAE=AD∠BAC=45°∠DAE=45°即∠1+∠2=45°∠2+∠3=45°∴∠1=∠3∵∴△ACE∽△ABD∴∠ 解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD , ∴∠ACE=∠ABC=90°,∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22, 当点D 运动到点C 时,2,∴点E 移动的路线长为2cm .23.【解析】∵AB ∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键 解析:【解析】 ∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.24.【解析】试题分析:根据同角的余角相等得:∠ACD=∠B 利用同角的余弦得结论解:∵CD 是Rt△ABC 斜边上的高线∴CD⊥AB∴∠A+∠ACD=90°∵∠ACB=90°∴∠B+∠A=90°∴∠ACD=∠解析:4 5【解析】试题分析:根据同角的余角相等得:∠ACD=∠B,利用同角的余弦得结论.解:∵CD是Rt△ABC斜边上的高线,∴CD⊥AB,∴∠A+∠ACD=90°,∵∠ACB=90°,∴∠B+∠A=90°,∴∠ACD=∠B,∴cos∠ACD=cos∠B=BCAB=810=45,故答案为:4 5 .25.【解析】试题解析::∵l1∥l2∥l3∴∵AB=AC∴∴∵DF=10∴∴DE=4 解析:【解析】试题解析::∵l1∥l2∥l3,∴AB DE AC DF=.∵AB=25 AC,∴25 ABAC=,∴25 DEDF=.∵DF=10,∴2 105 DE=,∴DE=4.三、解答题26.(1)图见解析,C1(-6,4);(2)D1(2a,2b).【解析】【分析】(1)连接OB并延长,使BB1=OB,连接OA并延长,使AA1=OA,连接OC并延长,使CC1=OC,确定出△A1B1C1,并求出C1点坐标即可;(2)根据A与A1坐标,B与B1坐标,以及C与C1坐标的关系,确定出变化后点D的对应点D1坐标即可.【详解】(1)根据题意画出图形,如图所示:则点C1的坐标为(-6,4);(2)变化后D的对应点D1的坐标为:(2a,2b).【点睛】运用了作图-位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.27.(1)见解析 (2)△ABD∽△ACE【解析】分析:(1)由∠BAD=∠CAE易得∠BAC=∠DAE,这样结合∠ABC=∠ADE,即可得到△ABC∽△ADE.(2)由(1)中结论易得AB ACAD AE=,从而可得:AB ADAC AE=,这样结合∠BAD=∠CAE即可得到△ABD∽△ACE了.详解;(1)∵∠BAD=∠CAE,∴∠BAC=∠DAE,∵∠ABC=∠ADE,∴△ABC∽△ADE.(2)△ABD∽△ACE,理由如下:由(1)可知△ABC∽△ADE,∴AB AC AD AE=,∴AB AD AC AE=,又∵∠BAD=∠CAE,∴△ABD ∽△ACE .点睛:这是一道考查“相似三角形的判定与性质的题目”,熟悉“相似三角形的判定定理和性质”是解答本题的关键.28.证明见解析【解析】试题分析:本题利用等角的余角相等得出一对相等的角,加上直角得出相似三角形. 试题解析:在Rt △ADQ 与Rt △QCP 中,∵∠AQP =90°, ∴∠AQP +∠PQC =90°, 又∵∠PQC +∠QPC =90°, ∴∠AQP =∠QPC ,∴Rt △ADQ ∽Rt △QCP .29.(1)BC=10km ;(2)AC=103km. 【解析】 【分析】(1)由题意可求得∠C =30°,进一步根据等角对等边即可求得结果;(2)分别在Rt BCD ∆和Rt ACD ∆中利用锐角三角函数的知识解直角三角形即可求得结果.【详解】解:(1)过点C 作CD ⊥直线l ,垂足为D ,如图所示.根据题意,得:30CAD ∠=︒,60CBD ∠=︒,∴∠C =∠CBD -∠CAD =30°,∴∠CAD =∠C ,∴BC =AB =10km .(2) 在Rt BCD ∆中,sin CD CBD BC ∠=,∴sin 6053CD BC km ==, 在Rt ACD ∆中,1sin 2CD CAD AC ∠==,∴2103AC CD km ==.【点睛】本题考查了解直角三角形的应用,属于基本题型,熟练掌握锐角三角函数的知识是解题的关键.30.(1)作图见解析;(2)作图见解析;点C2(-6,-2)或(6,2).【解析】【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接即可;(2)延长OB到B2,使OB2=2OB,按同样的方法得到点A2、C2,然后顺次连接,写出C2的坐标即可.(也可以反向延长).【详解】(1)如图所示,C1(3,-1);(2)如图所示,C2的坐标是(-6,-2)或(6,2).。
2019-2020 年九年级数学放学期期中考试题及答案一、选择题( 3 分×12=36 分)1、 -3 的相反数是()A 、 3B 、-3C 、1D 、-1332、 2010年某景区整年旅客人数超8030000人次,8030000用科学计数法表示是()45 C 、8.03 ×10 67A 、 803×10B 、80.3 ×10 D 、8.03 ×103、如图,已知 AB ∥CD, ∠A=50°,∠C=∠E,则∠ C=()BA 、20°B 、25°A50 °DC 、30°D 、40°CE4、以下运算结果正确的选项是()① 2x 3-x2为 , E= 3则⊙ O 的半径为AB16、如图,连接正方形 ABCD 和正三角形的极点 C 、E,则∠ BCE 为D C17、 75°的圆心角所对的弧长是 2.5 π cm ,则此弧所在圆的半径是 cm18、已知等腰三角形 ABC 的底边 AB 在 x 轴上,A 点坐标为(1,0)极点 C 的纵坐标为 4,AC= 17 ,则 B 点的坐标为三、本大题(共2 个小题,每个小题 6 分,共 12 分)19、计算:∣ -2∣- 4sin45 -°( 1 )-1+ 2 2-(3 - 2 )2、解方程: 1 1x-320x 2 =2 x四、本大题(共 2 个小题,每个小题8 分,共 16 分)21、如图,在梯形ABCD 中, AD ∥ BC,BD 均分∠ ABC , AE ∥CD 交 BC 于 E,求证: AB=ECA DB E C22、如图,河流的两岸PQ、MN 相互平行,河岸PQ 上有一排小树,已知相邻两树之间的距离 CD=50 米,某人在河岸 MN 的 A 处测得∠ DAN=35°,而后沿河岸走了120 米抵达 B 处,测得∠CBN=70°.求河流的宽度 CE.(结果保存两个有效数字)(参照数据:sin35 °≈ 0.57,cos35°≈ 0.82,tan35°≈,Sin70 °≈ 0.94,cos70°≈ 0.34,tan70°≈ 2.75)P QD C35°70°M NA BE五、本大题(共 2 个小题,每题9 分,共 18 分)23、在一个透明的盒子里,装有四个分别标有数字1、2、3、4 的小球,它们的形状、大小、质地等完整同样,小明先从盒子里随机拿出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机拿出一个小球,记下数字为y.(1)用列表法或树状图表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确立的点(x,y)落在反比率函数4 y=x的图像上的概率。
四川省宜宾市九年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020九下·贵港模拟) 的相反数是()A . 6B . -6C .D .2. (2分) (2020八上·江汉期末) 下列图形是公共设施标志,其中是轴对称图形的是()A .B .C .D .3. (2分) (2019七下·越秀期末) 如图,下列判断中正确的是()A . 如果EF∥GH,那么∠4+∠3=180°B . 如果∠1+∠3=180°,那么AB∥CDC . 如果∠2=∠4,那么AB∥CDD . 如果∠1=∠2,那么AB∥CD4. (2分) (2018九上·温州开学考) 在函数y=x-1的图象上的点是()A . (0,-1)B . (0,0)C . (0,1)D . (-1,0)5. (2分)(2014·衢州) 某地区5月3日至5月9日这7天的日气温最高值统计图如图所示.从统计图看,该地区这7天日气温最高值的众数与中位数分别是()A . 23,25B . 24,23C . 23,23D . 23,246. (2分)(2017·灵璧模拟) 分式方程﹣ =0的根是()A . ﹣1B . 1C . 3D . 07. (2分)(2019·定远模拟) 关于x的一元二次方程(x+1)(x﹣1)+mx=0根的情况,下列判断正确是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 无法确定8. (2分)(2020·新乡模拟) 如图,在△ABC中,∠ACB=90°,分别以点A,点C为圆心,以大于 AC的长为半径作弧,两弧相交于点M、点N,作直线MN交AB于点D,交AC于点D,连接CD.若AE=3,BC=8,则CD 的长为()A . 4B . 5C . 6D . 79. (2分)如图,⊙O为△ABC的内切圆,AC=10,AB=8,BC=9,点D,E分别为BC,AC上的点,且DE为⊙O 的切线,则△CDE的周长为()A . 9B . 7C . 11D . 810. (2分) (2018七上·商水期末) 已知整数a1 , a2 , a3 , a4 ,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为()A . ﹣1007B . ﹣1008C . ﹣1009D . ﹣2018二、填空题 (共8题;共12分)11. (1分) (2018九上·库伦旗期末) 已知x=1是一元二次方程的一个根,则的值为________.12. (5分)八(6)班组织了一次经典朗读比赛,甲、乙两队各9人的比赛成绩如表(10分制):甲78971010101010乙1087981010910(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差________,________;(3)若选择其中一队参加校级经典朗读比赛则应选________队.13. (1分)(2019·长春模拟) 如图,将△ABC绕点A逆时针旋转90°得到△ADE,点C和点E是对应点,若AB=1,则BD=________.14. (1分)(2017·广陵模拟) 如图,点A是双曲线y= 在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为________.15. (1分) (2020·黄浦模拟) 不等式组的整数解是________.16. (1分) (2018八上·姜堰期中) 地球上七大洲的总面积约为149 480 000km2 ,精确到1千万km2的结果是________km2 .17. (1分)(2019·宜兴模拟) 如图,C、D是线段AB上两点,且AC=BD= AB=1,点P是线段CD上一个动点,在AB同侧分别作等边△PAE和等边△PBF,M为线段EF的中点. 在点P从点C移动到点D时,点M运动的路径长度为________.18. (1分)(2017·贵港) 如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为________.(结果保留π)三、解答题 (共8题;共75分)19. (10分)(2020·永嘉模拟)(1)计算: +(π﹣3)0﹣|﹣3|;(2)化简:(x+2)2﹣x(x﹣3).20. (5分)若|x﹣1|+|y+2|=0,求x+y,xy的值.21. (5分) (2017八下·启东期中) 如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F. 求证:OE=OF.22. (10分)(2013·绍兴) 如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm伞架DE DF AE AF AB AC长度363636368686(1)求AM的长.(2)当∠BAC=104°时,求AD的长(精确到1cm).备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.23. (10分)(2017·武汉模拟) 某文具店销售甲、乙两种圆规,当销售5只甲种、1只乙种圆规,可获利润25元,销售6只甲种、3只乙种圆规,可获利润39元.(1)问该文具店销售甲、乙两种圆规,每只的利润分别是多少元?(2)在(1)中,文具店共销售甲、乙两种圆规50只,其中甲种圆规为a只,求文具店所获得利润P与a的函数关系式,并求当a≥30时P的最大值.24. (10分)(2017·竞秀模拟) 在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.25. (10分) (2017八下·黄冈期中) 如图1,四边形ABCO为正方形.(1)若点A坐标为(0,)①求点B的坐标;②如图2,点D为y轴上一点,连接BD,若点A到BD的距离为l,求点C到BD的距离;(2)如图3,连接正方形ABCO的对角线AC,OB交于点Q,点F为线段BC上一点,以OF为直角边向上构造等腰Rt△EOF,∠EOF=90°,EF交AC于P.若PQ=1,求CF的长度.26. (15分) (2018九上·桐乡期中) 已知,抛物线y=-x2+bx+c的图象经过点A(1,0),B(0,5).(1)求这个抛物线的解析式;(2)如图1,P是抛物线对称轴上一点,连接PA,PB,试求出当PA+PB的值最小时点P的坐标;(3)如图2,Q是线段OC上的一点,过点Q作QH⊥x轴,与抛物线交于H点,若直线BC把△QCH分成面积之比为2:3的两部分,请求出Q点的坐标.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共12分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共75分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、。
2019-2020年九年级下期中考试数学试题含解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内) 1、下面哪个数的倒数是15-( ) .A 15 B.-5 C.15- D.52.下列运算正确的是()A .()b a b a +=+--B .a a a =-2333C .01=+-aa D . 933)(a a =--3.下面的图形中,既是轴对称图形又是中心对称图形的是( )A.B .C .D.4. 下列数据是2017年4月10日6点公布的中国六大城市的空气污染指数情况:城市 北京 合肥 南京 哈尔滨 成都 南昌 污染指数34216316545227163A .164和163B .105和163C .105和164D .163和1645. 将如图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )6. 如图,学校大门出口处有一自动感应栏杆,点A 是栏杆转动的支点,当车辆经过时,栏杆AE 会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度∠BAE=127°,已知AB ⊥BC ,支架AB 高1.2米,大门打开的宽度BC 为2米,以下哪辆车可以通过?( )(栏杆宽度,汽车反光镜忽略不计) (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.车辆尺寸:长×宽×高)A .宝马Z4(4200mm×1800mm×1360mm )B .奔驰smart (4000mm×1600mm×1520mm )DCBAACBC .大众朗逸(4600mm×1700mm×1400mm )D .奥迪A6L (4700mm×1800mm×1400mm ) 二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在题中横线上)7. 分解因式:822-x =________ 8. 在函数62-=x y 中使得函数值为0的自变量x 的值是________9. 江苏卫视《最强大脑》第三季正在热播,据不完全统计该节目又创收视新高,全国约有85600000人在收看,全国观看《最强大脑》第三季的人数用科学计数法表示为________人. 10. 已知点M(1-a ,2)在第二象限,则a 的取值范围是________11. 如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是第11题 第12题 第13题 第16题12. 如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是 13.如图,直线AB 与半径为2的⊙O 相切于点C D ,是⊙O 上点,且30EDC ∠=,弦E F A B ∥,则EF 的长度为14.已知正整数a 满足不等式组 ⎩⎨⎧-≤+≥232a x a x (x 为未知数)无解,则函数41)3(2---=x x a y 图象与x 轴的坐标为15.一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为 s .16. 如图,直线y =3x +43与x 轴、y 轴分别交于A 、B 两点, ∠ABC =60°,BC 与x 轴交于点C .动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿C -B -A 向点A 运动(不与C 、A 重合) ,动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.若当△APQ 的面积最大时,y 轴上有一点M ,第二象限内存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形, 则点N 的坐标为三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤) 17. (本题满分6分)计算:12)12(40-++-18. (本题满分6分)先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =3-1. 19. (本题满分8分)如图,在△ABC 中,(1)在图中作出△ABC 的内角平分线AD.(要求:尺规作图,保留作图痕迹,不写证明过程)(2)若∠BAC = 2∠C ,在已作出的图形中,△ ∽△(3)画出△ABC 的高AE (使用三角板画出即可),若∠B=α,∠C=β,那么∠DAE= (请用含α、β的代数式表示)20. (本题满分8分)盐城是一让人打开心扉的城市,吸引了很多的国内外游客,春风旅行社对3月份本社接待的外地游客来盐城旅游的首选景点作了一次抽样调查. 调查结果如下图表:(1)此次共调查了多少人?BAC景点 频数频率 丹顶鹤 8729%麋鹿75盐渎公园 6321% 息心寺4715.7% 后羿公园 28 9.3%_ 0_ 80 _ 20 _ 100 _ 10_ 30 _ 70 _ 60 _ 40 _ 90 _ 50(2)请将以上图表补充完整.(3)该旅行社预计4月份接待外地来杭的游客2500人,请你估计首选去丹顶鹤的人数约有多少人.21.(本题满分8分)如图,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全等...但面积相等的三角形是 (只需要填一个三角形);(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC 面积相等的概率(用画树状图或列表格求解).22.(本题满分10分)如图,点A (1,a )在反比例函数(x >0)的图象上,AB垂直于x 轴,垂足为点B ,将△ABO 沿x 轴向右平移2个单位长度,得到Rt △DEF ,点D 落在反比例函数(x >0)的图象上.(1)求点A 的坐标; (2)求k 值.23.(本题满分10分)如图,在东西方向的海岸线上有一个码头M ,在码头M 的正西方向有一观察站O .某时刻测得一艘匀速直线航行的轮船位于O 的北偏西30°方向,且与O 相距360千米的A 处;经过3小时,又测得该轮船位于O 的正北方向,且与O 相距60千米的B 处.(1)求该轮船航行的速度;(2)当该轮船到达B 处时,一艘海监船从O 点出发以每小时16千米的速度向正东方向行驶,请通过计算说明哪艘船先到达码头M .(参考数据:41.12,73.13≈≈)24.(本题满分10分)如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,∠PBA=∠C .(1)求证:PB 是⊙O 的切线;(2)连接OP ,若OP ∥BC ,且OP=8,⊙O 的半径为2,求BC 的长.25.(本题满分10分)五一期间,某电器商城推出了两种促销方式,且每次购买电器时只能使用其中第21题一种方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送优惠券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠优惠券100元(优惠券在购买该物品时就可使用);不少于600元的,所赠优惠劵是购买电器金额的14,另再送50元现金.(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x (x≥400)元,优惠券金额为y 元,则:①当x =500时,y = ;②当x≥600时,y = ;(2)如果小张想一次性购买原价为x (400≤x <600)元的电器,可以使用优惠劵,在上面的两种促销方式中,试通过计算帮他确定一种比较合算的方式?(3)如果小张在促销期间内在此商城先后两次购买电器时都得到了优惠券(两次购买均未使用优惠券),第一次购买金额在600元以内,第二次购买金额超过600元,所得优惠券金额累计达800元,设他购买电器的金额为W 元,W 至少..应为多少?(W =支付金额-所送现金金额) 26.(本题满分12分)阅读材料并解答问题:关于勾股定理的研究有一个很重要的内容是勾股数组,在数学课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:方法1:若m 为奇数(m≥3),则a=m ,b=(m 2﹣1)和c=(m 2+1)是勾股数. 方法2:若任取两个正整数m 和n (m >n ),则a=m 2﹣n 2,b=2mn ,c=m 2+n 2是勾股数. (1)在以上两种方法中任选一种,证明以a ,b ,c 为边长的△ABC 是直角三角形;(2)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树 棵.(3)某家俱市场现有大批如图所示的梯形边角余料(单位:cm),实验初中数学兴趣小组决定将其加工成等腰三角形,且方案如下:①三角形中至少有一边长为10 cm ;②三角形中至少有一边上的高为8 cm ,请设计出三种面积不同的方案并在图上画出分割线,求出相应图形面积.27.(本题满分14分)如图,抛物线b ax x y ++-=2与直线121+=x y 交于A 、B 两点,其中A 在y 轴上,点B 的横坐标为4,P 为抛物线上一动点,过点P 作PC 垂直于AB ,垂足为C. (1)求抛物线的解析式;(2)若点P 在直线AB 上方的抛物线上,设P 的横坐标为m ,用m 的代数式表示线段PC 的长,并求出线段PC 的最大值及此时点P 的坐标. (3)若点P 是抛物线上任意一点,且满足0°<∠PAB ≤45°。
2019-2020学年度人教版九年级数学下册期中检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列各点中,在反比例函数y =-2x 图象上的是( D )A .(2,1)B .(23,3) C .(-2,-1) D .(-1,2)2.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,EF ∥AB.若AD =2BD ,则CFBF 的值为( A )A.12B.13C.14D.233.已知函数y =(m +1)xm 2-5是反比例函数,且图象在第二、第四象限内,则m 的值是( B ) A .2 B .-2 C .±2 D .-124.在△ABC 和△A 1B 1C 1中,下列四个命题:①若AB =A 1B 1,AC =A 1C 1,∠A =∠A 1,则△ABC ≌△A 1B 1C 1;②若AB =A 1B 1,AC =A 1C 1,∠B =∠B 1,则△ABC ≌△A 1B 1C 1;③若∠A =∠A 1,∠C =∠C 1,则△ABC ∽△A 1B 1C 1;④若AC ∶A 1C 1=CB ∶C 1B 1,∠C =∠C 1,则△ABC ∽△A 1B 1C 1,其中真命题的个数为( B )A .4个B .3个C .2个D .1个5.如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC 缩小得到△DEF ,若变换后,点A ,B 的对应点分别为D ,E ,则点C 的对应点F 的坐标应为( B )A .(4,2)B .(4,4)C .(4,5)D .(5,4),第5题图) ,第6题图)6.如图,反比例函数y =-6x 在第二象限的图象上有两点A ,B ,它们的横坐标分别为-1,-3,直线AB 与x轴交于点C ,则△AOC 的面积为( C )A .8B .10C .12D .247.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( B )8.如图,已知AB ,CD ,EF 都与BD 垂直,垂足分别是B ,D ,F ,且AB =1,CD =3,那么EF 的长是( C ) A.13 B.23 C.34 D.45,第8题图) ,第9题图)9.如图,在平行四边形ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG =42,则△EFC 的周长为( D ) A .11 B .10 C .9 D .810.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =2 cm ,D 为BC 的中点,若动点E 以1 cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0<t <6),连接DE ,当△BDE 是直角三角形时,t 的值为( D )A .2B .2.5或3.5C .3.5或4.5D .2或3.5或4.5,第10题图),第12题图)二、填空题(每小题3分,共24分)11.已知四条线段a ,b ,c ,d 是成比例线段,其中a =3 cm ,b =4 cm ,c =5 cm ,则d =__203__cm.12.如图,在长为10 cm ,宽为6 cm 的矩形中,截去一个矩形,使得留下的矩形(阴影部分)与原矩形相似,则留下阴影的面积为__21.6__cm 2.13.反比例函数y =m +1x的图象上有点A(x 1,y 1),B(x 2,y 2),且当x 1<x 2<0时,y 1<y 2,则m 的取值范围是__m <-1__.14.如图,直立在B 处的标杆AB =2.5 m ,观察者站在点F 处,人眼E ,标杆顶点A ,树顶C 在一条直线上,点F ,B ,D 也在一条直线上,已知BD =10 m ,FB =3 m ,人眼高EF =1.7 m ,则树高DC ≈__5.2___m .(精确到0.1 m),第14题图),第15题图)15.(菏泽中考)如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为3∶4,∠OCD =90°,∠AOB =60°,若点B 的坐标是(6,0),则点C 的坐标是__(2,23)__.16.市政府计划建设一项水利工程,某运输公司承办了这项工程运送土石方的任务.该运输公司平均每天的工作量V(m 3/天)与完成运送任务所需的时间t(天)之间的函数图象如图所示.若该公司确保每天运送土石方1000 m 3,则公司完成全部运输任务需__40__天.,第16题图) ,第17题图)17.(广州中考)如图,CE 是ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E.连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD =∠BAE ;③AF ∶BE =2∶3;④S 四边形AFOE ∶S △COD =2∶3. 其中正确的结论有__①②④__.(填序号)点拨:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵EC 垂直平分AB ,∴OA =OB =12AB =12DC ,CD ⊥CE ,∵OA ∥DC ,∴EA ED =EO EC =OA CD =12,∴AE =AD ,OE =OC ,∵OA =OB ,OE =OC ,∴四边形ACBE 是平行四边形,∵AB ⊥EC ,∴四边形ACBE 是菱形,故①正确,∵∠DCE =90°,DA =AE ,∴AC =AD =AE ,∴∠ACD =∠ADC =∠BAE ,故②正确,∵OA ∥CD ,∴AF CF =OA CD =12,∴AF AC =AF BE =13,故③错误,设△AOF 的面积为a ,则△OFC 的面积为2a ,△CDF 的面积为4a ,△AOC 的面积=△AOE 的面积=3a ,∴四边形AFOE 的面积为4a ,△ODC 的面积为6a ,∴S 四边形AFOE ∶S △COD =2∶3.故④正确,故答案为①②④18.如图,双曲线y =kx (x >0)经过长方形OABC 边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k =__2__.三、解答题(共66分)19.(8分)已知y 与x 成反比例,且其函数图象经过点(-3,-1).(1)求y 与x 的函数关系式; (2)求当y =-4时,x 的值;(3)直接写出当-3<x <-1时的y 的取值范围. 解:(1)y =3x (2)x =-34(3)-3<y <-120.(8分)如图,已知AB ∥CD ,AD ,BC 相交于点E ,F 为BC 上一点,且∠EAF =∠C. 求证:(1)∠EAF =∠B ;(2)AF 2=FE·FB.解:(1)∵AB ∥CD ,∴∠B =∠C ,又∠C =∠EAF ,∴∠EAF =∠B(2)∵∠EAF =∠B ,∠AFE =∠BFA ,∴△AFE ∽△BFA ,则AF BF =FEFA ,∴AF 2=FE·FB21.(9分)已知△ABC 三顶点的坐标分别为A(0,2),B(3,3),C(2,1).(1)画出△ABC ;(2)以点B 为位似中心,将△ABC 的边放大到原来的2倍,在下图的网格图中画出放大后的图形△A 1B 1C 1; (3)写出点A 的对应点A 1的坐标.解:(1)(2)略 (3)A 1(-3,1)22.(9分)(杭州中考)如图,在△ABC 中,AB =AC ,AD 为BC 边上的中线,DE ⊥AB 于点E. (1)求证:△BDE ∽△CAD ;(2)若AB =13,BC =10,求线段DE 的长.解:(1)∵AB =AC ,BD =CD ,∴AD ⊥BC ,∠B =∠C ,∵DE ⊥AB ,∴∠DEB =∠ADC ,∴△BDE ∽△CAD (2)∵AB =AC ,BD =CD ,∴AD ⊥BC ,在Rt △ADB 中,AD =AB 2-BD 2=132-52=12,∵S △ABD =12·AD·BD=12·AB·DE ,∴DE =601323.(10分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系:x(元)3456y(个)20 15 12 10 (1)请你认真分析表中数据,(2)设经营此贺卡的销售利润为W 元,试求出W 与x 之间的函数关系式.若物价局规定此贺卡的销售单价最高不能超过10元/个,请你求出当日销售单价x 定为多少元时,才能使所获利润最大?解:(1)y =60x (x ≥2) (2)W =(x -2)y =(x -2)·60x =60-120x ,当x =10时,W 有最大值,∴当销售单价定为10元/个时,能获得最大利润24.(10分)如图,某工厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,求矩形的两边长x ,y.解:作DE ⊥BC 于点E.∵FG ∥DE ,∴△CFG ∽△CDE ,∴CG CE =FG DE ,∴24-y 24-8=x 20,∴y =-45x +24,∴S 矩形=xy =x (-45x +24)=-45x 2+24x =-45(x -15)2+180.∵a =-45<0,∴当x =15时,S 矩形有最大值为180,此时y =12,即当矩形的面积最大时,x =15,y =12时25.(12分)如图,反比例函数y =kx (x >0,k 是常数)的图象经过点A(1,4),点B(m ,n),其中m >1,AM ⊥x轴,垂足为M ,BN ⊥y 轴,垂足为N ,AM 与BN 的交点为C.(1)写出反比例函数解析式; (2)求证:△ACB ∽△NOM ;(3)若△ACB 与△NOM 的相似比为2,求出点B 的坐标及AB 所在直线的解析式.解:(1)y =4x (2)∵B (m ,n ),A (1,4),∴AC =4-n ,BC =m -1,ON =n ,OM =1,∴AC ON =4-n n =4n -1,而B (m ,n )在y =4x 上,∴4n =m ,∴AC ON =m -1,而BC OM =m -11,∴AC ON =BCOM ,又∵∠ACB =∠NOM =90°,∴△ACB ∽△NOM (3)∵△ACB 与△NOM 的相似比为2,∴m -1=2,∴m =3,∴点B 坐标为(3,43),从而可求直线AB 的解析式为y =-43x +163。
四川省宜宾市九年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·陇西期中) 下列说法中,不正确的是A . 3是的算术平方根B . -3是的算术平方根C . ±3是的平方根D . -3是的立方根2. (2分)由六个完全相同的正方体组成的几何体如图所示.这个几何体的主视图是()A .B .C .D .3. (2分)已知x=1是方程的一个解,那么k的值是()A . 7B . 1C . ﹣1D . ﹣74. (2分) (2019九上·东台期中) 我市气象部门测得某周内六天的日温差数据如下:4,6,5,7,6,8(单位:℃).这组数据的平均数和众数分别是()A . 7,6B . 6,6C . 5,6D . 6,55. (2分)(2017·柘城模拟) 如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A . 15°B . 22.5°C . 30°D . 45°6. (2分) (2019八下·长春月考) 如图,△ABC∽△ACP ,若∠A=75°,∠APC=65°,则∠B的大小为()A . 40°B . 50°C . 65°D . 75°7. (2分)一项工程,甲单独做需要6天完成,乙单独做需要4天完成,求两人一起做需要的天数,若设两人一起做需要x天完成,则所列方程是()A . +=xB . 6+4=xC . 6+4=D . +=8. (2分) (2017九上·松北期末) 反比例函数y= 的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A . k<2B . k≤2C . k>2D . k≥29. (2分) (2015八下·安陆期中) 若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A . 矩形B . 菱形C . 对角线相等的四边形D . 对角线互相垂直的四边形10. (2分)(2017·柳江模拟) 如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A . 25°B . 30°C . 40°D . 50°二、填空题 (共6题;共6分)11. (1分) (2017九上·虎林期中) 为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为________元.12. (1分) (2017九下·佛冈期中) 分解因式: ________13. (1分) (2018九上·吴兴期末) 布袋中装有4个红球和3个黑球,它们除颜色外没有任何其他区别,小红从中随机摸出1个球,摸出红球的概率是________ .14. (1分)已知,△ABC,按如下步骤作图:⑴以A为圆心,AC长为半径画弧;⑵以B为圆心,BC长为半径画弧,与前一条弧相交于点D,⑶连接CD.若AC=6,CD=8,则sin∠CAB=________.15. (1分) (2018九下·嘉兴竞赛) 如图,直线y=- x+4 分别与x轴,y轴相交于点A,B,点C在直线AB上,D是坐标平面内一点.若以点0,A,C,D为顶点的四边形是菱形,则点D的坐标是________.16. (1分)(2017·自贡) 如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD= ,则AD=________.三、解答题 (共9题;共104分)17. (5分)(2017·连云港) 计算:﹣(﹣1)﹣ +(π﹣3.14)0 .18. (20分)计算:(1) 5ab5(﹣ a3b)•(﹣ ab3c);(2)(﹣2x2yz2)2• xy2z•(﹣xyz2)2.(3)(﹣a2b)3•(﹣ab)2•[﹣2(ab2)2]3;(4) 2[(x﹣y)3]2•3(y﹣x)3• [(x﹣y)2]5.19. (5分)(2017·江西) 解不等式组:,并把解集在数轴上表示出来.20. (10分)(2017·东城模拟) 如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BFA=60°,BE=2 ,求平行四边形ABCD的周长.21. (20分)(2018·黄冈模拟) 抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.22. (10分)今年3月,位于虎溪大学城的龙湖“千万间”公租房项目开始动工.这是一个让人心动的“民生住房账本”未来10年,重庆市将建设4000万平方米的公共租赁房,今年开建500万平方米,3年(2010年~2012年)时间内完成2000万平方米的建设任务.某建筑公司积极响应,计划在今年12个月完成一定的建房任务.已知每平米的成本为1200元,按每平方米1600元的价格卖给政府.该公司平时每月能建2000平方米,为了加快进度,公司采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到提高.这样,第一月建了2200平方米,以后每月建房都比前一月多200平方米.由于机器损耗等原因,每增加100平方米,当月的所有建筑面积,平均每1平方米的成本就增加2元(1)若全市公共租赁房今年(2010年)到明年的建筑面积增长率就是以后每年的增长率,求此增长率.(2)今年4月份玉树发生了7.1级地震,该公司决定把最近某个月144万元的利润捐给灾区、请问是第几的个月?23. (6分)如图,AB是⊙O的直径,点C在⊙O上,过点C作射线CM且满足∠ACM=∠ABC.(1)判断CM与⊙O的位置关系,并证明;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.________.24. (15分)(2018·番禺模拟) 已知:二次函数,当时,函数有最大值5.(1)求此二次函数图象与坐标轴的交点;(2)将函数图象x轴下方部分沿x轴向上翻折,得到的新图象与直线恒有四个交点,从左到右,四个交点依次记为,当以为直径的圆与轴相切时,求的值.(3)若点是(2)中翻折得到的抛物线弧部分上任意一点,若关于m的一元二次方程恒有实数根时,求实数k的最大值.25. (13分) (2017八下·岳池期中) 如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF(1)求证:△EBF≌△DFC;(2)求证:四边形AEFD是平行四边形;(3)①△ABC满足________时,四边形AEFD是菱形.(无需证明)②△ABC满足________时,四边形AEFD是矩形.(无需证明)③△ABC满足________时,四边形AEFD是正方形.(无需证明)参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共104分)17-1、18-1、18-2、18-3、18-4、19-1、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、24-1、24-3、25-1、25-2、25-3、。
宜宾县2019-2020学年春期期中测试试题九年级数学(全卷共8页,完卷时间120分钟,满分120分)1.答题前,必须把考号和姓名写在密封线内;2.直接在试卷上作答,不得将答案写到密封线内,不得加附页.一、选择题:(本大题共8个小题,每小题3分,共24分),以下各题均给出A 、B 、C 、D 四个选项,但其中只有一个是正确的,请将正确答案的代号直接填在题后的括号内.1.-9的相反数是( ) A.91-B.9C.91 D. -92. “一方有难,八方支援。
”2013年4月20日四川省芦山县遭遇强烈地震灾害,我市某校师生共同为地震灾区捐款135000元用于灾后重建,把135000用科学记数法表示为( )A.1.35×106B. 13.5×10 5C. 1.35×105D. 13.5×1043. 下列计算正确的是( )A .1644x x x =⋅B .()9423a a a =⋅ C .()()4232ab ab ab -=-÷ D .()()13426=÷a a4. 如图,直线a 、b 被直线c 所截,若a ∥b ,∠1=60°, 那么∠2的度数为( )A .120°B .90°C .60°D .30°5. 已知一组数据3,7,9,10,x ,12的众数是9,则这组数据的中位数是( )A .9B .9.5C .3D .126. 分式方程xx 325=-的解是( )A .x =3B .x =3-C .x =34D .x =34-7. 下面由8个完全相同的小正方体组成的几何体的主视图是( )A B C D8. 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论::①AD=BE=5cm ;②当0<t ≤5时;252t y =;③直线NH 的解析式为y=-25t+27;④若△ABE 与△QBP 相似,则t=429秒。
其中正确的结论个数为 ( )A. 4B. 3C. 2D. 18个小题,每小题3分,共24分),请把答案直接填在题中的横线上9. 因式分解:24xy x -= . 10. 不等式组的最小整数解是_________.空调的进价为2000元,则标价为 元12.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边 长均为1个单位长度)的格点上,将△ABC 绕点B 逆时针旋转到 △A′BC′的位置,且点A′、C′仍落在格点上,则图中阴影部 分的面积约是 .(结果用π的代数式表示) 13. 设x 1、x 2是方程x 2+3x ﹣3=0的两个实数根,则2112x x x x +的值为 14. 如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为 . 15. 如图,面积为24的正方形ABCD 中,有一个小正方形EFGH ,其中E 、F 、G 分别在AB 、BC 、FD 上.若BF=,则小正方形的周长为16. 已知:如图,AB=BC ,∠ABC=90°,以AB 为直径的⊙O 交OC 与点D ,AD 的延长线交BC 于点E ,过D 作⊙O 的切线交BC 于点F .下列结论:①CD 2=CE ·CB ;②4EF 2=ED ·EA ; ③∠OCB =∠EAB ;④CD DF 21=.其中正确的只有 .(填序号) 三、解答题(本大题共8个题,共72分),解答应写出文字说明、证明过程或演算步骤.17.计算:(每题5分,共10分)(1)24)3()14.3(20+--+--π030sin (2)14题图15题图16题图A18.(本小题6分)如图,正方形ABCD 的对角线AC 、BD 交于点O ,AE=BF 。
求证:DBE ACF ∠=∠19.(本小题8分)减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A 、B 、C 、D 表示,根据调查结果绘制成了如图所示的两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)求出x 的值,并将不完整的条形图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从这4人中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.20.(本小题8分)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?21.(本小题8分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2017年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?22.(本小题10分)如图,某大楼的顶部树有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B 距水平面AE 的高度BH ; (2)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414,1.732)23.(本小题10分)如图,在⊙O 中,直径AB⊥CD,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .(1)求证:CF 是⊙O 的切线; (2)求证:△ACM∽△DCN;(3)若点M 是CO 的中点,⊙O 的半径为4,cos∠BOC=41,求BN 的长.24.(本小题12分)如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标; (4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.2019-2020学年宜宾县半期试题答案 一、1—5 B.C.DC.A 6—8B.D.B二.9.)2)(2(-+y y x 10.1- 11.2750 12. 1334π- 13.-5 14.2 15.16.①②④三.17.(1)91(2)2 18.略 19.解:(1)由题得:x ﹪+10﹪+15﹪+45﹪=1,解得x =30. 调查总人数为180÷45﹪=400,C 的人数为400×10﹪=40,补图(图中的B 、C )(2)分别用P 1、P 2;Q 1、Q 2表示两个小组的4个同学,画树状图(或列表)如下:共有12种情况,2人来自不同的小组有8种情况, ∴所求的概率为812=23. 20.解:(1)∵在矩形OABC 中,OA=3,OC=2, ∴B (3,2), ∵F 为AB 的中点, ∴F (3,1),∵点F 在反比例函数y=(k >0)的图象上, ∴k=3,∴该函数的解析式为y=(x >0);(2)由题意知E ,F 两点坐标分别为E (,2),F (3,),=AF•BE=×k(3﹣k),∴S△EFA=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+当k=3时,S有最大值.=.S最大值21.解:x,根据题意得:型车辆,根据题意得:2×(时,,此时Rt△ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;- (2)由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.23.==2==2CD=2CE=2,=,==﹣=(2):B(-2,0)C(4,0)E(0,2)1(42)*262BCE S ∆=+=………… …………5分 (3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么HP EO CP CO =. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.…………………8分(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′. 由于∠BCE =∠FBC ,所以当CE BC CB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC .设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+. 解得x =m +2.所以F ′(m +2, 0). 由'CO BF CE BF =4m BF +=.所以BF =. 由2BC CE BF =⋅,得2(2)m +=. 整理,得0=16.此方程无解.………………10分图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′, 由于∠EBC =∠CBF ,所以BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF′中,由FF ′=BF ′,得1(2)()2x x m x m +-=+. 解得x =2m .所以F ′(2,0)m .所以BF′=2m +2,2)BF m =+. 由2BC BE BF =⋅,得2(2)2)m m +=+.解得2m =± 综合①、②,符合题意的m为2+12分。