磁场中导体棒的力学问题电路能量
- 格式:ppt
- 大小:1.08 MB
- 文档页数:57
【关键字】速度导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。
往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。
导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。
1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BILsinθ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。
由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。
【基本模型】如图1所示,在竖直向下磁感强度为B的匀强磁场中,有两根水平放置相距为L且足够长的平行金属导轨AB、CD,导轨AC端连接一阻值为R的电阻,一根笔直于导轨放置的金属棒ab,质量为m,不计导轨和金属棒的电阻及它们间的摩擦。
若用恒力F水平向右拉棒运动⑴.电路特点:金属棒ab切割磁感线,产生感应电动势相当于电源,b为电源正极。
当ab棒速度为v时,其产生感应电动势E=BLv。
⑵.ab棒的受力及运动情况:棒ab在恒力F作用下向右加速运动,切割磁感线,产生感应电动势,并形成感应电流,电流方向由a→b,从而使ab棒受到向左的安培力F安,对ab棒进行受力分析如图2所示:竖直方向:重力G和支持力N平衡。
水平方向:向左的安培力F安=为运动的阻力随v的增大而增大。
ab棒受到的合外力F合=F-随速度v的增大而减小。
ab棒运动过程动态分析如下:随ab棒速度v↑→ 感应电动势E↑→ 感应电流I=↑→安培力F安=BIL↑→ F合(=F-F安)↓→ab棒运动的加速度a↓,当合外力F合减小到零时,加速度a减小到零,速度v达到最大vmax,最后以vmax匀速运动。
导体棒在磁场中的运动导体棒在磁场中的运动[问题摘要]导体棒的问题不纯粹是电磁的,它经常涉及到力学和热。
一个试题通常包含多个知识点的综合应用。
要处理这样的问题,必须掌握相关的知识和规律,还要有较高的分析能力、逻辑推理能力和综合运用知识解决问题的能力。
导体棒问题不仅是高中物理教学的重要内容,也是高考中的一个重点和热点问题。
1.带电导体棒在磁场中的运动:在带电导体棒的磁场中,只要导体棒不平行于磁场,磁场就会在导体棒上产生安培力。
安培力的方向可以用左手定则来确定,大小可以用公式F=BILsinθ来计算。
如果导体棒位置处的磁感应强度不恒定,通常将其分成几个小段,首先计算每个段上的力,然后计算它们的矢量和。
因为安培力具有力的普遍性,它能在空间和时间上积累,能使物体产生加速度,并能与其他力平衡。
[基本模型]基本图V–T显示能量导体棒开始以初始速度v0向右移动。
恒定电阻为R,不包括其他电阻。
动能→焦耳导热棒在恒定的力的作用下从静止状态向右移动。
恒定电阻为R,不包括其他电阻。
外力机械能→动能焦耳导热棒1开始以初始速度v0向右移动。
两个杆的电阻分别为R1和R2,质量分别为m1和m2,不包括其他电阻。
动能变化1→动能变化2焦耳热导体棒1在恒力F下从静止向右移动。
两棒的电阻分别为R1和R2,质量分别为m1和m2,其它电阻不包括在内。
外力机械能→动能1动能2焦耳热图1如图1所示。
在具有垂直向下磁感应强度b的均匀磁场中,有两个平行的金属导轨ab和CD以距离l水平放置且足够长。
导轨的交流端与电阻值为r的电阻器连接,垂直于导轨放置的金属杆ab具有质量m,与导轨和金属杆的电阻以及它们之间的摩擦无关。
如果用恒力F将拉杆水平向右拉(1)。
电路特性:金属条ab切割磁感应线以产生相当于电源的感应电动势,并且B是电源的正电极。
当ab棒的速度为V时,它产生感应电动势E=BLV。
(2)AB杆的应力和运动:条ab在恒力f的作用下向右加速,切断磁感应线,产生感应电动势,形成如图2所示的f-安培FGN作为感应电流。
导体棒在磁场中的运动问题近十年的高考物理试卷和理科综合试卷中,电磁学的导体棒问题复现率很高,且多为分值较大的计算题。
为何导体棒问题频繁复现,原因是:导体棒问题是高中物理电磁学中常用的最典型的模型,常涉及力学和热学问题,可综合多个物理高考知识点,其特点是综合性强、类型繁多、物理过程复杂,有利于考查学生综合运用所学的知识,从多层面、多角度、全方位分析问题和解决问题的能力;导体棒问题是高考中的重点、难点、热点、焦点问题。
导体棒问题在磁场中大致可分为两类:一类是通电导体棒,使之平衡或运动;其二是导体棒运动切割磁感线生电。
运动模型可分为单导体棒和双导体棒。
(一)通电导体棒问题通电导体棒题型,一般为平衡型和运动型,对于通电导体棒平衡型,要求考生用所学的平衡条件(包含合外力为零0F=∑,合力矩为零0M=∑)来解答,而对于通电导体棒的运动型,则要求考生用所学的牛顿运动定律、动量定理以及能量守恒定律结合在一起,加以分析、讨论,从而作出准确的解答。
【例8】如图3-9-8所示,相距为d 的倾角为α的光滑平行导轨(电源的电动势E 和内阻r ,电阻R 均为己知)处于竖直向上磁感应强度为B 的匀强磁场中,一质量为m 的导体棒恰能处于平衡状态,则该磁场B 的大小为 ;当B 由竖直向上逐渐变成水平向左的过程中,为保持导体棒始终静止不动,则B 的大小应是 ,上述过程中,B 的最小值是 。
【解析】此题主要用来考查考生对物体平衡条件的理解情况,同时考查考生是否能利用矢量封闭三角形或三角函数求其极值的能力.将图3-9-8首先改画为从右向左看的侧面图,如图3-9-9所示,分析导体棒受力,并建立直角坐标系进行正交分解,也可采用共点力的合成法来做.根据题意0F =∑,即0,0xyFF==∑∑,即:sin 0x B F F N α=-= ① c o s 0y F F m g α=-= ②由①②得:t a n BF mgα=③ 由安培力公式:B F BId = ④由闭合电路欧姆定律EI R r=+⑤ 联立③④⑤并整理可得:()tan mg R r B Edα+=(2)借助于矢量封闭三角形来讨论,如图3-9-10所示在磁场由竖直向上逐渐变成水平的过程中,安培力由水平向右变成竖直向上,在此过程中,由图3-9-10看出B F 先减小后增大,最终0,B N F mg ==,因而磁感应强度B 也应先减小后增大.(3)由图3-9-10可知,当B F 方向垂直于N 的方向时B F 最小,其B 最小,故:sin B F mgα= ⑥而:B F BId = ⑦ EI R r=+ ⑧ 联立⑥⑦⑧可得:sin Emg Bd R rα=+, 即min ()sin mg R r B Bdα+=【答案】()tan mg R r Edα+,先减小后增大()sin mg R r Bdα+点评:该题将物体的平衡条件作为重点,让考生将公式和图象有机地结合在一起,以达到简单快速解题的目的,其方法是值得提倡和借鉴的。
导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。
往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。
导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。
1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BIL sin θ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。
由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。
说明基本图v – t 能量导体棒以初速度v 0向右开始运动,定值电阻为R ,其它电阻不计。
动能 → 焦耳热导体棒受向右的恒力F 从静止开始向右运动,定值电阻为R ,其它电阻不计。
外力机械能→ 动能+ 焦耳热导体棒1以初速度v 0向右开始运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。
动能1变化→ 动能2变化 + 焦耳热导体棒1受恒力F 从静止开始向右运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。
外力机械能→ 动能1 + 动能2 + 焦耳热如图1所示,在竖直向下磁感强度为B 的匀强磁场中,有两根水平放置相距为L 且足够长的平行金属导轨AB 、CD ,导轨AC 端连接一阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,不计导轨和金属棒的电阻及它们间的摩擦。
若用恒力F 水平向右拉棒运动⑴.电路特点:金属棒ab 切割磁感线,产生感应电动势相当于电源,b 为电源正极。
当ab 棒速度为v 时,其产 生感应电动势E =BLv 。
⑵.ab 棒的受力及运动情况:棒ab 在恒力F 作用下向 右加速运动,切割磁感线,产生感应电动势,并形成感应电 流,电流方向由a →b ,从而使ab 棒受到向左的安培力F 安, 对ab 棒进行受力分析如图2所示:竖直方向:重力G 和支持力N 平衡。
1、如右图所示,两根平行金属导端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k =0.020 T /s .一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m 的电阻为r 0=0.10Ω/m ,导轨的金属杆紧靠在P 、Q 端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力. [解题思路] 以a 示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离L =21at2此时杆的速度v =at这时,杆与导轨构成的回路的面积S=L l回路中的感应电动势E =StB ∆∆+B lv而k tBtt t B tB ktB =∆-∆+=∆∆=)(回路的总电阻 R =2Lr 0 回路中的感应电流,RE I =作用于杆的安培力F =BlI 解得t r l k F 02223=代入数据为F =1.44×10-3N2、如图所示,一对平行光滑R 轨道放置在水平地面上,两轨道间距L =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动.测得力F 与时间t 的关系如下图所示.求杆的质量m 和加速度a .解析:导体杆在轨道上做匀加速直线运动,用v 表示其速度,t 表示时间,则有v =at ①杆切割磁感线,将产生感应电动势E =BLv ②在杆、轨道和电阻的闭合回路中产生电流I=E/R ③ 杆受到的安培力为F 安=IBL ④ 根据牛顿第二定律,有F -F 安=ma ⑤ 联立以上各式,得at Rl B maF 22= ⑥由图线上各点代入⑥式,可解得 a =10m/s 2,m =0.1kg3、两根平行的金属导轨,固定在同一水平面上,磁感强度B =0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l =0.20 m .两根质量均为m =0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过t =5.0s ,金属杆甲的加速度为a =1.37 m /s ,问此时两金属杆的速度各为多少?本题综合了法拉第电磁感应定律、安培力、左手定则、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析问题的能力.设任一时刻t ,两金属杆甲、乙之间的距离为x ,速度分别为v l 和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变△S =[(x 一ν2△t )+ν1△t]l —l χ=(ν1-ν2) △t 由法拉第电磁感应定律,回路中的感应电动势 E =B △S/△t =B ι(νl 一ν2) 回路中的电流 i =E /2 R 杆甲的运动方程 F —B l i =ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t =0时为0)等于外力F 的冲量.Ft =m νl +m ν2联立以上各式解得ν1=[Ft/m +2R(F 一ma)/B 2l 2]/2ν2=[Ft /m 一2R(F 一ma)/B 2l 2]/2代入数据得移νl =8.15 m /s ,v 2=1.85 m /s4、水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见图),金属杆与导轨的电阻不计;均匀磁场竖直向下.用与导轨平行的恒定力F 作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v 也会改变,v 和F 的关系如图 (取重力加速度g=10m /s 2) (1)金属杆在匀速运动之前做作什么运动?(2)若m =0.5 kg ,L =0.5 m ,R =0.5 Ω,磁感应强度B 为多大?(3)由ν-F 图线的截距可求得什么物理量?其值为多少?解: (1)变速运动(或变加速运动、加速度减小的加速运动,加速运动). (2)感应电动势E —vBL ,感应电流I=E/R安培力RL vB BIL F m 22==由图可知金属杆受拉力、安培力和阻力作用,匀速时合力为零f RL vB BIL F +==22)(22f F lB R v -=由图线可以得到直线的斜率k=2)(12T kLR B ==(3)由直线的截距可以求得金属杆受到的阻力f , f=2(N).若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数 μ=0.45、如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图1 5—2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当杆ab 的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上. (2)当ab 杆速度为v 时,感应电动势E=BLv ,此时电路电流RBlv RE I ==杆受到安培力Rv L B Blv F 22==根据牛顿运动定律,有:Rv L B mg ma 22sin -=θ Rv L B g a 22s i n -=θ(3)当Rv L B mg 22sin =θ时,ab 杆达到最大速度mAX V22sin LB mgR V m θ=6、如图所示,电阻不计的平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为d ,其间有竖直向下的匀强磁场,磁感强度为B .质量为m 、电阻为r 的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F 向右拉动CD ,CD 受恒定的摩擦阻力.f ,已知F>f .问: (1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少? (3)当CD 的速度是最大速度的1/3时,CD 的加速度是多少?解析:(1)以金属棒为研究对象,当CD 受力:F=F A +f 时,CD 速度最大,即:2222))((dB r R f F v f rR v d B f BId F m m +-=⇒++=+=(2)CD 棒产生的感应电动势为:Bdr R f F BdvE m))((--==回路中产生的感应电流为:Bdf F rR E I -=+=则R 中消耗的电功率为:2222)(d B R f F R I R P -==(3)当CD 速度为最大速度的1/3即m v v 31=时,CD 中的电流为最大值的1/3即I I 31'=则CD 棒所受的安培力为:)(31''f F d BI F A -==CD 棒的加速度为:mf F mF f F a A3)(2'-=--=7、水平固定的光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一阻值为R 的电阻(金属框架、金属棒及导线的电阻均可忽略不计),整个装置处在向下的匀强磁场中,磁感应强度大小为B 。
导体棒在磁场中的运动受力计算首先,我们来讨论导体棒在磁场中的力学模型。
当导体棒处于磁场中并与磁场垂直时,导体棒中将会存在一个电流,该电流将产生一个磁场。
这两个磁场之间的相互作用将导致导体棒受到一个力。
其次,我们需要计算导体棒所受到的磁力大小。
磁力的大小可以通过洛伦兹力公式来计算,即磁力等于电流乘以导体棒的长度乘以磁感应强度乘以导体棒的速度。
其中,电流是导体棒中的电荷移动速度,导体棒的长度是指导体棒所处的磁场的区域长度,磁感应强度是磁场对导体棒的作用力大小,导体棒的速度是指导体棒在磁场中的运动速度。
最后,我们需要确定磁场对导体棒的作用力方向。
磁场对导体棒的作用力垂直于导体棒所处的磁场和电流方向,并遵循右手定则。
右手定则是一种确定磁场对导体棒作用力方向的方法,其中,右手大拇指指向导体棒运动方向,右手食指指向导体棒所受的磁场方向,那么磁场对导体棒作用力的方向将与右手中指方向相同。
总结一下,导体棒在磁场中的运动受力计算可以通过以下步骤来实现:1.确定导体棒所处的磁场强度。
2.确定导体棒的长度。
3.确定磁感应强度。
4.确定导体棒的速度。
5.计算磁力大小,使用洛伦兹力公式:F=I*L*B*v,其中F是磁力大小,I是导体棒中的电流,L是导体棒的长度,B是磁场的强度,v是导体棒的速度。
6.确定磁力方向,使用右手定则。
7.计算导体棒在磁场中的运动受力。
需要注意的是,导体棒的运动受力可能会导致导体棒的速度改变,因此在实际问题中可能需要考虑导体棒的加速度和运动轨迹等因素。
此外,对于导体棒上的电流分布不均匀或存在其他因素时,受力计算可能会更加复杂。
如果遇到这种情况,可以考虑使用积分计算来获得更精确的结果。
总之,导体棒在磁场中的运动受力计算涉及了多个因素,包括磁场强度、导体棒长度、磁感应强度以及导体棒速度等。
正确运用洛伦兹力公式和右手定则,可以计算出导体棒在磁场中受到的作用力大小和方向。
这对于研究导体棒的电磁感应现象以及相关应用具有重要意义。
高中物理电磁感应中的导轨上的导体棒问题电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。
解决电磁感应中的导轨上的导体棒问题,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。
下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。
想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。
一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。
(一)含电源闭合电路的导体棒问题例1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒ab,导轨左端接有内阻不计、电动势为E的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。
当闭合电键后,求金属棒可达到的最大速度。
图1分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。
解析:闭合电键后,金属棒在安培力的作用下向右运动。
当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。
但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。
金属板速度最大时,有解得(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例2、如图2,光滑导体棒bc固定在竖直放置的足够长的平行金属导轨上,构成框架abcd,其中bc棒电阻为R,其余电阻不计。
一质量为m且不计电阻的导体棒ef水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。
D.带电微粒不可能先向 N 板运动后向M 板运动电磁感应的动力学和能量问题知识点1电磁感应的动力学问题 当导体棒切割磁感线产生感应电流时,导体棒自身也受安培力,可知安培力大小与导体棒的运动状态有关,而根据牛顿运动定律,培力大小有关。
因此要把安培力与牛顿运动定律相结合。
知识点2电磁感应的能量问题C.金属棒ab 下滑过程中M 板电势高于N 板电势安培力做功的过程是其他能变为电能的过程。
。
若是纯电阻电 路,电能再全部变为热能。
一 W F 安=Q 热,一P F 安=卩热. 例1如图所示,光滑导轨倾斜放置,其下端连接一个灯泡, 当ab 棒下滑到稳定状态时,小灯泡获得的功率为 的功率变为2P o ,下列措施正确的是: 换一个电阻为原来一半的灯泡; 把磁感应强度 B 增为原来的2倍; 换一个质量为原来的 晅倍的金属棒;匀强磁场垂直于导线 所在平面, P o ,除灯泡外,其它电阻不计,要使灯泡 ) 72 倍; 、把导轨间距离增为原来的 练习1如图甲所示,abed 为导体做成的框架,其平面与水平面成 0角, bc 接触良好,整个装置放在垂直于框架平面的变化磁场中,磁场的磁感应强度 变化情况如图乙所示(设图甲中 B 的方向为正方向)•在0〜t 1时间内导体棒PQ 始终静止, 下面判断正确的是( ) A. 导体棒 B. 导体棒 C. 导体棒 D. 导体棒PQ 中电流方向由 Q 至P PQ 受安培力方向沿框架向下 PQ 受安培力大小在增大 PQ 受安培力大小在减小 练习2如图所示,电阻艮b =0.1 Q 的导体 滑导线框向右做匀速运动线框中接有电阻 线框放在磁感应强度 B=0.1T 的匀强磁场中 导体棒PQ 与ad 、 B 随时间t 4S* ab 沿光R=0.4Q, ,磁 X X X X X X X X 场方向垂直于线框平面,导体的ab 长度l=0.4m, 运动速度v=10m/s.线框的电阻不计. (1) 电路abcd 中相当于电源的部分是 , 相当于电源的正极是 (2) 使导体ab 向右匀速运动所需的外力 F' = N, 方向_ (3) 电阻R 上消耗的功率 P = _____ W 例2拉力所做的功如图10,两根足够长光滑平行金属导轨 PP ‘ 倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的 两金属板M 、N 相连,板间距离足够大, 板间有一带电微粒, 金属棒ab 水平跨放在导轨上, 下滑过程中与导轨接触良好.现同时由静止释放带电微粒和金属棒ab ,则()A .金属棒ab 最终可能匀速下滑B.金属棒ab —直加速下滑导体棒的运动状态也和安练习1练习 如图所示,足够长的光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导轨所在平面向上(导轨和导线电阻不计),则垂直导轨的导体棒 ab 在下滑过程中() A. 导体棒 ab 中感应电流从a 流向b B. 导体棒 ab 受到的安培力方向平行斜面向上 C. 导体棒 ab 一定匀加速下滑D. 灯泡亮度一直保持不变0的斜面上,导轨下端接有电 例3如图5所示电路,两根光滑金属导轨平行放置在倾角为 阻R,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒 ab 质量 为m ,受到沿斜面向上且与金属棒垂直的恒力 F 的作用•金属棒沿导轨匀速下滑, 则它在下滑高度h 的过程中,以下说法正确的是 A •作用在金属棒上各力的合力做功为零 B •重力做的功等于系统产生的电能 C.金属棒克服安培力做的功等于电阻 R 上产生的焦耳热 D •金属棒克服恒力 F 做的功等于电阻 R 上产生的焦耳热 练习1如图Z10 — 1所示,在磁感应强度为 B 的匀强磁场中,有半径为 框架,OC 为一能绕0在框架上滑动的导体棒 0、C 之间连一个电阻 R, 的电阻均不计,若要使 OC 能以角速度 3匀速转动,则外力做功的功率是 X Y B 2 3 2r 4B 23 2r 4 貫 A. R B. 2R X B 23 2r 4B 23 2r 4C. 4RD. 8Rr 的光滑半圆形导体 导体框架与导体棒 ( )X …亠 XX A Q X XX 练习2竖直放置的平行光滑导轨,其电阻不计,磁场方向如图所示,磁感应强度B=0.5 T,导体 杆ab 和cd 的长均为0.2 m,电阻均为0.1 Q ,所受重力均为0.1 N,现在用力向上推导体杆 ab,使之匀速上升(与导轨接触始终良好),此时cd 恰好静止不动,ab 上升时下列说法正确的 是( A. ab B. ab C. 在 D. 在 ) 。