八年级上册数学知识要点归纳
- 格式:doc
- 大小:103.00 KB
- 文档页数:8
八上数学知识点总结初中一、实数1. 有理数与无理数:理解有理数可以表示为两个整数的比,无理数则不能表示为这种形式。
2. 实数的运算:掌握加、减、乘、除等基本运算规则,了解分配律、结合律和交换律。
3. 绝对值:理解绝对值的概念,即一个数距离0的距离,掌握绝对值的计算方法。
4. 估算:学会对无理数进行近似计算,使用四舍五入法进行估算。
二、代数式1. 单项式与多项式:理解单项式是由数字和字母相乘组成的,多项式则是单项式的和。
2. 同类项:识别并合并同类项,即具有相同字母和相同指数的项。
3. 代数式的加减:掌握代数式加减的运算规则,注意去括号和合并同类项。
4. 代数式的乘除:理解单项式与多项式相乘的方法,以及多项式除以单项式的运算过程。
三、方程与不等式1. 一元一次方程:解一元一次方程,掌握移项、合并同类项、系数化为1的方法。
2. 二元一次方程组:了解代入法和消元法解二元一次方程组。
3. 不等式的概念:理解不等式的含义,掌握不等式的表示方法。
4. 一元一次不等式:解一元一次不等式,注意在解集表示中使用大于、小于符号。
5. 一元一次不等式组:解一元一次不等式组,学会找到不等式组的解集。
四、几何1. 平行线与角:理解平行线的性质,掌握同位角、内错角和同旁内角的概念。
2. 三角形的基本概念:了解三角形的分类,包括等边、等腰和直角三角形。
3. 三角形的性质:掌握三角形的内角和定理,了解三角形的中位线定理。
4. 四边形:学习矩形、平行四边形、菱形和正方形的性质和判定方法。
5. 圆的基本性质:掌握圆的基本概念,包括圆心、半径、直径、弦、弧等。
6. 圆的性质:理解圆周角定理,掌握切线的性质和判定。
五、统计与概率1. 统计的基本概念:了解数据的收集、整理、描述和分析过程。
2. 频数与频率:学会计算频数和频率,理解它们之间的关系。
3. 概率的初步认识:理解概率的定义,掌握概率的计算方法。
4. 简单事件的概率:计算简单事件发生的概率,了解概率的加法原理。
八年级上册数学知识点15篇八年级上册数学知识点1全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章轴对称一.知识框架二.知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
数学八年级上册知识点归纳想要了解初二数学知识点的小伙伴,赶紧来瞧瞧吧!下面由为你精心准备了“数学八班级上册知识点归纳”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!数学八班级上册知识点归纳一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数。
(2)正比例函数图像特征:一些过原点的直线。
(3)图像性质:①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0,向上平移;当b0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点。
用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。
从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标。
拓展阅读:初二数学复习方法有哪些一、克服心理疲劳第一,要有明确的学习目的。
学习就像从河里抽水,动力越足,水流量越大。
动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;第二,要培育浓厚的学习爱好。
爱好的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、乐观的情绪体验。
而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的`。
八年级上册数学笔记知识点归纳一、三角形。
1. 三角形的基本概念。
- 三角形就像一个三条边围起来的小院子。
它有三个顶点(就像院子的三个角点),三条边(院子的围墙),还有三个内角(院子里面的三个角)。
三角形的内角和是180°哦,这就好比把这个院子的三个角拼在一起,正好能拼成一个平角。
- 按照边来分,三角形有等边三角形(三条边都一样长,这可是三角形里的“三胞胎”,长得一模一样)、等腰三角形(有两条边一样长,就像有两个兄弟长得一样高)和不等边三角形(三条边都不一样长,各有各的个性)。
- 按角分呢,有锐角三角形(三个角都是锐角,这种三角形比较“温和”,没有特别大的角)、直角三角形(有一个角是直角,就像一个小角落特别方正,这个直角可重要啦,直角所对的边叫斜边,另外两条边叫直角边)和钝角三角形(有一个钝角,这个角比较“霸道”,占的地方大)。
2. 三角形的三边关系。
- 三角形的三条边就像三个小伙伴手拉手。
任意两边之和大于第三边,这就好比两个小伙伴手拉手的长度一定要比第三个小伙伴长,不然就拉不住啦。
比如说,三条边分别是a、b、c,那就得a + b>c,a + c>b,b + c>a。
反过来呢,任意两边之差小于第三边,就像两个小伙伴手拉手的长度比第三个小伙伴长不了太多,不然就脱节了。
3. 三角形的高、中线与角平分线。
- 三角形的高,就像从三角形的一个顶点向对边作的一条垂线。
这个高就像一个小杆子直直地立在对边上,它可以用来计算三角形的面积呢,三角形面积S=(1)/(2)×底×高。
- 中线呢,是连接三角形一个顶点和它对边中点的线段。
中线把三角形分成了两个面积相等的小三角形,就像把一个大蛋糕从中间切成了两块一样大小的小蛋糕。
- 角平分线就是把三角形的一个角平均分成两份的射线。
它就像一把小剪刀,把一个角剪成了两个一样大的小角。
二、全等三角形。
1. 全等三角形的概念和性质。
- 全等三角形就像双胞胎,长得一模一样。
八年级上册数学书知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!八年级上册数学书知识点知识有重量,但成就有光泽。
八年级上册数学知识点归纳总结一、有理数1. 有理数的概念有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、分数(正分数和负分数)。
2. 有理数的运算(1)加法和减法:同号相加减,异号相加减取相反数后加(2)乘法:同号得正,异号得负(3)除法:分子取商的符号,分母取绝对值后再除3. 有理数的比较在数轴上比较大小,可以通过绝对值和符号来确定大小关系4. 有理数的应用有理数在实际生活中的运用,如温度、扩大、缩小等二、代数1. 代数的基本概念(1)代数式:由运算符号和字母组成的表达式(2)项:代数式中的最小单位(3)系数:含有变量的项的常数因子(4)幂:同一个数的多次相乘2. 一元一次方程如ax+b=0(a≠0),其中a、b为已知数,x为未知数3. 一元一次不等式如ax+b>0(a≠0),其中a、b为已知数,x为未知数4. 代数式的加减法整理同类项后进行加减5. 代数式的乘法分配律、结合律、交换律的运用6. 代数式的因式分解三、平方根和立方根1. 平方数和平方根平方数是某个数的平方,平方根是某个数的算术平方根2. 平方根的求法开平方、开方运算3. 立方数和立方根立方数是某个数的立方,立方根是某个数的算术立方根4. 立方根的求法开立方、立方根的运算5. 有理数的平方与立方有理数的平方是对其绝对值的平方,有理数的立方是对其绝对值的立方四、多边形1. 多边形的基本认识多边形是由同一个平面上的若干条线段组成的闭合图形2. 多边形的内角和外角n边形的内角和等于180°×(n-2)n边形的外角和等于360°3. 正多边形边相等,角相等的多边形4. 不规则多边形五、相似1. 相似的概念对于两个图形,如果它们的形状相似(其中一图放大或缩小),则它们称之为相似的2. 相似三角形对于两个三角形,如果它们的对应角相等,则它们为相似三角形3. 相似三角形的性质相似三角形的性质包括对应边成比例、对应角相等、相似三角形的高线比例等六、函数1. 函数的概念对应关系中,一个自变量对应一个因变量的关系2. 函数的表示方法函数的图像、函数的解析式、函数的映射表示等3. 函数的性质奇函数、偶函数、周期函数、增减性与极值、奇偶性及周期性的判断等4. 函数的应用在实际问题中,函数的运用,如一元一次函数、二次函数等七、同比例1. 比例的概念两个量之间的相等关系2. 比例的性质比例中的乘除、比例式的变形3. 等比例四个数成等比的性质4. 倒数的概念两个数之积为1时,这两个数称为倒数5. 倒比例四个数成倒比的性质八、图形的旋转1. 图形的旋转图形绕定点旋转的变换2. 旋转的性质旋转变换后的图形3. 图形的对称图形相对于一条直线、一个点的对称4. 图形的变换平移、旋转、翻转的组合变换以上就是八年级上册数学知识点的归纳总结,希望能帮助到大家对这些知识点的理解和掌握。
八年级上册数学知识点归纳总结一、三角形(一)三角形的相关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的边:组成三角形的三条线段叫做三角形的边。
3、三角形的顶点:三角形相邻两边的公共端点叫做三角形的顶点。
4、三角形的内角:三角形相邻两边所组成的角叫做三角形的内角,简称三角形的角。
(二)三角形的分类1、按角分类:(1)锐角三角形:三个角都是锐角的三角形。
(2)直角三角形:有一个角是直角的三角形。
(3)钝角三角形:有一个角是钝角的三角形。
2、按边分类:(1)不等边三角形:三条边都不相等的三角形。
(2)等腰三角形:有两条边相等的三角形。
其中,相等的两条边叫做腰,另一条边叫做底边。
两腰的夹角叫做顶角,腰与底边的夹角叫做底角。
(3)等边三角形:三条边都相等的三角形,也叫正三角形。
(三)三角形的三边关系1、三角形任意两边之和大于第三边。
2、三角形任意两边之差小于第三边。
(四)三角形的内角和定理三角形三个内角的和等于 180°。
(五)三角形的外角1、三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
2、三角形的一个外角等于与它不相邻的两个内角的和。
3、三角形的一个外角大于与它不相邻的任何一个内角。
二、全等三角形(一)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
(二)全等三角形的性质1、全等三角形的对应边相等。
2、全等三角形的对应角相等。
(三)全等三角形的判定1、三边分别相等的两个三角形全等(SSS)。
2、两边和它们的夹角分别相等的两个三角形全等(SAS)。
3、两角和它们的夹边分别相等的两个三角形全等(ASA)。
4、两角和其中一个角的对边分别相等的两个三角形全等(AAS)。
5、斜边和一条直角边分别相等的两个直角三角形全等(HL)。
三、轴对称(一)轴对称图形如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
八年级上册数学知识点总结归纳八年级上册数学主要包括整数的加减乘除、分式、一元一次方程与一次方程组等内容。
以下是对这些知识点的详细总结和归纳。
一、整数的加减乘除1. 整数的概念:整数包括正整数、负整数和0。
整数是数轴上的点,可以进行加减乘除计算。
2. 整数的加减法:同号两个数相加、异号两个数相减。
同号两个数相加,取相同的符号,然后将它们的绝对值相加;异号两个数相减,取绝对值大的符号,然后用绝对值大的数减去绝对值小的数,差的符号与绝对值大的数的符号相同。
3. 整数的乘法:同号两个数相乘得正,异号两个数相乘得负。
两个数相乘时,先将它们的绝对值相乘,再确定符号。
4. 整数的除法:同号两个数相除得正,异号两个数相除得负。
两个数相除时,先将被除数和除数的绝对值相除,再确定符号。
5. 整数运算的性质:加法交换律、结合律;乘法交换律、结合律;加法与乘法的相互分配律;零的性质:任何整数与0相加等于自身;乘法的零性质:任何整数与0相乘等于0;除法的性质:0不能作为除数。
二、分式1. 分式的概念:分式是一个整数分母和分子组成的表达式,包括真分式和假分式。
其中,分母不为0。
2. 分式的加减乘除:加减法:先通分,再进行加减法;乘法:先化简为最简分式,再进行乘法;除法:倒数再乘。
3. 分式的性质:分式也遵循加法交换律、结合律和乘法交换律、结合律;负数分式化成最简分式时,分母为正。
三、一元一次方程1. 一元一次方程的概念:一元一次方程是指只含有一个未知数的一次方程,且未知数的最高次数为1。
2. 解一元一次方程的基本方法:通过移项变元、整理方程式,最终得到未知数的值。
3. 一元一次方程的应用:一元一次方程在解决实际问题中的应用非常广泛,如人头问题、水池问题、速度问题等。
四、一元一次方程组1. 一元一次方程组的概念:一元一次方程组是指由两个或两个以上的一元一次方程组成的方程组。
2. 一元一次方程组的解法:通过分别解方程组中的各个方程,最终得到未知数的值。
八年级上册数学知识点归纳一、实数1. 有理数和无理数的概念- 有理数:可以表示为两个整数的比的数- 无理数:不能表示为两个整数的比的数,如√2、π2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的概念和运算- 实数的性质和比较大小二、代数表达式1. 单项式和多项式- 单项式的定义和度量- 多项式的定义、次数和系数2. 代数式的加减运算- 合并同类项- 去括号法则3. 代数式的乘法运算- 单项式乘单项式- 单项式乘多项式- 多项式乘多项式4. 代数式的因式分解- 提公因式法- 公式法(如平方差公式、完全平方公式)三、方程与不等式1. 一元一次方程- 方程的建立和解法- 方程的解的检验2. 一元一次不等式- 不等式的概念和性质- 不等式的解法- 不等式的解集表示3. 二元一次方程组- 代入法解方程组- 消元法解方程组- 方程组的解的情况分析四、几何1. 平行线与角- 平行线的判定和性质- 同位角、内错角、同旁内角- 角的分类(锐角、直角、钝角、平角、周角)2. 三角形- 三角形的基本性质- 三角形的内角和外角性质- 等腰三角形和等边三角形的性质- 三角形的中线、高线、角平分线3. 四边形- 四边形的定义和分类- 矩形、菱形、正方形的性质- 平行四边形的性质4. 圆的基本性质- 圆的定义和圆心、半径- 弦、直径、弧、半圆- 圆周角和圆心角的关系- 切线的概念和性质五、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 统计图表的绘制(如条形图、饼图)2. 概率- 随机事件的概念- 概率的计算方法- 等可能事件的概率六、应用题- 利用所学知识解决实际问题- 培养数学建模和逻辑推理能力请注意,以上内容是根据一般八年级上册数学教材的常见知识点进行归纳,具体的教学大纲和知识点可能会根据不同地区和版本的教材有所差异。
教师和学生应参考具体的教材和教学大纲来确定学习重点。
八年级上册数学知识点总结归纳一、代数1. 一元一次方程与一元一次不等式1) 一元一次方程的定义及解法2) 一元一次不等式的定义及解法3) 实际生活中的应用案例2. 二元一次方程组1) 二元一次方程组的定义及解法2) 二元一次方程组的几何意义3) 实际生活中的应用案例3. 整式的加减和乘除1) 整式的概念2) 整式的加减法规则3) 整式的乘除法规则4) 实际生活中的应用案例4. 因式分解1) 因式分解的基本概念2) 因式分解的公式及方法3) 实际生活中的应用案例二、平面几何1. 直角三角形1) 直角三角形的性质及判定方法2) 特殊直角三角形(30-60-90三角形、45-45-90三角形)3) 直角三角形的应用题2. 平行线与相交线1) 平行线与转化线的基本概念2) 平行线与转化线的判定方法3) 平行线与转化线的性质3. 圆1) 圆的基本概念2) 圆的性质及判定3) 圆的应用题4. 规则图形1) 正方形、矩形、菱形、平行四边形的性质2) 规则图形的面积和周长计算方法3) 规则图形的应用题三、空间与立体几何1. 空间图形的投影1) 正投影与侧投影的概念2) 空间图形的投影绘制方法3) 实际生活中的应用案例2. 三棱柱与三棱锥1) 三棱柱与三棱锥的定义及性质2) 三棱柱与三棱锥的表面积和体积计算方法3) 实际生活中的应用案例3. 直角坐标系1) 直角坐标系的建立及性质2) 直角坐标系中点、距离的计算方法3) 实际生活中的应用案例四、统计与概率1. 统计图1) 条形图、折线图、饼状图的绘制方法2) 统计图的解读及应用2. 概率1) 随机事件与概率的基本概念2) 概率的计算方法及性质3) 实际生活中的应用案例以上就是八年级上册数学知识点的总结归纳,希望同学们能够通过系统的学习和复习,牢固掌握这些知识点,为将来更深入的学习打下坚实的基础。
八年级数学知识要点归纳第十一章全等三角形复习一、全等三角形1、能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形的性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”))1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1) :要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
4.轴对称的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2. 线段垂直平分线上的点与这条线段的两个端点的距离相等3. 与一条线段两个端点距离相等的点,在线段的垂直平分线上4. 三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为______.点(x, y)关于y轴对称的点的坐标为______.四、(等腰三角形)知识点回顾 1.等腰三角形的性质①.等腰三角形的两个底角相等。
(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一) 2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边) 五、(等边三角形)知识点回顾 1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。
2、等边三角形的判定:①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
第十三章 实数知识要点归纳一、实数的分类: 1、实数的分类2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数。
3、相反数与倒数; 4、绝对值{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数负无理数5、近似数与有效数字;6、科学记数法7、平方根与算术平方根、立方根;8、非负数的性质:若几个非负数之和为零 ,则这几个数都等于零。
二、复习方案二1. 无理数:无限不循环小数20200002233..无理数的表示算术平方根定义如果一个非负数的平方等于,即那么这个非负数就叫做的算术平方根,记为,算术平方根为非负数平方根正数的平方根有个,它们互为相反数的平方根是负数没有平方根定义:如果一个数的平方等于,即,那么这个数就叫做的平方根,记为立方根正数的立方根是正数负数的立方根是负数的立方根是定义:如果一个数的立方等于,即,那么这个数就叫做的立方根,记为x a x ax a a a a x a a a x a x a x a a =≥⎧⎨⎪⎪⎩⎪⎪=±⎧⎨⎪⎪⎩⎪⎪=⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪30.实数及其相关概念概念有理数和无理数统称实数分类有理数无理数或正数负数绝对值、相反数、倒数的意义同有理数实数与数轴上的点是一一对应实数的运算法则、运算规律与有理数的运算法则运算规律相同。
⎧⎨⎪⎩⎪⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪第十四章 一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 ;⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1).用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。
)注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:1、一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
2、一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)、图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)、性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。
九、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
十、一次函数的图象与性质十一、一次函数与一元一次方程、一元一次不等式与二元一次方程组的关系 1. 一次函数与一元一次方程:从“数”的角度看x 为何值时函数y= ax+b 的值为0.2. 求ax+b=0(a, b 是常数,a ≠0)的解,从“形”的角度看,求直线y= ax+b 与 x 轴交点的横坐标3. 一次函数与一元一次不等式:解不等式ax+b >0(a ,b 是常数,a ≠0) .从“数”的角度看,x 为何值时函数y= ax+b 的值大于0. 4.解不等式ax+b >0(a ,b 是常数,a ≠0) . 从“形”的角度看,求直线y= ax+b 在 x 轴上方的部分(射线)所对应的的横坐标的取值范围. 5.一次函数与二元一次方程组:解方程组 从“数”的角度看,自变量(x )为何值时两个函数的值相等.并求出这 个函数值解方程组 从“形”的角度看,确定两直线交点的坐标.第十五章 整式乘除与因式分解一.回顾知识点 1、主要知识回顾: (1)、幂的运算性质:⎪⎩⎪⎨⎧=-=+cba cb a y x y x 222111⎪⎩⎪⎨⎧=-=+c b a c b a y x y x 222111a m·a n=a m+n(m、n为正整数)()n m a=a mn (m、n为正整数)同底数幂相乘,底数不变,指数相加幂的乘方,底数不变,指数相乘.()n nn baab=(n为正整数)nm aa÷=a m-n (a≠0,m、n都是正整数,且m>n)积的乘方等于各因式乘方的积.同底数幂相除,底数不变,指数相减.零指数幂的概念:a0=1 (a≠0)任何一个不等于零的数的零指数幂都等于l.(2)、单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(3)、单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.(4)、多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.(5)、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(6)、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2。