2011年西城区中考一模数学试题及答案
- 格式:doc
- 大小:3.17 MB
- 文档页数:16
2011年北京西城区初三一模数学试题(含答案)参考答案一、选择题ACAB CCDB二、填空题9.2(3)y x -10.811.①③12.5;5n三、解答题 13.12- 14.-3<x ≤1;x15.2y x =-+;1AOP S =16.略17.由根的判别式得22b a =,代入原式化简得218.(1)300;60;99;132;9(2)72°19.抢险车20km/时,吉普车30km/时。
注意分式方程要检验20.(1)BN=5;(2)163(25)922S =+⨯= 21.(1)连接BO ,证明略;(2)易证△ABO 为正三角形,于是∠E=∠C=30°,所以△BFE ∽△AFC由cos ∠BFA=23BF AF = 设△AOC 面积为S ,因此有239()824S ==,解得S=18 22.(1)1:2;121(2)正三角形、正六边形(3)如图23.略 24.(1)30°;60° (2)2182y x =-+;(3)5个;22)3;22()3;16()325.(1)如图,EF CD过点E 作EF ⊥AE ,使EF=BD ,构造全等三角形,易证△DCA ≌△AEF (SAS )从而△AFD 是等腰直角三角形再利用四边形EFDB 是平行四边形得EB ∥FD ,于是∠APE=∠ADF=45° (2)如图F DC方法同(1),构造相似,判断含30°的直角三角形,从而得∠APE 是30°注:本试卷答案仅为参考答案,系本人仓促间所作,错漏之处请批评指正。
另外本人对23题存有异议,故答案暂略。
北京市西城区2011年初三一模试卷数学答案及评分标准2011. 5 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)11题阅卷说明:全对得4分,仅填①或③得2分,其余情况均不得分.三、解答题(本题共30分,每小题5分)13.解:原式=1412+-………………………………………………………4分=12-.…………………………………………………………………………5分14.解:302(1)33.xx x+>⎧⎨-+⎩,≥由①得3x>-.1分由②得x≤1.…………………………………………………………………………3分∴原不等式组的解集是3-<x≤1.………………………………………………4分∵1,∴x=5分15.解:(1)如图1.设直线l的解析式为y kx b=+(k,b为常数且k≠0).∵直线l经过点(0,2)B,点(1,1)P,∴2,1.bk b=⎧⎨+=⎩解得1,2.kb=-⎧⎨=⎩∴直线l的解析式为2y x=-+.……………………………………………2分(2)∵直线l的解析式为2y x=-+,∴ 点A 的坐标为(2,0).………………………………………………………3分 ∵ 点P 的坐标为(1,1), ∴ 12AOP P S OA y ∆=⨯⨯=12112⨯⨯=.………………………………………5分 16. 证明:如图2.(1)∵ BF 平分ABC ∠,∴ ABF CBF ∠=∠.………………1分 在△ABF 与△CBF 中,,,,AB CB ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBF . ………………………………………………………2分 ∴ AF CF =.………………………………………………………………3分(2)∵ AF CF =,∴ FCA FAC ∠=∠.……………………………………………………… 4分 ∵ AF ∥DC ,∴ FAC DCA ∠=∠.∴ FCA DCA ∠=∠,即CA 平分DCF ∠. ………………………………5分 17. 解:由题意,2214202b a b a ∆=-⨯=-=.…………………………………………1分 ∴ 22b a =. ………………………………………………………………………2分∴ 原式222211ab a a b =-++- ……………………………………………………3分2222ab a b a =+- 2222222a a a a a a a ⋅==+-.…………………………………………………4分 ∵ 0a ≠,∴ 原式2222a a==.………………………………………………………………5分18. 解:(1)………………………………………………………………………………4分 阅卷说明:每空1分.(2)72.………………………………………………………………………………5分 四、解答题(本题共20分,每小题5分)19.解:设抢修车每小时行驶x 千米,则吉普车每小时行驶x 5.1千米.151154 1.5x x-=.………………………………………………………………………2分 解得20x =. ………………………………………………………………………3分经检验,20x =是原方程的解,并且符合题意. ………………………………4分 ∴ 1.530x =.答:抢修车每小时行驶20千米,吉普车每小时行驶30千米.………………………5分 20.解:如图3.(1)由题意,点A 与点A ',点B 与点B '分别关于直线MN 对称,∴AM A M '=,BN B N '=. ………………………………………………1分 设BN B N x '==,则9CN x =-. ∵ 正方形ABCD , ∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3, ∴ 222(9)3x x -+=.解得5x =.∴ 5BN =2分 (2)∵ 正方形ABCD ,∴ AD ∥BC ,o 90A ∠=.∵ 点M ,N 分别在AD ,BC 边上, ∴ 四边形ABNM 是直角梯形. ∵ '5BN B N ==,9BC =,∴ 4NC =. ∴ 4sin 15∠=,4tan 13∠=. ∵ 1290∠+∠=︒,2390∠+∠=︒,∴ 31∠=∠. ∴ 4sin 3sin 15∠=∠=. 在Rt △ DB P '中,∵90 D ∠=︒,6DB DC B C ''=-=,4sin 35DB PB '∠==', ∴ 152PB '=. ∵ 9A B AB ''==,∴ 32A P AB PB ''''=-=. ∵ 43∠=∠,∴ 4tan 4tan 33∠=∠=. 在Rt △ A MP '中,∵ 90 A A '∠=∠=︒,32A P '=,4tan 43A M A P '∠==', ∴ 2A M '=.…………………………………………………………………4分 ∴ 1163()(25)9222ABNM S AM BN AB =+⨯=⨯+⨯=梯形.…………………5分 21.(1)证明:连接BO .(如图4)∵ AB =AD ,∴ ∠D =∠ABD .∵ AB =AO ,∴ ∠ABO =∠AOB .又∵ 在△OBD 中,∠D +∠DOB +∠ABO +∠ABD =180°,∴ ∠OBD =90°.∴ BD ⊥BO .…………………………………………………………………1分∵ 点B 在⊙O 上,∴ BD 是⊙O 的切线 . ……………………………………………………2分(2)解:∵ ∠C =∠E ,∠CAF =∠EBF ,∴ △ACF ∽△BEF . ………………………………………………………3分 ∵ AC 是⊙O 的直径,点B 在⊙O 上,∴ ∠ABC =90°.∵ 在Rt △BF A 中,∠ABF =90°,cos ∠BF A =32=AF BF , ∴24()9BEF ACF S BF S AF ∆∆==.………………………………………………………4分又∵ BEF S ∆=8 ,∴ ACF S ∆=18 . ……………………………………………………………5分22.解:(1)1∶2,121 .……………………………………………………………………2分 (24分 (3 …………5分阅卷说明:第(2)问全对得2分,仅填正三角形或正六边形得1分,其余情况均不得分;第(3)问其它符合题意的图形同样给分.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(1)证明:∵ 2360a b c ++=,∴12362366b a b c ca a a a++==-=-. ………………………………………1分 ∵ a >0,c <0,∴0c a <,0ca ->. ∴ 1023b a +>. ……………………………………………………………2分(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n ,∴ 11 ,42.a b c m a b c n ⎧++=⎪⎨⎪++=⎩ ① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223ab c =--. ∴ 111211()42424312b c m a b c a a a a +=++=+=+-=-<0.………3分2(2)33a an a b c a c c c =++=+--+=->0.………………………4分∴ 0mn <.…………………………………………………………………5分 ② 由a >0知抛物线2y ax bx c =++开口向上. ∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方. ∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧), ∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<.(如图6所示)………………………………………6分 ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x ba+=-,由(1)知123b a -<,∴ 12123x x +<.∴ 12221332x x <-<-,即116x <.…………………………………… 7分 24.解:(1)∠AOB= 30 °,α= 60 °.…………………………………………………2分(2)∵A ,B (4,0),△OAB 绕点O 顺时针旋转α角得到△OCD ,(如图7)∴ OA =OB=OC=OD=4.由(1)得 30BOC AOB ∠=︒=∠.∴ 点C 与点A 关于x 轴对称,点C的坐标为2)-. ∵ 点C ,D ,F 落在同一反比例函数ky x=(k ≠0)的图象上, ∴C C k x y =⋅=-∵ 点F 是由点A 沿x 轴负方向平移m 个单位得到,∴ 2F y =,F x ==-F的坐标为(-.……………3分 ∴ 点F 与点A 关于y 轴对称,可设经过点A ,B ,F 的抛物线的解析式为2y ax c =+.∴22, 160.a c a c ⎧+=⎪⎨+=⎪⎩ 解得1 ,2 8.a c ⎧=-⎪⎨⎪=⎩∴ 所求抛物线的解析式为2182y x =-+. …………………………………4分(3)满足条件的点P 的个数为 5 .………………………………………………5分抛物线2182y x =-+的顶点为(0,8)M .∵ △EFG 是由△OAB 沿x 轴负方向平移m 个单位得到,∴m FA ==,E O x x m =-=-,∠FEG=∠AOB=30°. ∴ 点E的坐标为(-.可得直线EF 的解析式为4y =+.∵ 点H 21482x x +=-+的解,整理,得23240x +-=.解得 12x x ==-∴ 点H 的坐标为16)3.由抛物线的对称性知符合题意的1P 点的坐标为16()3.……………6分 可知△AFM 是等边三角形,∠MAF= 60°.由A ,M 两点的坐标分别为A ,(0,8)M ,可得直线AM 的解析式为8y =+.过点H 作直线AM 的平行线l ,设其解析式为y b =+(b ≠8).将点H 的坐标代入上式,得163b =+.解得283b =,直线l 的解析式为283y =+.∵ 直线l 与抛物线的交点的横坐标是方程 2281832x +=-+的解.整理,得2380x -+=.解得12x x =.∴ 点2P 22)3满足HA M AM P S S ∆∆=2,四边形2P MFA 的面积与四边形MF AH 的面积相等.(如图8)……………………………………………7分点2P 关于y 轴的对称点3P 也符合题意,其坐标为3P 22()3.………8分综上所述,位于直线EF 上方的点P 的坐标分别为1P 16()3,2P 22)3,3P 22()3. 25.解:(1)如图9,∠APE= 45 °. ……………………2分(2)解法一:如图10,将AE 平移到DF ,连接BF ,EF ……………………3则四边形AEFD 是平行四边形. ∴ AD ∥EF ,AD=EF .∵ AC ,CD ,∴3=BD AC ,3==DF CDAE CD . ∴ AC CD BD DF =.……………………………………………………4分 ∵ ∠C =90°,∴ 18090BDF C ∠=︒-∠=︒. ∴ ∠C=∠BDF .∴ △ACD ∽△BDF .………………5分∴AD ACBF BD =1=∠2. ∴ EF AD BF BF=.∵ ∠1+∠3=90°, ∴ ∠2+∠3=90°. ∴ BF ⊥AD .∴ BF ⊥EF .…………………………………………………………6分∴ 在Rt △BEF 中,tan BF BEF EF ∠==. ∴ ∠APE =∠BEF =30°.…………………………………………7分解法二:如图11,将CA 平移到DF ,连接AF ,BF ,EF .………………3分则四边形ACDF 是平行四边形. ∵ ∠C =90°,∴ 四边形ACDF 是矩形,∠AFD =∠CAF = 90°,∠1+∠2=90°.∵ 在Rt △AEF 中,tan 3AE AEAF CD ∠===在Rt △BDF 中,tan 1BD BDDF AC∠==∴ 3130∠=∠=︒.∴ ∠3+∠2=∠1+∠2=90°,即∠EFB =∴ ∠AFD =∠EFB . …………………4 又∵DF AF BF EF = ∴ △ADF ∽△EBF . ………………………………………………5分∴ ∠4=∠5.…………………………………………………………6分 ∵ ∠APE+∠4=∠3+∠5,∴ ∠APE =∠3=30°.………………………………………………7分。
2011年北京市一模、二模第12题汇总12.(11hdym)如图,矩形纸片ABC D 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD 交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O , 则1BO = ,n BO = .(2,12332n n --)…第一次折叠 第二次折叠 第三次折叠 图1 图2 …12.(11dcym) 如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1O B 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2O B 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点4A 的坐标为( , );点n A ( , ).(938,0 1)332(-n ,0)12.(11syym) 将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的BADCBA DC1O 1O 2O 1D 1D 2D 1O 2O 3O B ADCB ADC…① ② ③ ④位置是第 行第 列.(6,121n n +)12.(11fsym)如图,以边长为1的正方形的四边中点为顶点作四边形, 再以所得四边形四边中点为顶点作四边形,......依次作下去, 图中所作的第三个四边形的周长为________;所作的第n个四边形的周长为_________________.(2,42()2n)12.(11yqym)如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n块纸板的周长为n P ,则=-34P P ;1--n n P P = .(81, 121-⎪⎭⎫ ⎝⎛n )12.(11myym) 如图,一个空间几何体的主视图和左视图都是边长为1的正 三角形,俯视图是一个圆,那么这个几何体的侧面积是 . (12π)12.(11dxym).将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为 ,那么第n(n 为正整数)个图中,挖去的所有三角形形的面积和为 (用含n 的代数式表示). ⎪⎭⎫⎝⎛25681)43(4或, n )(431-.(12题图)12.(11sjsym)已知:如图,在平面直角坐标系xOy 中,点1B 、点1C 的坐标分别为()0,1,()31,,将△11C OB绕原点O 逆时针旋转︒60,再将其各边都扩大为原来的m 倍,使12OC OB =,得到△22C OB .将△22C OB 绕原点O 逆时针旋转︒60,再将其各边都扩大为原来的m 倍,使23OC OB =,得到△33C OB ,如此下去,得到△n n C OB . (1)m 的值是_______________;(2)△20112011C OB 中,点2011C 的坐标:_____________.(2;(32,220102010)) 12.(11ysym)已知:点F 在正方形纸片ABCD 的边CD 上,AB=2,∠FBC=30°(如图1);沿BF 折叠纸片,使点C 落在纸片内点C '处(如图2);再继续以BC '为轴折叠纸片,把点A 落在纸片上的位置记作A '(如图3),则点D 和A '之间的距离为_________. (2-6)12.(11mtgym)已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当n = 8时,共向外作出了个小等边三角形; 当n = k 时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用 含k 的式子表示).183(-2)k23(2)k sk-A D A D D C 'F F F A 'B C B B图1 图2 图3n =3n =5……n =4D 4D 1D 2D 3ABCE 3E 2E 112.(11tongzym )已知ABC AB AC m ∆==中,,72A B C ∠=︒,1BB 平分A B C ∠交A C 于1B ,过1B 作12B B //B C 交AB 于2B ,作23B B 平分21A B B ∠,交A C 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .212332n n --12.(11changpem)如图,点E 、D 分别是正三角形ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的一边延长线和另一边反向延长线上的点,且BE =CD ,DB 的延长线交AE 于点F ,则图1中∠AFB 的度数为 ;若将条件“正三角形、正四边形、正五边形”改为“正n 边形”,其他条件不变,则∠AFB 的度数为 .(用n 的代数式表示,其中,n ≥3,且n 为整数)(0°,2180n n-⋅())图1E FB ADC图2AC DB FEM图3NAC DB F EM12.(11fangsem)如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)联结DE ,作DE 的中垂线,交AD 于点F . (1)若E 为AB 中点,则D F A E=.(2)若E 为AB 的n 等分点(靠近点A),则D FA E = .(251,42n n+) 12. (11fengtem)已知:如图,在R t ABC △中,点1D 是斜边A B 的中点,过点1D 作11D E AC ⊥于点E 1,联结1B E 交1C D 于点2D ;过点2D 作22D E AC ⊥于点2E ,联结2BE交1C D 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点45、D D 、…、n D ,分别记112233△、△、△、BD E BD E BD E …、n nBD E △的面积为123、、、S S S …n S .设△ABC 的面积是1, 则S 1= ,n S = (用含n 的代数式表示)(211,4(1)n +)12. (11huairem)如图7所示,P 1(x 1,y 1)、P 2(x 2,y 2),……P n (x n ,y n )在函数y =x4(x >0)的图象上,⊿OP 1A 1,⊿P 2A 1A 2,⊿P 3A 2A 3……⊿P n A n -1A n ……都是等腰三角形,斜边OA 1,A 1A 2……A n -1A n ,都在x 轴上,则y 1= .y 1+y 2+…y n = . (2, 2n )12.(11shijsem)如图平面内有公共端点的五条射线,,,,,OE OD OC OB OA 从射线OA 开始,在射线上写出数字1,2,3,4,5; 6,7,8,9,10;….按此规律,则“12”在射线 上;“2011”在射线 上.(OC ;OB ) 12.(11yanqem)正方形ABCD 的位置如图所示,点A 的坐标为)0,1(,点D 的坐标为)2,0(. 延长CB 交x 轴于点1A ,作正方形C C B A 111; 延长11B C 交x 轴于点2A ,作正方形1222C C B A … 按这样的规律进行下去,第3个正方形的面积为________; 第n 个正方形的面积为_____________(用含n 的代数式表示).4235)( , 22235-⎪⎭⎫ ⎝⎛nyo xAAAB B B CC CD 第12题图。
2011年北京西城区初三一模数学试题(含答案)
参考答案
一、选择题ACAB CCDB
二、填空题9.2(3)y x - 10.8 11.①③ 12.5;5n 三、解答题
13.1
2- 14.-3<x ≤1
;x = 15.2y x =-+;1AOP S =
17.由根的判别式得22b a =,代入原式化简得2 18.(1)300;60;99;132;9 (2)72°
19.抢险车20km/时,吉普车30km/时。
注意分式方程要检验
20.(1)BN=5;(2)163
(25)922
S =+⨯=
21.(1)连接BO ,证明略;
(2)易证△ABO 为正三角形,于是∠E=∠C=30°,所以△BFE ∽△AFC 由cos ∠BFA=
2
3
BF AF = 设△AOC 面积为S ,因此有239
()824
S ==,解得S=18 22.(1)1:2;121 (2)正三角形、正六边形 (3)如图
24.(1)30°;60°
(2)21
82
y x =-+;
(3)5个;22
)3;22(
)3;16()3
25.(1)如图,
E
F
C D
过点E 作EF ⊥AE ,使EF=BD ,构造全等三角形,易证△DCA ≌△AEF (SAS )从而△AFD 是等腰直角三角形 再利用四边形EFDB 是平行四边形得EB ∥FD ,于是∠APE=∠ADF=45°
(2)如图
F
D
C
方法同(1),构造相似,判断含30°的直角三角形,从而得∠APE 是30°。
15.解:116s i n 45(212-︒+-. = 6212⨯+-- ………………………………………………………4分= 1+. …………………………………………………………………………6分1624y x =-.③ ………………………………………………………………2分把③代入②,得3(24)9x x +-=.解得x =3. ……………………………………………………………………………4分 把x =3代入③,得y =2. ……………………………………………………………5分 ∴ 原方程组的解为3,2.x y =⎧⎨=⎩…………………………………………………………6分17.解: 293()332aa a aa ++÷--+=29332a a a a -+÷-+………………………………………………………………………2分=(3)(3)233a a a a a +-+⨯-+=2a +.………………………………………………………………………………4分 当2a =时,原式=2224a +=+=.………………………………………………5分18.证明:如图1.∵ 梯形ABCD 中,AD ∥BC ,AB=CD , ∴ 梯形ABCD 为等腰梯形.∴ ∠BAD =∠ADC . ……………………………1分∵ E ,F 分别在AD ,DC 的延长线上,DE=CF ,∴ AD +DE =CD +CF ,即AE =DF .……………2分 在△BAE 和△ADF 中,,,,AB AD BAE AD F AE D F =⎧⎪∠=∠⎨⎪=⎩………………………………………………………………3分 ∴ △BAE ≌△ADF .……………………………………………………………4分∴ BE = AF .………………………………………………………………………5分19.解:(1)m= 100 ,n = 46.8 (各2分).……………………………………………4分 (2)甲、乙两班参赛学生成绩的方差分别为103.2、46.8,说明甲班参赛学生的成绩波动较大.……………………………………………………………………6分20.解:(1)见图2.…………………………………………………1分画法:连接AD ,BD ,CD ,分别画AD ,BD ,CD 的垂直平分线,与三角形的三边的交点分别为E ,F ,G ,H , M ,N . ………………………………………………2分 动点P 构成的区域是 六边形EFGHMN 及其内部 . ………………………………………………………3分 阅卷说明:未说明区域含六边形边界的不给分.(24分四、解答题(本题共14分,第21题8分,第22题6分) 21.解:(1)∵ 抛物线2yax bx c=++经过点(0,3),(2,3)-,(1,0)三点,∴ 3, 423, 0.c a b c a b c =⎧⎪-+=⎨⎪++=⎩ 解得 1,2, 3.a b c =-⎧⎪=-⎨⎪=⎩∴ 所求抛物线的解析式为223y x x =--+. (1)分抛物线223y x x =--+的图象如图3所示. …………………………………2分(2)(,)n n n P x y 的坐标分别为1234(1,6),(2,3),(3,2),(6,1)P P P P , ……………………3分 P n 中任意两点所确定的不同直线的条数为 6 . ……………………………4分(3)∵ P n 中任意两点所确定的直线有121314232434,,,,,P P P P P P P P P P P P 这6条,其中与抛 物线有公共点的直线只有34P P 这1条(如图4),∴ 从(2)中得到的所有直线中随机(任意)取出一条,取出的直线与抛物线有 公共点的概率为16.…………………………………………………………5分(4)11331212P P C B P ADP C B y S S AD y ∆∆⨯⨯=⨯⨯. ……………………………………………………6分设抛物线223y x x =--+的对称轴与x 轴的交点为M由它向上平移后的抛物线与抛物线223y x x =--+的对称轴.由抛物线的对称性可知MC=MD ,MA=MB .∴ MC MB MD MA +=+,即CB=AD .……………7分∵ 1P ,3P 在第一象限,∴11333P CB P P ADP S y S y ∆∆==.………………………………………………………8分22.解:(1)α= 45 °. …………………………………………………………………1分 (2)答:∠ACD= α+β .………………………………………………………2分 证明:将△BCD 沿CD 所在直线翻折到同一平面内,点B 的对应点为E , 连接AE ,设AD ,CE 的交点为F .(如图6) 则△ECD ≌△BCD .……………………………………………………3分 ∴ EC =BC ,∠2=∠1=α,∠3=∠B =β, C D E C D B ∠=∠. ∵ 23180αβ+=︒,∴ 1801(23)()2CDE CDB B a αβαββ∠=∠=︒-∠-∠=+-+=+. ∵ AD=BC ,∴ AD=CE∵ 45C D E ∠=∠+∠,51B αβ∠=∠+∠=+, ∴ 45(2)()CDE αβαββ∠=∠-∠=+-+=. ∴ ∠4=∠3.∴ EF=DF .…………………………………5分 ∴ AD D F C E EF -=-,即AF=CF . ∴ ∠6=∠7.∵ ∠CFD 同时是△DEF 和△ACF 的外角,∴ ∠CFD =∠3+∠4=2∠3,∠CFD =∠6+∠7=2 ∴ ∠6=∠3=β.∴ 26ACD αβ∠=∠+∠=+.………………………………………6分。
市各区2011年中考一模数学试题分类汇编 专题八 综合与实践(昌平区一模) 22.现场学习题问题背景:在△ABC 中,AB 、BC 、AC小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.AB C图3图2图1(1)请你将△ABC 的面积直接填写在横线上.________ 思维拓展:(2)我们把上述求△ABC 面积的方法叫做构图法.若△ABC 、、(0)a >,请利用图2的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积是:. 探索创新:(3)若△ABC三边的长分别为、、(0,,)m n o m n >>≠,请运用构图法在图3指定区域内画出示意图,并求出△ABC 的面积为: 答案:(1) 25.(2) 面积:23a .(3)图2ABCA C 4m n n 2n面积:3mn .25.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果EF =2OG ,求点G的坐标.(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.答案:解:(1)∵OD 平分∠AOC , ∠AOC =90°∴∠AOD =∠DOC =45° ∵在矩形ABCD 中,∠BAO =∠B =∠BOC =90°,OA =BC =2,AB =OC =3 ∴△AOD 是等腰Rt △∵∠AOE +∠BDC =∠BCD +∠BDC =90° ∴∠AOE =∠BCD ∴△AED ≌△BDC ∴AE =DB =1∴D (2,2),E (0,1),C (3,0)则过D 、E 、C 三点的抛物线解析式为:1613652++-=x x y(2)DH ⊥OC 于点H ,∴∠DHO =90° ∵矩形 ABCD 中, ∠BAO =∠AOC =90° ∴四边形AOHD 是矩形 ∴∠ADH =90°. ∴∠1+∠2=∠2+∠3=90° ∴∠1=∠3∵AD =OA =2,∴四边形AOHD 是正方形. ∴△FAD ≌△GHD ∴FA =GH∴设点 G (x ,0), ∴OG =x ,GH =2-x∵EF =2OG=2x ,AE=1, ∴2-x =2x -1, ∴x=1.∴G (1,0)(3)由题意可知点P 若存在,则必在AB 上,假设存在点P 使△PCG 是等腰三角形 1)当点P 为顶点,既 CP =GP 时,易求得P 1(2,2),既为点D 时, 此时点Q 、与点P 1、点D 重合,O C BA Dxy EG H F312O C B A D xyE∴点Q 1(2,2)2) 当点C 为顶点,既 CP =CG =2时, 易求得P 2(3,2)∴直线GP 2的解析式:1-=x y求交点Q :⎪⎩⎪⎨⎧++-=-=16136512x x y x y 可求的交点(57,512)和(-1,-2)∵点Q 在第一象限∴Q 2(57,512)3)当点G 为顶点,既 GP =CG =2时, 易求得P 3(1,2) ∴直线GP 3的解析式:1=x求交点Q :⎪⎩⎪⎨⎧++-==16136512x x y x 可求的交点(37,1)∴Q 3(37,1)所以,所求Q 点的坐标为Q 1(2,2)、Q 2(57,512)、Q 3(37,1). (某某区一模)12.如图,P 为△ABC 的边BC 上的任意一点,设BC=a ,当B 1、C 1分别为AB 、AC 的中点时,B 1C 1=a 21, 当B 2、C 2分别为BB 1、CC 1的中点时,B 2C 2=a 43,当B 3、C 3分别为BB 2、CC 2的中点时,B 3C 3=a 87,当B 4、C 4分别为BB 3、CC 3的中点时,B 4C 4=a 1615,当B 5、C 5分别为BB 4、CC 4的中点时,B 5C 5=______, ……当B n 、分别为BB n-1、C -1的中点时,则B n =;设△ABC 中BC 边上的高为h ,则△PB n 的面积为______(用含a 、h 的式子表示).答案:a 3231, a n n 212-, ah n n 12212+-25.已知:△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°,点M 是CE 的中点,连接BM .(1)如图①,点D 在AB 上,连接DM ,并延长DM 交BC 于点N ,可探究得出BD 与BM 的数量关系为;(2)如图②,点D 不在AB 上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.B (第12题图)NMD ECABMEC BAD1分析:由题意知,B 5C 5∥BC ,555212AB AB -=,根据相似的性质,可得到B 5C 5=3132a , 同理可得到B n =a n n 212-.因为△ABC 中BC 边上的高为h ,所以△PB n 中B n 边上的高为h n21,△PB n 的面积为ah h a n n n nn 122122121221+-=⨯-⨯.答案:(1)BD=2BM. (2)结论成立.证明:连接DM ,过点C 作CF ∥ED ,与DM 的延长线交于点F ,连接BF , 可证得△MDE≌△MFC ∴DM=FM, DE=FC. ∴AD=ED=FC. 作AN⊥EC 于点N.由已知∠ADE =90°,∠ABC =90°, 可证得∠1=∠2, ∠3=∠4. ∵CF ∥ED ,∴∠1=∠FCM.∴∠BCF=∠4+∠FCM =∠3+∠1=∠3+∠2=∠BAD. ∴△BCF≌△BAD. ∴BF=BD,∠5=∠6.∴∠DBF=∠5+∠ABF=∠6+∠ABF=∠ABC=90°. ∴△DBF 是等腰直角三角形. ∵点M 是DF 的中点, 则△BMD 是等腰直角三角形.654321NMECABD图①图②∴BD=2BM.22.阅读并操作:如图①,这是由十个边长为1的小正方形组成的一个图形,对这个图形进行适当分割(如图②),然后拼接成新的图形(如图③).拼接时不重叠、无空隙,并且拼接后新图形的顶点在所给正方形网格图中的格点上(网格图中每个小正方形边长都为1).图① 图② 图③请你参照上述操作过程,将由图①所得到的符合要求的新图形画在下边的正方形网格图中.(1)新图形为平行四边形; (2)新图形为等腰梯形.答案:解:(1)(2)(注:每图2分)(东城区一模) 12. 如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点4A 的坐标为( , );点n A (,).答案:938,01)332(-n ,024. 等边△ABC 边长为6,P 为BC 边上一点,∠MPN =60°,且PM 、PN 分别于边AB 、AC 交于点E 、F .(1)如图1,当点P 为BC 的三等分点,且PE ⊥AB 时,判断△EPF 的形状;(2)如图2,若点P 在BC 边上运动,且保持PE ⊥AB ,设BP =x ,四边形AEPF 面积的y ,求y 与x 的函数关系式,并写出自变量x 的取值X 围;(3)如图3,若点P 在BC 边上运动,且∠MPN 绕点P 旋转,当CF =AE =2时,求PE 的长.图1 图2 图3答案:(1)△EPF 为等边三角形. (2)设BP=x ,则CP =6-x.由题意可 △BEP 的面积为238x . △CFP 的面积为23(6)2x -. △ABC 的面积为93.设四边形AEPF 的面积为y. ∴93y =-238x 23(6)2x --=25363938x x -+-. 自变量x 的取值X 围为3<x <6.(3)可证△EBP ∽△PCF.∴BP BECF CP=. 设BP=x ,则 (6)8x x -=. 解得 124,2x x ==. ∴ PE 的长为4或23.(房山区一模)12.如图,以边长为1的正方形的四边中点为顶点作四边形, 再以所得四边形四边中点为顶点作四边形,......依次作下去, 图中所作的第三个四边形的周长为________;所作的第n 个 四边形的周长为_________________.答案:2,42()2n(12题图)22.(本小题满分5分)小明想把一个三角形拼接成面积与它相等的矩形. 他先进行了如下部分操作,如图1所示: ①取△ABC 的边AB 、AC 的中点D 、E ,联结DE ; ②过点A 作AF ⊥DE 于点F ;(1)请你帮小明完成图1的操作,把△ABC 拼接成面积与它相等的矩形.(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的正方形,那么原三角形的一边与这边上的高之间的数量关系是________________.(3)在下面所给的网格中画出符合(2)中条件的三角形,并将其拼接成面积与它相等的正方形.答案:解:(1)(2)若要拼接成正方形,原三角形的一边与这一边上的高之间的数量关系是1:2或2:1 (3)画对一种情况的一个图给1分NM ②①②①F E D C B ADC B A A B C DA B C D 图3图2图12n-1B 2C 2A BCB1C 1C 1B 1CBA或∴正方形ABCD 为所求(丰台区一模) 12.已知在△ABC 中,BC=a.如图1,点B 1 、C 1分别是AB 、AC 的中点,则线段B 1C 1的长是_______;如图2,点B 1 、B 2,C 1、C 2分别是AB 、AC 的三等分点,则线段B 1C 1 + B 2C 2的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(n+1)等分点,则线段B 1C 1 + B 2C 2+……+ B n 的值是 ______.答案:1,2a a ,12na25.已知:在△ABC 中,BC=a ,AC=b ,以AB 为边作等边三角形ABD. 探究下列问题:(1)如图1,当点D 与点C 位于直线AB 的两侧时,a=b=3,且∠ACB=60°,则CD=; (2)如图2,当点D 与点C 位于直线AB 的同侧时,a=b=6,且∠ACB=90°,则CD=; (3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数.图1 图2 图3E D CB A DABCE 答案:解:(1)33;(2)2363 ;(3)以点D 为中心,将△DBC 逆时针旋转60°,则点B 落在点A ,点C 落在点E.联结AE,CE ,∴CD=ED ,∠CDE=60°,AE=CB= a , ∴△CDE 为等边三角形, ∴CE=CD.当点E 、A 、C 不在一条直线上时,有CD=CE<AE+AC=a +b ; 当点E 、A 、C 在一条直线上时, CD 有最大值,CD=CE=a +b ; 此时∠CED=∠BCD=∠ECD=60°,∴∠ACB=120°, 因此当∠ACB=120°时,CD 有最大值是a +b .(燕山区一模)12.已知:点F 在正方形纸片ABCD 的边CD 上,AB=2,∠FBC=30°(如图1);沿BF 折叠纸片,使点C 落在纸片内点C '处(如图2);再继续以BC '为轴折叠纸片,把点A 落在纸A D A D D C 'F F F A 'B C B B图1 图2 图3…答案:2-622.将正方形ABCD (如图1)作如下划分:第1次划分:分别联结正方形ABCD 对边的中点(如图2),得线段HF 和EG ,它们交于点M ,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH 按上述方法再作划分,得图3,则图3中共有_______个正方形;若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有_______个正方形;继续划分下去,能否将正方形ABCD 划分成有2011个正方形的图形?需说明理由.答案:第2次划分,共有9个正方形; 第100次划分后,共有401个正方形;依题意,第n 次划分后,图中共有4n+1个正方形,而方程4n+1=2011没有整数解,所以,不能得到2011个正方形.(延庆区一模)12.如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P =.A D A H D A H DE M G E M GB C B F C B F C 图1 图2 图3第22题图1第22题图 3DCBA 第22题图2CBA第12题图答案:81 , 121-⎪⎭⎫ ⎝⎛n22.阅读下列材料:根据所给的图形解答下列问题: (1)如图1,ABC ∆中,AC AB =,90=∠BAC ,D BC AD 于⊥,把ABD ∆绕点A 旋转,并拼 接成一个正方形,请你在图1中完成这个作图;(2)如图2,ABC ∆中,AC AB =,90=∠BAC ,请你设计一种与(1)不同方法, 将这个三角形拆分并拼接成一个与其面积相等的正方形,画出利用这个三角形得到的正方形;(3)设计一种方法把图3中的矩形ABCD 拆分并拼接为一个与其面积相等的正方形,请你依据此矩形画出正方形.25. 在Rt ABC △中,902BAC AB AC ∠===,,点D 在BC 所在的直线上运动,作45ADE ∠=(A D E ,,按逆时针方向). (1)如图1,若点D 在线段BC 上运动,DE 交AC 于E .①求证:ABD DCE △∽△;②当ADE △是等腰三角形时,求AE 的长.(2)①如图2,若点D 在BC 的延长线上运动,DE 的反向延长线与AC 的延长线相交于点E ',是否存在点D ,使ADE '△是等腰三角形?若存在,写出所有点D 的位置;若不存在,请简要说明理由;②如图3,若点D 在BC 的反向延长线上运动,是否存在点D ,使ADE △是等腰三角形?若存在,写出所有点D 的位置;若不存在,请简要说明理由.4545DAECABD 45ABDCE第25题图1答案: ①证明:在Rt ABC △中,∵902BAC AB AC ∠===, ∴∠B=∠C=45°又 ∠ADE=45° ∴∠ADB+∠EBC=∠EBC+∠DEC=135° ∴∠ADB=∠DEC ∴ABD DCE △∽△② 当ADE △是等腰三角形时,分以下三种情况讨论 第一种情况:DE=AE∵DE=AE∴∠ADE=∠DAE=45°∴∠AED=90°, 此时,E 为AC 的中点,∴AE=12AC=1.第二种情况:AD=AE (D 与B 重合) AE=2第三种情况 :AD=AE如果AD=DE ,由于ABD DCE △∽△, ∴△ABD ≌△DCE,∴BD=CE,AB=DC,设BD=CE=x在Rt ABC △中,∵902BAC AB AC ∠===,, ∴ BC=22, DC=22-x∴22-x =2 ,解得,x =22-2 , ∴ AE= 4 -22综上所述:AE 的值是1,2,4 -2 (2)①存在。
北京市西城区2011年初三一模试卷数学答案及评分标准2011. 5 一、选择题(本题共32分,每小题4分)11题阅卷说明:全对得4分,仅填①或③得2分,其余情况均不得分.三、解答题(本题共30分,每小题5分)13.解:原式=1412+-………………………………………………………4分=12-.…………………………………………………………………………5分14.解:302(1)3xx+>⎧⎨-+⎩,由①得3x>-.………………………………………………………………………1分由②得x≤1.…………………………………………………………………………3分∴原不等式组的解集是3-<x≤1.………………………………………………4分∵ 31>,∴ 3x =不是该不等式组的解.………………………………………………… 5分 15.解:(1)如图1.设直线l 的解析式为y kx b =+(k ,b 为常数且k ≠0). ∵ 直线l 经过点(0,2)B ,点(1,1)P ,∴ 2, 1.b k b =⎧⎨+=⎩ 解得 1,2.k b =-⎧⎨=⎩∴ 直线l 的解析式为2y x =-+. ……………………………………………2分(2)∵ 直线l 的解析式为2y x =-+,∴ 点A 的坐标为(2,0).………………………………………………………3分 ∵ 点P 的坐标为(1,1),∴ 12AOP P S OA y ∆=⨯⨯=12112⨯⨯=.………………………………………5分16. 证明:如图2.(1)∵ BF 平分ABC ∠,∴ ABF CBF ∠=∠.………………1分 在△ABF 与△CBF 中,,,,AB CB ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBF . ………………………………………………………2分图图∴ AF CF =.………………………………………………………………3分(2)∵ AF CF =,∴ FCA FAC ∠=∠.……………………………………………………… 4分∵ AF ∥DC , ∴ FAC DCA ∠=∠.∴ FCA DCA ∠=∠,即CA 平分DCF ∠. ………………………………5分 17. 解:由题意,2214202b a b a ∆=-⨯=-=.…………………………………………1分 ∴ 22b a =. ………………………………………………………………………2分∴ 原式222211ab a a b =-++- ……………………………………………………3分2222ab a b a=+- 2222222a a a a a a a⋅==+-.…………………………………………………4分 ∵ 0a ≠,∴ 原式2222a a==.………………………………………………………………5分18. 解:(1)………………………………………………………………………………4分 阅卷说明:每空1分.(2)72.………………………………………………………………………………5分 四、解答题(本题共20分,每小题5分)19.解:设抢修车每小时行驶x 千米,则吉普车每小时行驶x 5.1千米.151154 1.5x x-=.………………………………………………………………………2分 解得20x =. ………………………………………………………………………3分 经检验,20x =是原方程的解,并且符合题意. ………………………………4分 ∴ 1.530x =.答:抢修车每小时行驶20千米,吉普车每小时行驶30千米.………………………5分 20.解:如图3.(1)由题意,点A 与点A ',点B 与点B '分别关于直线MN 对称,∴AM A M '=,BN B N '=. ………………………………………………1分 设BN B N x '==,则9CN x =-. ∵ 正方形ABCD , ∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.解得5x =.图。
1、物质存在的状态有气态、液态、固态三种。
2、司机酒后驾车,可对其呼出的气体进行检验而查出,所利用的化学的反应为:2CrO3+3C2H5OH+3H2SO4=Cr2(SO4)3+3CH3CHO+6H2O(红)(黄)被测的气体成分是C2H5OH ,反应氧化剂是 CrO3 ,还原剂是 C2H5OH 。
3、氧化还原反应的基本特征是价态改变和电子转移。
在氧化还原反应中,失去电子或价态升高的物质是还原剂,本身发生氧化反应。
4、组成原油的主要元素是碳、氢、硫、氮、氧。
5、油品主要由烷烃、环烷烃、烯烃、二烯烃、芳香烃胶质等组成。
6、汽油中的H2S 、硫醇等会使铜片腐蚀不合格。
7、第12届世界石油会议规定对原油的分类: API度>34的原油为轻质原油;API度在20~34之间为中质原油;API度在10~20之间为重质原油; API度<10为特重质原油。
8、闪点必要条件:混合气中烃或油气的浓度要在一定范围,低于这一范围,油气不足,而高于这一范围,则空气不足,均不能闪火爆炸。
因此称这一油气浓度范围为爆炸范围。
9、汽油的主要性能要求主要有蒸发性、抗爆性、安定性、腐蚀性和其他指标。
10、汽油的馏程 40~200℃,轻柴油的馏程 200~350℃,润滑油的馏程 350~520℃。
11、为了方便起见,将润滑油按其使用场合可分为内燃机润滑油、齿轮油、液压油及液力传动油和工业设备用油四大类。
12、轻柴油按凝点划分牌号,重柴油和残渣柴油按黏度划分牌号。
13、软化点表示沥青的耐热性能。
软化点越高,则热性能越好。
14、我国用雷德蒸气压作为汽油蒸汽压的指标。
1、.化学反应的基本类型有化合反应、分解反应、置换反应和复分解反应四种。
2、NH3是一种具有刺激性气味的无色气体。
低浓度的NH3对呼吸道有刺激作用,浓度高时可使皮肤灼伤并使人窒息。
NH3的分子量为17 ,液氨具有导电性,并能溶解少量润滑油。
NH3极易溶于水,常温下1体积水可溶解700 体积NH3。
北京市西城区2011年高三一模试卷参考答案及评分标准数学(理科) 2011.4一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.9. 2 10. 2 11. 415±12. 12 13. 60,48 14.62;1或5 注:11题,13题,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分) 解:(Ⅰ)因为54cos =B ,所以53sin =B . ……………………2分 因为35=a ,2=b ,由正弦定理B b A a sin sin =可得21sin =A . …………………4分因为b a <,所以A 是锐角,所以o30=A . ……………………6分(Ⅱ)因为ABC ∆的面积ac B ac S 103sin 21==, ……………………7分 所以当ac 最大时,ABC ∆的面积最大.因为B ac c a b cos 2222-+=,所以ac c a 58422-+=. ……………………9分 因为222a c ac +≥,所以8245ac ac -≤, ……………………11分所以10≤ac ,(当a c == ……………………12分 所以ABC ∆面积的最大值为3. ……………………13分16.(本小题满分13分)解:记“甲、乙、丙三人各自破译出密码”分别为事件1,A12311(),(),(),23P A P A P A p ===且321,,A A A (Ⅰ)甲、乙二人中至少有一人破译出密码的概率为121()P A A -⋅1221233=-⨯= (Ⅱ)设“三人中只有甲破译出密码”为事件B ,则有()P B =123()P A A A ⋅⋅=121(1)233p p -⨯⨯-=,分 所以1134p -=,14p =. ……………………7分 (Ⅲ)X 的所有可能取值为3,2,1,0. ……………………8分所以1(0)4P X ==, (1)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅111312111423423424=+⨯⨯+⨯⨯=, (2)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅11312111112342342344=⨯⨯+⨯⨯+⨯⨯=, (3)P X ==P 123()A A A ⋅⋅=111123424⨯⨯= . ……………………11分X ……………………12分所以,1111113()012342442412E X =⨯+⨯+⨯+⨯=. ……………………13分17.(本小题满分13分)(Ⅰ)证明: 因为DE ⊥平面ABCD ,所以AC DE ⊥. ……………………2分 因为ABCD 是正方形, 所以BD AC ⊥,从而AC ⊥平面BDE . ……………………4分 (Ⅱ)解:因为DE DC DA ,,两两垂直,所以建立空间直角坐标系xyz D -如图所示.因为BE 与平面ABCD 所成角为060,即60DBE ∠=, ………………5分 所以3=DBED. 由3=AD可知DE =AF =………………6分 则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C ,所以(0,BF =-,(3,0,EF =-, ………………7分设平面BEF 的法向量为=n (,,)x y z ,则00BF EF ⎧⋅=⎪⎨⋅=⎪⎩n n,即3030y x ⎧-+=⎪⎨-=⎪⎩,令z =则=n (4,2,. …………………8分因为AC ⊥平面BDE ,所以CA 为平面BDE 的法向量,(3,3,0)CA =-,所以cos ,32CA CA CA⋅〈〉===n n n …………………9分 因为二面角为锐角,所以二面角D BE F --的余弦值为1313. ………………10分 (Ⅲ)解:点M 是线段BD 上一个动点,设(,,0)M t t .则(3,,0)AM t t =-, 因为//AM 平面BEF ,所以AM ⋅n 0=, …………………11分 即4(3)20t t -+=,解得2=t . …………………12分此时,点M 坐标为(2,2,0),13BM BD =,符合题意. …………………13分18. (本小题满分14分) 解:(Ⅰ)3(2)()a x f x x-'=,(0x ≠), ……………3分 在区间(,0)-∞和(2,)+∞上,()0f x '<;在区间(0,2)上,()0f x '>.所以,()f x 的单调递减区间是(,0)-∞和(2,)+∞,单调递增区间是(0,2). ………4分(Ⅱ)设切点坐标为00(,)x y ,则002000030(1)10(2)1a x y x x y a x x -⎧=⎪⎪⎪--=⎨⎪-⎪=⎪⎩……………7分(1个方程1分)解得01x =,1a =. ……………8分 (Ⅲ)()g x =ln (1)x x a x --,则()ln 1g x x a '=+-, …………………9分 解()0g x '=,得1e a x -=,所以,在区间1(0,e)a -上,()g x 为递减函数,在区间1(e ,)a -+∞上,()g x 为递增函数. ……………10分 当1e1a -≤,即01a <≤时,在区间[1,e]上,()g x 为递增函数,所以()g x 最大值为(e)e e g a a =+-. ………………11分当1ee a -≥,即2a ≥时,在区间[1,e]上,()g x 为递减函数,所以()g x 最大值为(1)0g =. ………………12分当11<e<e a -,即12a <<时,()g x 的最大值为(e)g 和(1)g 中较大者;(e)(1)e e 0g g a a -=+->,解得ee 1a <-,所以,e1e 1a <<-时,()g x 最大值为(e)e e g a a =+-, …………………13分e2e 1a ≤<-时,()g x 最大值为(1)0g =. …………………14分 综上所述,当e 0e 1a <<-时,()g x 最大值为(e)e e g a a =+-,当ee 1a ≥-时,()g x 的最大值为(1)0g =.19. (本小题满分14分) 解:(Ⅰ)由已知(,0)2pF ,设11(,)A x y ,则2112y px =, 圆心坐标为112(,)42x p y +,圆心到y 轴的距离为124x p+, …………………2分 圆的半径为1121()2224FAx p px +=⨯--=, …………………4分 所以,以线段FA 为直径的圆与y 轴相切. …………………5分 (Ⅱ)解法一:设022(0,),(,)P y B x y ,由1FA AP λ=,2BF FA λ=,得111101(,)(,)2p x y x y y λ-=--,22211(,)(,)22p px y x y λ--=-, …………………6分 所以1111101,()2px x y y y λλ-=-=-,221221(),22p px x y y λλ-=-=-, …………………8分 由221y y λ=-,得222221y y λ=.又2112y px =,2222y px =,所以 2221x x λ=. …………………10分代入221()22p p x x λ-=-,得22121()22p p x x λλ-=-,2122(1)(1)2px λλλ+=+, 整理得122p x λ=, …………………12分代入1112p x x λ-=-,得122222p p pλλλ-=-, 所以12211λλλ=-, …………………13分 因为1211[,]42λλ∈,所以2λ的取值范围是4[,2]3. …………………14分解法二:设),(),,(2211y x B y x A ,:2p AB x my =+, 将2px my =+代入22y px =,得2220y pmy p --=, 所以212y y p =-(*), …………………6分 由1FA AP λ=,2BF FA λ=,得111101(,)(,)2p x y x y y λ-=--,22211(,)(,)22p px y x y λ--=-, …………………7分 所以,1111101,()2px x y y y λλ-=-=-,221221(),22p px x y y λλ-=-=-, …………………8分 将122y y λ-=代入(*)式,得2212p y λ=, …………………10分所以2122p px λ=,122p x λ=. …………………12分代入1112p x x λ-=-,得12211λλλ=-. …………………13分 因为1211[,]42λλ∈,所以2λ的取值范围是4[,2]3. …………………14分 20.(本小题满分13分)(Ⅰ)解:12100122399100(,,,)||||||a a a a a a a a a τ=-+-++- ………………1分222299198=+++=⨯=. ………………3分(Ⅱ)证明:因为(,,,)||||||a b c d a b b c c d τ=-+-+-,(,,,)||||||a c b d a c c b b d τ=-+-+-,所以(,,,)(,,,)||||||||a b c d a c b d a b c d a c b d ττ-=-+-----. ……………4分 因为()()0a b b c -->,所以a b c >>,或a b c <<. 若a b c >>,则(,,,)(,,,)||||a b c d a c b d a b c d a c b d ττ-=-+--+--||||c b c d b d =-+---当b c d >>时,上式()2()0c b c d b d c b =-+---=-<, 当b d c ≥≥时,上式()2()0c b d c b d d b =-+---=-≤, 当d b c >>时,上式()0c b d c d b =-+---=,即当a b c >>时,(,,,)(,,,)0a b c d a c b d ττ-≤. ……………………6分若a b c <<,则(,,,)(,,,)||||a b c d a c b d b a c d c a b d ττ-=-+--+--,||||0b c c d b d =-+---≤.(同前)所以,当()()0a b b c -->时,(,,,)(,,,)a b c d a c b d ττ≤成立. …………………7分(Ⅲ)证明:由(Ⅱ)易知对于四个数的数列,若第三项的值介于前两项的值之间,则交换第二项与第三项的位置将使数列波动强度减小或不变.(将此作为引理)下面来证明当12a a >时,{}n a 为递减数列.(ⅰ)证明23a a >.若231a a a >>,则由引理知交换32,a a 的位置将使波动强度减小或不变,与已知矛盾. 若2a a a >>31,则1212212121(,,)||||||||(,,)a a a a a a a a a a a a a a ττ=-+->-+-=3333,与已知矛盾.所以,321a a a >>. ………………………9分(ⅱ)设12(32)i a a a i n >>>≤≤-,证明1i i a a +>.若i i i a a a >>+-11,则由引理知交换1,+i i a a 的位置将使波动强度减小或不变,与已知矛盾. 若i i i a a a >>-+11,则211211(,,,)(,,,)i i i i i i i i a a a a a a a a ττ--+--+=,与已知矛盾.所以,1+>i i a a . …………………11分 (ⅲ)设121n a a a ->>>,证明1n n a a ->.若1n n a a ->,考查数列121,,,,n n a a a a -,则由前面推理可得122n n n a a a a -->>>>,与121n a a a ->>>矛盾.所以,1n n a a ->. …………………12分 综上,得证.同理可证:当12a a <时,有{}n a 为递增数列. ……………………13分。
学而思韩春成老师题库资料分享【2011海淀区一模】8.如图,在Rt ABC △中,∠C =90°,AB =5cm ,BC =3cm ,动点P 从点A 出发, 以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止.设2y PC =, 运动时间为t 秒,则能反映y 与t 之间函数关系的大致图象是答案:A12.如图,矩形纸片ABCD中,AB BC =第一次将纸片折叠,使点B 与点D 重合,折痕与BD 交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .…第一次折叠 第二次折叠 第三次折叠 … 答案:2 ,12332n n -- C A B DBADCBA BAD BAD学而思韩春成老师题库资料分享24.已知平面直角坐标系xOy 中, 抛物线2(1)y ax a x =-+与直线y kx =的一个公共点为(4,8)A .(1)求此抛物线和直线的解析式;(2)若点P 在线段OA 上,过点P 作y 轴的平行线交(1)中抛物线于点Q ,求线段PQ 长度的最大值;(3)记(1)中抛物线的顶点为M ,点N 在此抛物线上,若四边形AOMN 恰好是梯形,求点N 的坐标及梯形AOMN 的面积.解:(1)由题意,可得8164(1)a a =-+及84k =,解得1,2a k ==,所以,抛物线的解析式为22y x x =-,直线的解析式为2y x =. ………2分(2)设点P 的坐标为4(,2)(0)t t t ≤≤,可得点Q 的坐标为2(,2)t t t -,则 2222(2)4(2)4PQ t t t t t t =--=-=--+所以,当2t =时,PQ 的长度取得最大值为4. ……………………4分 (3)易知点M 的坐标为(1,-1).过点M 作直线OA 的平行线交抛物线于点N ,如图所示,四边形AOMN 为梯形.直线MN 可看成是由直线所以直线MN 的方程为2y x b =-.因为点M 在直线y MN 的方程为23y x =-,将其代入22y x x =- 2232x x x -=-即 2430x x -+= 解得 11x =,23x =易得 11y =-,23y =(备图1)(备图2)学而思韩春成老师题库资料分享所以,直线MN 与抛物线的交点N 的坐标为(3,3). …………5分如图,分别过点M 、N 作y 轴的平行线交直线OA 于点G 、H , 显然四边形MNHG 是平行四边形.可得点G (1,2),H (3,6).113(10)[2(1)]222OMG S MG =⨯-⨯=⨯--=△113(43)(63)222ANH S NH =⨯-⨯=⨯-=△(31)236MNHG S NH =-⨯=⨯=△所以,梯形AOMN 的面积9OMG MNHG ANH AOMN S S S S =++=△△△梯形. ………7分 25.在Rt △ABC 中,∠ACB =90°,tan ∠BAC =12. 点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点. (1)若过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1. 设CF kEF =,则k = ; (2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示.求证:BE -DE =2CF ;(3)若BC =6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD中点,求线段CF 长度的最大值.解:(1)k =1; ……………………….……………………………2分(2)如图2,过点C 作CE 的垂线交BD 于点G ,设BD 与AC 的交点为Q .由题意,tan ∠BAC =12, ∴12BC DE AC AE ==. ∵ D 、E 、B 三点共线, ∴ AE ⊥DB .∵ ∠BQC =∠AQD ,∠ACB =90°,BCA DEFBDEA FC BAC1图2图备图2图BD EA FCGQ∴∠QBC=∠EAQ.∵∠ECA+∠ACG=90°,∠BCG+∠ACG=90°,∴∠ECA=∠BCG.∴BCG ACE△∽△.∴12 BC GBAC AE==.∴GB=DE.∵F是BD中点,∴F是EG中点.在Rt ECG△中,12CF EG=,∴2BE DE EG CF-==. ….……………………………5分(3)情况1:如图,当AD=13AC时,取AB的中点M,连结MF和CM,∵∠ACB=90°,tan∠BAC=12,且BC= 6,∴AC=12,AB=.∵M为AB中点,∴CM=∵AD=13 AC,∴AD=4.∵M为AB中点,F为BD中点,∴FM=12AD= 2.∴当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=2+分情况2:如图,当AD=23AC时,取AB的中点M,连结MF和CM,类似于情况1,可知CF的最大值为4+………………………7分综合情况1与情况2,可知当点D在靠近点C的三等分点时,线段CF的长度取得最大值为4+……………………….……………………………8分B【2011西城区一模】8.如图,点A 在半径为3的⊙O 内,,P 为⊙O 上一点, 当∠OP A 取最大值时,P A 的长等于( ).A .32B C D .答案:B12. 如图1,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111D C B A ,正方形1111D C B A 的面积为 ;再把正方形1111D C B A 的各边延长一倍得到正方形2222D C B A (如图2),如此进行下去,正方形D C B A 的面积为 .(用含有n 的式子表示,n 为正整数)图1 图2 答案:5,n524.如图1,平面直角坐标系xOy 中,A ,B (4,0).将△OAB 绕点O 顺时针旋转α角(0°<α<90°)得到△OCD (O ,A ,B 的对应点分别为O ,C ,D ),将△OAB 沿x 轴负方向...平移m 个单位得到△EFG (m >0,O ,A ,B 的对应点分别为E ,F ,G ),α,m 的值恰使点C ,D ,F 落在同一反比例函数ky x=(k ≠0)的图象上.诶你 (1)∠AOB= °,α= °;(2)求经过点A ,B ,F 的抛物线的解析式;(3)若(2)中抛物线的顶点为M ,抛物线与直线EF 的另一个交点为H ,抛物线上的点P 满足以P ,M ,F ,A 为顶点的四边形的面积与四边形MF AH 的面积相等 (点P 不与点H 重合),请直接写出满足条件的点P 的个数,并求位于直线EF解:(1)∠AOB= 30 °,α= 60 °.…………………………………………………2分 (2)∵A ,B (4,0),△OAB 绕点O 顺时针旋转α角得到△OCD ,(如图7)∴ OA =OB=OC=OD=4.由(1)得 30BOC AOB ∠=︒=∠.∴ 点C 与点A 关于x 轴对称,点C的坐标为2)-. ∵ 点C ,D ,F 落在同一反比例函数ky x=(k ≠0)的图象上, ∴C C k x y =⋅=-∵ 点F 是由点A 沿x 轴负方向平移m 个单位得到,∴ 2F y =,F x ==-F的坐标为(-.……………3分 ∴ 点F 与点A 关于y 轴对称,可设经过点A ,B ,F 的抛物线的解析式为2y ax c =+.∴22, 160.a c a c ⎧+=⎪⎨+=⎪⎩ 解得1 ,2 8.a c ⎧=-⎪⎨⎪=⎩∴ 所求抛物线的解析式为2182y x =-+. …………………………………4分(3)满足条件的点P 的个数为 5 .………………………………………………5分抛物线2182y x =-+的顶点为(0,8)M .∵ △EFG 是由△OAB 沿x 轴负方向平移m 个单位得到,∴m FA ==,E O x x m =-=-,∠FEG=∠AOB=30°. ∴ 点E的坐标为(-. 可得直线EF的解析式为4y =+.∵ 点H 21482x x +=-+的解,整理,得23240x +-=.解得 12x x ==-∴ 点H 的坐标为16)3.由抛物线的对称性知符合题意的1P 点的坐标为16()3.……………6分 可知△AFM 是等边三角形,∠MAF= 60°.由A ,M 两点的坐标分别为A ,(0,8)M ,可得直线AM 的解析式为8y =+.过点H 作直线AM 的平行线l ,设其解析式为y b =+(b ≠8).将点H 的坐标代入上式,得163b =+.解得283b =,直线l 的解析式为283y =+.∵ 直线l 与抛物线的交点的横坐标是方程 2281832x +=-+的解.整理,得2380x -+=.解得12x x =.∴ 点2P 22)3满足HA M AM P S S ∆∆=2,四边形2P MFA 的面积与四边形MF AH 的面积相等.(如图8)……………………………………………7分点2P 关于y 轴的对称点3P 也符合题意,其坐标为3P 22()3.………8分综上所述,位于直线EF 上方的点P 的坐标分别为1P 16()3,2P 22)3,3P 22()3.25.在Rt △ABC 中,∠C =90°,D ,E 分别为CB ,CA 延长线上的点,BE 与AD 的交点为P .(1)若BD=AC ,AE=CD ,在图1中画出符合题意的图形,并直接写出∠APE 的度数;(2)若AC ,CD ,求∠APE 的度数.解:(1)如图9,∠APE= 45°. ……………………2分(2)解法一:如图10,将AE平移到DF,连接BF,EF (3)则四边形AEFD是平行四边形.∴AD∥EF,AD=EF.∵AC,CD,∴3=BDAC,3==DFCDAECD.∴AC CDBD DF=.……………………………………………………4分∵∠C=90°,∴18090BDF C∠=︒-∠=︒.∴∠C=∠BDF.∴△ACD∽△BDF.………………5分∴AD ACBF BD=1=∠2.∴EF ADBF BF=.∵∠1+∠3=90°,∴∠2+∠3=90°.∴BF⊥AD .∴BF⊥EF.…………………………………………………………6分∴在Rt△BEF中,tanBFBEFEF∠==.∴∠APE=∠BEF =30°.…………………………………………7分解法二:如图11,将CA平移到DF,连接AF,BF,EF.………………3分则四边形ACDF是平行四边形.∵∠C=90°,∴四边形ACDF是矩形,∠AFD=∠CAF= 90°,∠1+∠2=90°.∵在Rt△AEF中,tan3AE AEAF CD∠===在Rt△BDF中,tan1BD BDDF AC∠==∴3130∠=∠=︒.∴∠3+∠2=∠1+∠2=90°,即∠EFB =∴∠AFD=∠EFB. (4)又∵DF AFBF EF=∴△ADF∽△EBF.………………………………………………5分∴∠4=∠5.…………………………………………………………6分∵∠APE+∠4=∠3+∠5,∴∠APE=∠3=30°.………………………………………………7分【2011东城区一模】8. 如图,在矩形ABCD 中,AB =5,BC =4,E 、F 分别是AB 、AD 的中点.动点R 从点B 出发,沿B →C →D →F 方向运动至点F 处停止.设点R 运动的路程为x ,EFR △的面积为y ,当y 取到最大值时,点R 应运动到A .BC 的中点处B .C 点处C .CD 的中点处 D .D 点处答案:B .12. 如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点4A 的坐标为( , );点n A ( , ).答案:938,0;1)332(-n ,024. 等边△ABC 边长为6,P 为BC 边上一点,∠MPN =60°,且PM 、PN 分别于边AB 、AC交于点E 、F .(1)如图1,当点P 为BC 的三等分点,且PE ⊥AB 时,判断△EPF 的形状; (2)如图2,若点P 在BC 边上运动,且保持PE ⊥AB ,设BP =x ,四边形AEPF 面积的y ,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)如图3,若点P 在BC 边上运动,且∠MPN 绕点P 旋转,当CF =AE =2时,求PE 的长.图1 图2 图3解:(1)△EPF 为等边三角形. --------------1分(2)设BP=x ,则CP =6-x.由题意可 △BEP 2x . △CFP 2)x -.△ABC 的面积为. 设四边形AEPF 的面积为y.∴ y =2x 2)x -=2+-自变量x 的取值范围为3<x <6. --------------4分(3)可证△EBP ∽△PCF.∴BP BECF CP=. 设BP=x , 则 (6)8x x -=. 解得 124,2x x ==.∴ PE 的长为4或 --------------7分25. 如图,已知二次函数y=ax 2+bx +8(a ≠0)的图像与x 轴交于点A (-2,0),B ,与y 轴交于点C ,tan ∠ABC =2.(1)求抛物线的解析式及其顶点D 的坐标; (2)设直线CD 交x 轴于点E .在线段OB的垂直平分线上是否存在点P ,使得经过点P 的直线PM 垂直于直线CD ,且与直线OP 的夹角为75°?若存在,求出点P 的坐标;若不存在,请说明理由;(3)过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿其对称轴向上平移,使抛物线与线段EF 总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?解:(1)依题意,可知 C(0,8),则B(4,0)将A(-2,0),B(4,0)代入 y=ax 2+bx +8,⎩⎨⎧=++=+-.08416,0824b a b a 解得⎩⎨⎧=-=.2,1b a 228y x x ∴=-++配方得y2(1)9x =--+,顶点D (1,9). ---------3分 (2)假设满足条件的点P 存在,依题意设(2)P t ,,由(08)(19)C D ,,,求得直线CD 的解析式为8y x =+,它与x 轴的夹角为45 . 过点P 作PN ⊥y 轴于点N.依题意知,∠NPO=30°或∠NPO=60°.∵PN=2,∴ON=332或23. ∴存在满足条件的点P ,P 的坐标为(2,332 )和(2,23).-----------6分 (3)由上求得(80)(412)E F -,,,.当抛物线向上平移时,可设解析式为228(0)y x x m m =-+++>. 当8x =-时,72y m =-+. 当4x =时,y m =.720m ∴-+≤或12m ≤.由题意可得m 的范围为072m ∴<≤.∴ 抛物线最多可向上平移72个单位. -----------8分【2011朝阳区一模】8.已知二次函数y=ax 2+bx 的图象经过点A (-1,1),则ab 有 A .最大值 1 B .最大值2 C .最小值0 D .最小值41- 答案:D .分析:因为图象经过A 点,所以1a b -=,即1a b =+,所以2(1)ab b b b b =+=+21124b ⎛⎫=+- ⎪⎝⎭,当12b =-时,ab 有最小值为14-.12.如图,P 为△ABC 的边BC 上的任意一点,设BC=a ,当B 1、C 1分别为AB 、AC 的中点时,B 1C 1=a 21, 当B 2、C 2分别为BB 1、CC 1的中点时,B 2C 2=a 43,当B 3、C 3分别为BB 2、CC 2的中点时,B 3C 3=a 87,当B 4、C 4分别为BB 3、CC 3的中点时,B 4C 4=a 1615, 当B 5、C 5分别为BB 4、CC 4的中点时,B 5C 5=______, ……当B n 、C n 分别为BB n-1、CC n-1的中点时,则B n C n = ;设△ABC 中BC 边上的高为h ,则△PB n C n 的面积为______(用含a 、h 的式子表示).答案:a 3231, a n n 212-, ah n n 12212+- 分析:由题意知,B 5C 5∥BC ,555212AB AB -=,根据相似的性质,可得到B 5C 5=3132a , 同理可得到B n C n =a nn 212-.因为△ABC 中BC 边上的高为h ,所以△PB n C n 中B n C n 边上的高为h n 21,△PB n C n 的面积为ah h a n n n n n 122122121221+-=⨯-⨯. 24.已知抛物线()13)2(2++-+-=m x m x y .(1)求证:无论m 为任何实数,抛物线与x 轴总有交点;(2)设抛物线与y 轴交于点C ,当抛物线与x 轴有两个交点A 、B (点A 在点B 的 左侧)时,如果∠CAB 或∠CBA 这两角中有一个角是钝角,那么m 的取值范围 是 ;(3)在(2)的条件下,P 是抛物线的顶点,当△P AO 的面积与△ABC 的面积相等时,求该抛物线的解析式.B B (第12题图)解: (1)证明:∵()()()131422+⨯-⨯--=∆m m ……………………………………1分()042≥+=m ………………………………………………………… 2分∴无论m 为任何实数,抛物线与x 轴总有交点.(2) m <-1且m≠-4. ………………………………………………………………… 3分(3)解:令()013)2(2=++-+-=m x m x y ,解得x 1=m+1,x 2=-3. …………………………………………………………4分可求得顶点()⎪⎪⎭⎫⎝⎛+-44,222m m P . ①当A(m+1,0)、B(-3,0)时, ∵ABC PAO S S ∆∆=,∴()()()()13421441212+⨯--=+⨯+m m m m …………………………………5分 解得16-=m .∴45182---=x x y .……………………………………………………………6分 ②当A(-3,0)、B(m+1,0)时,同理得()()()[]13421443212+-⨯+=+⨯⨯m m m .…………………………7分 解得58-=m . ∴595182---=x x y .…………………………………………………………8分 25.已知:△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°,点M 是CE 的中点,连接BM .(1)如图①,点D 在AB 上,连接DM ,并延长DM 交BC 于点N ,可探究得出BD 与BM 的数量关系为 ;(2)如图②,点D 不在AB 上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.图①图②解:(1)BD=2BM. ………………………………………………………………2分(2)结论成立.证明:连接DM,过点C作CF∥ED,与DM的延长线交于点F,连接BF,可证得△MDE≌△MFC.………………………………… 3分∴DM=FM, DE=FC.∴AD=ED=FC.由已知∠ADE=90°,∠ABC=90°,可证得∠1=∠2, ∠3=∠4.……………………………4分∵CF∥ED,∴∠1=∠FCM.∴∠BCF=∠4+∠FCM =∠3+∠1=∠3+∠2=∠BAD.∴△BCF≌△BAD. …………………………………………………………………………5分∴BF=BD,∠5=∠6.∴∠DBF=∠5+∠ABF=∠6+∠ABF=∠ABC=90°.∴△DBF是等腰直角三角形. ………………………………………………………………6分∵点M是DF的中点,则△BMD是等腰直角三角形.∴BD=2BM. ……………………………………………………………………………… 7分N M L图3图2图12n-1B 2C 2A CB1C 1C 1B 1CBA【2011丰台区一模】8. 一电工沿着如图所示的梯子NL 往上爬,当他爬到中点M 处时,由于地面太滑,梯子沿墙面与地面滑下,设点M 的坐标为(x ,y )(x>0),则y 与x 之间的函数关系用图象表示大致是A .B .C .D .答案:C12.已知在△ABC 中,BC=a.如图1,点B 1 、C 1分别是AB 、AC 的中点,则线段B 1C 1的长是_______;如图2,点B 1 、B 2 ,C 1 、C 2分别是AB 、AC 的三等分点,则线段B 1C 1 + B 2C 2的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(n+1)等分点,则线段B 1C 1 + B 2C 2+……+ B n C n 的值是 ______.答案:1,2a a ,12naDC B A A B C DA B C D x24.已知:如图,在□ EFGH 中,点F 的坐标是(-2,-1),∠EFG=45°. (1)求点H 的坐标;(2)抛物线1C 经过点E 、G 、H ,现将1C 向左平移使之经过点F ,得到抛物线2C ,求抛物线2C 的解析式;(3)若抛物线2C 与y 轴交于点A ,点P 在抛物线2C 的对称轴上运动.请问:是否存在以AG 为腰的等腰三角形AGP ?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)∵在□ABCD 中∴EH=FG=2 ,G (0,-1)即OG=1………………………1’ ∵∠EFG=45°∴在Rt △HOG 中,∠EHG=45° 可得OH=1∴H (1,0)……………………………………………………2’ (2)∵OE=EH-OH=1 ∴E (-1,0),设抛物线1C 解析式为1y =2ax +bx+c∴代入E 、G 、H 三点,∴a =1 ,b=0,,c=-1 ∴1y =2x -1……………………………………………………3’依题意得,点F 为顶点,∴过F 点的抛物线2C 解析式是2y =2(+2x )-1…………4’(3)∵抛物线2C 与y 轴交于点A ∴A (0,3),∴AG=4 情况1:AP=AG=4过点A 作AB ⊥对称轴于B ∴AB=2在Rt △PAB 中,BP=∴1P(-2,3+或2P(-2,3-……………………………6’ 情况2:PG=AG=4 同理可得:3P(-2,-1+或4P(-2,-1-…………………8’∴P 点坐标为(-2,3+或(-2,3-或(-2,-1+或(-2,-1-.25.已知:在△ABC 中,BC=a ,AC=b ,以AB 为边作等边三角形ABD. 探究下列问题:(1)如图1,当点D 与点C 位于直线AB 的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D 与点C 位于直线AB 的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数.图1 图2 图3解:(1)33;…………………………………………1’(2)2363 ; …………………………………………2’(3)以点D 为中心,将△DBC 逆时针旋转60°,则点B 落在点A ,点C 落在点E.联结AE,CE ,∴CD=ED ,∠CDE=60°,AE=CB= a , ∴△CDE 为等边三角形,∴CE=CD. …………………………………………4’当点E 、A 、C 不在一条直线上时,有CD=CE<AE+AC=a +b ; 当点E 、A 、C 在一条直线上时, CD 有最大值,CD=CE=a +b ;此时∠CED=∠BCD=∠ECD=60°,∴∠ACB=120°,……………………7’ 因此当∠ACB=120°时,CD 有最大值是a +b .。
北京市西城区2011年初三一模试卷数学2011. 5一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.-2的相反数为().A.2 B.-2 C.12D.-122.上海世博会是我国第一次举办的综合类世界博览会.据统计自2010年5月1日开幕至5月31日,累计参观人数约为8 030 000人.将8 030 000用科学记数法表示应为().A .480310⨯B.580.310⨯C.68.0310⨯ D. 70.80310⨯3.以方程组21y xy x=-+⎧⎨=-⎩的解为坐标的点(,)x y在().A.第一象限B.第二象限C.第三象限D.第四象限4.右图是正方体的展开图,原正方体相对两个面上的数字和最小是().A. 4B. 6C. 7D. 85.四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是().A.12B.14C.18D.166.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图.则这组数据的众数和中位数分别是().A.7,7 B.8,7.5 C.7,7.5 D.8,6 7.如图,在梯形ABCD中,AB∥CD,∠A=60°,∠B=30°,若AD=CD=6,则AB的长等于().A.9B.12C.6+D.188.如图,点A在半径为3的⊙O内,,P为⊙O上一点,当∠OP A取最大值时,P A的长等于().A.32BCD.142536二、填空题(本题共16分,每小题4分)9.分解因式:y xy y x 962+-= .10.如图,甲、乙两盏路灯相距20米. 一天晚上,当小明从路灯甲走到距路灯乙底部4米处时,发现自己的身影顶部正好接触到路灯乙的底部.已知小明的身高为1.6米,那么路灯甲的高为 米.11. 定义[,,a b c ]为函数2y ax bx c =++的特征数,下面给出特征数为[2m ,14m -,21m -] 的函数的一些结论:①当12m =时,函数图象的顶点坐标是11()24-,;②当1-=m 时,函数在1x >时,y 随x 的增大而减小;③无论m 取何值,函数图象都经过同一个点. 其中所有的正确结论有 .(填写正确结论的序号)12. 如图1,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111D C B A ,正方形1111D C B A 的面积为 ;再把正方形1111D C B A 的各边延长一倍得到正方形2222D C B A (如图2),如此进行下去,正方形n n n n D C B A 的面积为 .(用含有n 的式子表示,n 为正整数)图1 图2三、解答题(本题共30分,每小题5分)13.计算: 1024sin 60(-︒- .14.解不等式组 302(1)33,x x x +>⎧⎨-+⎩,≥ 并判断3=x 是否为该不等式组的解.15. 如图,在平面直角坐标系xOy 中,一条直线l 与x 轴相交于点A ,与y 轴 相交于点(0,2)B ,与正比例函数 y =mx (m ≠0)的图象 相交于点(1,1)P . (1)求直线l 的解析式;(2)求△AOP 的面积.16. 如图,在四边形ABCD 中,AB =BC ,BF 平分∠ABC ,AF ∥DC , 连接AC ,CF . 求证:(1)AF =CF ;(2)CA 平分∠DCF .17. 已知关于x 的一元二次方程)0(0212≠=++a bx ax 有两个相等的实数根,求()()()11122-++-b b a ab 的值.18.某中学就到校的方式问题对初三年级的所有学生进行了一次调查,并将调查结果制成了表格和扇形统计图,请你根据图表信息完成下列各题: (1)补全下表:(2)在扇形统计图中,“步行”对应的圆心角的度数为 °.四、解答题(本题共20分,每小题5分)19.在2011年春运期间,我国南方发生大范围冻雨灾害,导致某地电路出现故障,该地供电局组织电工进行抢修.供电局距离抢修工地15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车每小时分别行驶多少千米.20.如图,四边形ABCD 是边长为9的正方形纸片,B '为CD 边上的点,C B '=3.将纸片沿某条直线折叠,使点B 落在点B '处,点A 的对应点为A ',折痕分别与A D ,BC 边交于点M ,N . (1)求BN 的长;(2)求四边形ABNM 的面积.21.如图,D 是⊙O 的直径CA 延长线上一点,点 B 在⊙O 上, 且AB =AD =AO . (1)求证:BD 是⊙O 的切线;(2)若E 是劣弧BC 上一点,AE 与BC 相交于点F ,△BEF 的面积 为8,且cos ∠BF A =32, 求△ACF 的面积.22.我们约定,若一个三角形(记为△A 1)是由另一个三角形(记为△A )通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A 1是由△A 复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A 复制出△A 1,又由△A 1复制出△A 2,再由△A 2复制出△A 3,形成了一个大三角形,记作△B .以下各题中的复制均是由△A 开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A ∽△B ,其相似比为_________.在图1的基础上继续复制下去得到△C ,若△C 的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C 中含有______个小三角形;(2)若△A 是正三角形,你认为通过复制能形成的正多边形是________;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.图1图2五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n .① 判断mn 的符号;② 若抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (点A 在点B 左侧),请说明116x <,2112x <<.24.如图1,平面直角坐标系xOy中,A,B(4,0).将△OAB绕点O顺时针旋转α角(0°<α<90°)得到△OCD(O,A,B的对应点分别为O,C,D),将△OAB沿x轴负方向...平移m个单位得到△EFG(m>0,O,A,B的对应点分别为E,F,G),α,m的值恰使点C,D,F落在同一反比例函数kyx=(k≠0)的图象上.(1)∠AOB=°,α=°;(2)求经过点A,B,F的抛物线的解析式;(3)若(2)中抛物线的顶点为M,抛物线与直线EF的另一个交点为H,抛物线上的点P满足以P,M,F,A为顶点的四边形的面积与四边形MF AH的面积相等(点P不与点H重合),请直接写出满足条件的点P的个数,并求位于直线EF 的坐标.25.在Rt△ABC中,∠C=90°,D,E分别为CB,CA延长线上的点,BE与AD的交点为P.(1)若BD=AC,AE=CD,在图1中画出符合题意的图形,并直接写出∠APE的度数;(2)若AC,CD,求∠APE的度数.北京市西城区2011年初三一模试卷数学答案及评分标准2011. 5 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)11题阅卷说明:全对得4分,仅填①或③得2分,其余情况均不得分.三、解答题(本题共30分,每小题5分)13.解:原式=1412+-………………………………………………………4分=12-.…………………………………………………………………………5分14.解:302(1)33.xx x+>⎧⎨-+⎩,≥3.………………………………………………………………………1分由②得x≤1.…………………………………………………………………………3分∴原不等式组的解集是3-<x≤1.………………………………………………4分∵1,∴x=5分15.解:(1)如图1.设直线l的解析式为y kx b=+(k,b为常数且k≠0).∵直线l经过点(0,2)B,点(1,1)P,∴2,1.bk b=⎧⎨+=⎩解得1,2.kb=-⎧⎨=⎩∴直线l的解析式为2y x=-+.……………………………………………2分(2)∵直线l的解析式为2y x=-+,∴点A的坐标为(2,0).………………………………………………………3分∵点P的坐标为(1,1),∴ 12AOP P S OA y ∆=⨯⨯=12112⨯⨯=.………………………………………5分 16. 证明:如图2.(1)∵ BF 平分ABC ∠,∴ ABF CBF ∠=∠.………………1分 在△ABF 与△CBF 中,,,,AB CB ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBF . ………………………………………………………2分 ∴ AF CF =.………………………………………………………………3分(2)∵ AF CF =,∴ FCA FAC ∠=∠.……………………………………………………… 4分 ∵ AF ∥DC ,∴ FAC DCA ∠=∠.∴ FCA DCA ∠=∠,即CA 平分DCF ∠. ………………………………5分 17. 解:由题意,2214202b a b a ∆=-⨯=-=.…………………………………………1分 ∴ 22b a =. ………………………………………………………………………2分∴ 原式222211ab a a b =-++- ……………………………………………………3分2222ab a b a =+- 2222222a a a a a a a⋅==+-.…………………………………………………4分 ∵ 0a ≠,∴ 原式2222a a==.………………………………………………………………5分18. 解:(1)………………………………………………………………………………4分 阅卷说明:每空1分.(2)72.………………………………………………………………………………5分 四、解答题(本题共20分,每小题5分)19.解:设抢修车每小时行驶x 千米,则吉普车每小时行驶x 5.1千米.151154 1.5x x-=.………………………………………………………………………2分 解得20x =. ………………………………………………………………………3分 经检验,20x =是原方程的解,并且符合题意. ………………………………4分 ∴ 1.530x =.答:抢修车每小时行驶20千米,吉普车每小时行驶30千米.………………………5分20.解:如图3.(1)由题意,点A 与点A ',点B 与点B '分别关于直线MN 对称,∴AM A M '=,BN B N '=. ………………………………………………1分 设BN B N x '==,则9CN x =-. ∵ 正方形ABCD , ∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3, ∴ 222(9)3x x -+=.解得5x =.∴ 5BN =2分(2)∵ 正方形ABCD ,∴ AD ∥BC ,o 90A ∠=.∵ 点M ,N 分别在AD ,BC 边上, ∴ 四边形ABNM 是直角梯形. ∵ '5BN B N ==,9BC =,∴ 4NC =. ∴ 4sin 15∠=,4tan 13∠=. ∵ 1290∠+∠=︒,2390∠+∠=︒,∴ 31∠=∠. ∴ 4sin 3sin 15∠=∠=. 在Rt △ DB P '中,∵90 D ∠=︒,6DB DC B C ''=-=,4sin 35DB PB '∠==', ∴ 152PB '=. ∵ 9A B AB ''==,∴ 32A P AB PB ''''=-=. ∵ 43∠=∠, ∴ 4tan 4tan 33∠=∠=. 在Rt △ A MP '中,∵ 90 A A '∠=∠=︒,32A P '=,4tan 43A M A P '∠==', ∴ 2A M '=.…………………………………………………………………4分∴ 1163()(25)9222ABNM S AM BN AB =+⨯=⨯+⨯=梯形.…………………5分 21.(1)证明:连接BO .(如图4)∵ AB =AD ,∴ ∠D =∠ABD .∵ AB =AO ,∴ ∠ABO =∠AOB .又∵ 在△OBD中,∠D +∠DOB +∠ABO +∠ABD =180°,∴ ∠OBD =90°.∴ BD ⊥BO .…………………………………………………………………1分∵ 点B 在⊙O 上,∴ BD 是⊙O 的切线 . ……………………………………………………2分(2)解:∵ ∠C =∠E ,∠CAF =∠EBF ,∴ △ACF ∽△BEF . ………………………………………………………3分 ∵ AC 是⊙O 的直径,点B 在⊙O 上,∴ ∠ABC =90°.∵ 在Rt △BF A 中,∠ABF =90°,cos ∠BF A =32=AF BF , ∴24()9BEF ACF S BF S AF ∆∆==.………………………………………………………4分又∵ BEF S ∆=8 ,∴ ACF S ∆=18 . ……………………………………………………………5分22.解:(1)1∶2,121 .……………………………………………………………………2分 (24分 (3 …………5分阅卷说明:第(2)问全对得2分,仅填正三角形或正六边形得1分,其余情况均不得分;第(3)问其它符合题意的图形同样给分.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(1)证明:∵ 2360a b c ++=,∴12362366b a b c ca a a a++==-=-. ………………………………………1分 ∵ a >0,c <0,∴0c a <,0ca ->. ∴ 1023b a +>. ……………………………………………………………2分(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n ,∴ 11 ,42.a b c m a b c n ⎧++=⎪⎨⎪++=⎩ ① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223ab c =--. ∴ 111211()42424312b c m a b c a a a a +=++=+=+-=-<0.………3分2(2)33a an a b c a c c c =++=+--+=->0.………………………4分∴ 0mn <.…………………………………………………………………5分 ② 由a >0知抛物线2y ax bx c =++开口向上. ∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方. ∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧),∴ 由抛物线2y ax bx c=++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<.(如图6所示)………………………………………6分 ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x ba+=-,由(1)知123b a -<, ∴ 12123x x +<.∴ 12221332x x <-<-,即116x <.…………………………………… 7分24.解:(1)∠AOB= 30 °,α= 60 °.…………………………………………………2分(2)∵ A ,B (4,0),△OAB 绕点O 顺时针旋转α角得到△OCD ,(如图7)∴ OA =OB=OC=OD=4.由(1)得 30BOC AOB ∠=︒=∠.∴ 点C 与点A 关于x 轴对称,点C 的坐标为2)-. ∵ 点C ,D ,F 落在同一反比例函数ky x=(k ≠0)的图象上,∴C C k x y =⋅=-∵ 点F 是由点A 沿x 轴负方向平移m 个单位得到, ∴ 2F y =,F x ==-F的坐标为(-.……………3分 ∴ 点F 与点A 关于y 轴对称,可设经过点A ,B ,F 的抛物线的解析式为2y ax c =+.∴22, 160.a c a c ⎧+=⎪⎨+=⎪⎩ 解得1 ,2 8.a c ⎧=-⎪⎨⎪=⎩∴ 所求抛物线的解析式为2182y x =-+. …………………………………4分(3)满足条件的点P 的个数为 5 .………………………………………………5分抛物线2182y x =-+的顶点为(0,8)M .∵ △EFG 是由△OAB 沿x 轴负方向平移m 个单位得到,∴m FA ==,E O x x m =-=-,∠FEG=∠AOB=30°. ∴ 点E的坐标为(-.可得直线EF的解析式为4y =+. ∵ 点H21482x x +=-+的解,整理,得23240x +-=.解得12x x ==- ∴ 点H的坐标为16)3. 由抛物线的对称性知符合题意的1P点的坐标为16()3.……………6分 可知△AFM 是等边三角形,∠MAF= 60°. 由A ,M 两点的坐标分别为A ,(0,8)M ,可得直线AM的解析式为8y =+.过点H 作直线AM 的平行线l,设其解析式为y b =+(b ≠8).将点H 的坐标代入上式,得163b =+. 解得283b =,直线l的解析式为283y =+.∵ 直线l 与抛物线的交点的横坐标是方程2281832x +=-+的解.整理,得2380x -+=.解得12x x =. ∴ 点2P 22)3满足HAM AM P S S ∆∆=2,四边形2P MFA 的面积与四边形MF AH 的面积相等.(如图8)……………………………………………7分点2P 关于y 轴的对称点3P 也符合题意,其坐标为3P 22()3.………8分 综上所述,位于直线EF 上方的点P 的坐标分别为1P 16()3, 2P 22)3,3P 22()3. 25.解:(1)如图9,∠APE= 45 °. ……………………2分(2)解法一:如图10,将AE 平移到DF ,连接BF ,EF ……………………3则四边形AEFD 是平行四边形. ∴ AD ∥EF ,AD=EF . ∵ AC ,CD ,∴3=BD AC ,3==DF CDAE CD . ∴ AC CD BD DF =.……………………………………………………4分 ∵ ∠C =90°,∴ 18090BDF C ∠=︒-∠=︒. ∴ ∠C=∠BDF .∴ △ACD ∽△BDF .………………5分 ∴AD ACBF BD =1=∠2. ∴ EF AD BF BF==.∵ ∠1+∠3=90°, ∴ ∠2+∠3=90°. ∴ BF ⊥AD .∴ BF ⊥EF .…………………………………………………………6分∴在Rt△BEF中,tanBFBEFEF∠==.∴∠APE=∠BEF =30°.…………………………………………7分解法二:如图11,将CA平移到DF,连接AF,BF,EF.………………3分则四边形ACDF是平行四边形.∵∠C=90°,∴四边形ACDF是矩形,∠AFD=∠CAF= 90°,∠1+∠2=90°.∵在Rt△AEF中,tan3AE AEAF CD∠===在Rt△BDF中,tan1BD BD DF AC∠==∴3130∠=∠=︒.∴∠3+∠2=∠1+∠2=90°,即∠EFB =∴∠AFD=∠EFB. (4)又∵DF AF BF EF==∴△ADF∽△EBF.………………………………………………5分∴∠4=∠5.…………………………………………………………6分∵∠APE+∠4=∠3+∠5,∴∠APE=∠3=30°.………………………………………………7分。