福建省泉州市泉港区2016_2017学年高二数学下学期期中试题理
- 格式:doc
- 大小:827.50 KB
- 文档页数:9
2016~2017学年下学期高二理科数学期末试卷时间:120分钟 满分:150分★祝考试顺利★一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x x a =<,2{|320}B x x x =-+<,若A B B =,则实数a 的取值范围是( ) A .1a ≤ B .1a < C .2a ≥ D .2a > 2.已知离散型随机变量X 的分布列如图,则常数c 为( ) A .31 B .32 C .31 或 32 D .413.曲线()()ln 21f x x x =--在点()1,1-处的切线方程是( )A .20x y ++=B .20x y +-=C .20x y -+=D . 20x y --=4.已知函数()()sin 1,02,0xx x f x x π⎧-≥=⎨<⎩,是12log 4f f ⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭( ) A ..D. 5.已知m 为实数,i 为虚数单位,若复数21m iz i+=+,则“2m >-”是“复数z 在复平面上对应的点在第四象限”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.下面给出四种说法:①用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好;②命题P :“∃x 0∈R,x 02﹣x 0﹣1>0”的否定是¬P :“∀x∈R,x 2﹣x ﹣1≤0”;③设随机变量X 服从正态分布N (0,1),若P (x >1)=p 则P (﹣1<X <0)=﹣p④回归直线一定过样本点的中心(,). 其中正确的说法有( )A .①②③B .①②④C . ②③④D .①②③④7.6名同学合影留念,站成两排三列,则其中甲乙两人不在同一排也不在同一列的概率为( )A .15 B .25 C .49 D .458.富华中学的一个文学兴趣小组中,三位同学张博源、高家铭和刘雨恒分别从莎士比亚、雨果和曹雪芹三位名家中选择了一位进行性格研究,并且他们选择的名家各不相同.三位同学一起来找图书管理员刘老师,让刘老师猜猜他们三人各自的研究对象.刘老师猜了三句话:“①张博源研究的是莎士比亚;②刘雨恒研究的肯定不是曹雪芹;③高家铭自然不会研究莎士比亚.”很可惜,刘老师的这种猜法,只猜对了一句,据此可以推知张博源、高家铭和刘雨恒分别研究的是( )A .曹雪芹、莎士比亚、雨果B .雨果、莎士比亚、曹雪芹C .莎士比亚、雨果、曹雪芹D .曹雪芹、雨果、莎士比亚9.函数1()cos 1x xe f x x e +=⋅-的图象大致是( )A .B .C. D ..设,. 随机变量取值、、、、的概率均为,随机变量取值若记、分别为、的方差,.>. .=. .<. D .与的大小关系与、、、的取值有关11.已知函数2017()sin f x x x x =--+,若0,2θ⎛⎫∀∈ ⎪⎝⎭,()()2c o s 3s i n 320f m f m θθ++-->恒成立,则实数m 的取值范围是( )A .1,3⎡⎫-+∞⎪⎢⎣⎭B .1,3⎛⎤-∞- ⎥⎝⎦C .1,3⎛⎤-∞ ⎥⎝⎦ D .1,3⎡⎫+∞⎪⎢⎣⎭12.对于定义域为R 的函数()f x ,若满足①(0)0f =;②当x ∈R ,且0x ≠时,都有()0xf x '>;③当12x x ≠,且12()()f x f x =时,120x x +<,则称()f x 为“偏对称函数”.现给出四个函数:211()(0),()2120 (0);xx x g x x ⎧+≠⎪=-⎨⎪=⎩ln(1) (0),()2 (0);x x h x x x -+≤⎧=⎨>⎩323()2x x x φ=-+;()e 1x x x ϕ=--. 则其中是“偏对称函数”的函数个数为( )A . 4B . 3 C. 2 D .1 二、填空题:本大题共4小题,每小题5分.13.dx x x )12(12⎰-+ .14.5(1)(1)ax x ++的展开式中2x 的系数是20,则实数a = . 15.已知函数32331()248f x x x x =-++,则201612017k k f =⎛⎫⎪⎝⎭∑的值为 . 16.如图所示的“数阵”的特点是:毎行每列都成等差数列,则数字在图中出现的次数为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且f(0)=1,F (x )=⎩⎪⎨⎪⎧f x,x >0,-f x ,x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上对x 恒成立,试求b 的取值范围.18.(本小题满分12分) 如图,在三棱柱ABC A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=π3.(1)求证:C 1B ⊥平面ABC ;(2)设CE →=λCC 1→(0≤λ≤1),且平面AB 1E 与BB 1E 所成的锐二面角的大小为30°, 试求λ的值.19.(本小题满分12分)某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照[]0,2,(2,4],…,(]14,16分成8组,制成了如图1所示的频率分布直方图.(图1) (图2)(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.(i )现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;(ⅱ)试估计全市居民用水价格的期望(精确到0.01);(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费y (元)与月份x 的散点图,其拟合的线性回归方程是233y x =+. 若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.20.(本小题满分12分)[已知椭圆2222: 1 (0)x y a b a bΓ+=>>的右焦点(1,0)F ,椭圆Γ的左,右顶点分别为,M N .过点F 的直线l 与椭圆交于,C D 两点,且△MCD 的面积是△NCD 的面积的3倍.(Ⅰ)求椭圆Γ的方程; (Ⅱ)若CD 与x 轴垂直,,A B 是椭圆Γ上位于直线CD 两侧的动点,且满足ACD BCD ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.21.(本小题满分12分)已知函数f (x )=-(t+1)lnx ,,其中t∈R.(1)若t=1,求证:当x >1时,f (x )>0成立;(2)若t >,判断函数g (x )=x[f (x )+t+1]的零点的个数.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分。
高二(下)期中数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求,每小题选出答案后,请把答案填写在答题卡相应位置上.1.(5分)设全集U=R,集合A、B满足如图所示的关系,且A={x|x2﹣2x﹣3≤0},阴影部分表示的集合为{x|﹣1≤x<1},则集合B可以是()A.{x|1<x<3}B.{x|1<x≤3}C.{x|1≤x<3}D.{x|1≤x≤3} 2.(5分)i是虚数单位,复数的共轭复数是()A.﹣1+2i B.﹣1﹣2i C.2﹣i D.2+i3.(5分)演绎推理“因为对数函数y=log a x(a>0且a≠1)是增函数,而函数是对数函数,所以是增函数”所得结论错误的原因是()A.大前提错误B.小前提错误C.推理形式错误 D.大前提和小前提都错误4.(5分)用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除5.(5分)若P=+,Q=+(a≥0),则P,Q的大小关系是()A.P>Q B.P=QC.P<Q D.由a的取值确定6.(5分)对于“a,b,c”是不全相等的正数,给出下列判断:①(a﹣b)2+(b﹣c)2+(c﹣a)2≠0;②a=b与b=c及a=c中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立,其中判断正确的个数是()A.0个B.1个 C.2个 D.3个7.(5分)如图阴影部分的面积是()A.e+B.e+﹣1 C.e+﹣2 D.e﹣8.(5分)函数y=﹣2sinx 的图象大致是()A.B. C. D.9.(5分)用数学归纳法证明不等式++…+>(n>1,n∈N*)的过程中,从n=k到n=k+1时左边需增加的代数式是()A. B.﹣C.+D.10.(5分)已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则”,若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则=()A.1 B.2 C.3 D.411.(5分)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.﹣x0是f(﹣x)的极小值点C.﹣x0是﹣f(x)的极小值点D.﹣x0是﹣f(﹣x)的极小值点12.(5分)已知函数y=f(x﹣1)的图象关于点(1,0)对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3)•f(log3),则a,b,c的大小关系是()A.a>b>c B.c>b>a C.c>a>b D.a>c>b二、填空题:本大题共4小题,每小题5分,共20分,请把答案填在答题卡的横线上.13.(5分)变速直线运动的物体的速度为v(t)=1﹣t2(m/s)(其中t为时间,单位:s),则它在前1s内所走过的路程为m.14.(5分)若函数f(x)=mx2﹣2x+3只有一个零点,则实数m的取值是.15.(5分)已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是.16.(5分)图1是一个由27个棱长为1的小正方体组成的魔方,图2是由棱长为1的小正方体组成的5种简单组合体.如果每种组合体的个数都有7个,现从总共35个组合体中选出若干组合体,使它们恰好可以拼成1个图1所示的魔方,则所需组合体的序号和相应的个数是.(提示回答形式,如2个①和3个②,只需写出一个正确答案)三、解答题:本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.请在答题卡各自题目的答题区域内作答.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为,其中左焦点为F(﹣2,0).(1)求椭圆C的方程;(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.18.(12分)某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为t元(t为常数,且2≤t≤5),设该食品厂每公斤蘑菇的出厂价为x元(25≤x≤40),根据市场调查,销售量q与e x成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(Ⅰ)求该工厂的每日利润y元与每公斤蘑菇的出厂价x元的函数关系式;(Ⅱ)若t=5,当每公斤蘑菇的出厂价x为多少元时,该工厂的利润y最大,并求最大值.19.(12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°﹣sin13°cos17°(2)sin215°+cos215°﹣sin15°cos15°(3)sin218°+cos212°﹣sin18°cos12°(4)sin2(﹣18°)+cos248°﹣sin(﹣18°)cos48°(5)sin2(﹣25°)+cos255°﹣sin(﹣25°)cos55°(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.20.(12分)已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.21.(12分)已知函数f(x)=e1﹣x(﹣a+cosx)(a∈R).(Ⅰ)若函数f(x)存在单调递减区间,求实数a的取值范围;(Ⅱ)若a=0,证明:,总有f(﹣x﹣1)+2f'(x)•cos(x+1)>0.选修4-4;坐标系与参数方程22.(10分)平面直角坐标系xOy,直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数).以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求直线l和圆C的极坐标方程;(2)设直线l和圆C相交于A,B两点,求弦AB与其所对的劣弧围成的图形的面积.选修4-5;不等式选讲23.设f(x)=|2x﹣1|+|1﹣x|.(Ⅰ)解不等式f(x)≤3x+4;(Ⅱ)对任意的x,不等式f(x)≥(m2﹣3m+3)•|x|恒成立,求实数m的取值范围.高二(下)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求,每小题选出答案后,请把答案填写在答题卡相应位置上.1.(5分)设全集U=R,集合A、B满足如图所示的关系,且A={x|x2﹣2x﹣3≤0},阴影部分表示的集合为{x|﹣1≤x<1},则集合B可以是()A.{x|1<x<3}B.{x|1<x≤3}C.{x|1≤x<3}D.{x|1≤x≤3}【分析】求出阴影部分对应的结合,结合集合的基本运算进行求解即可.【解答】解:阴影部分为集合A∩∁U B,A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},若B={x|1<x<3},则∁U B={x|x≥3或x≤1},则A∩∁U B={x|﹣1≤x≤1或x=3},不满足条件.若B={x|1<x≤3},则∁U B={x|x>3或x≤1},则A∩∁U B={x|﹣1≤x≤1},不满足条件.若B={x|1≤x<3},则∁U B={x|x≥3或x<1},则A∩∁U B={x|﹣1≤x<1或x=3},不满足条件.若B={x|1≤x≤3},则∁U B={x|x>3或x<1},则A∩∁U B={x|﹣1≤x<1},满足条件.故选:D.【点评】本题主要考查集合的基本运算,根据Venn图表示集合关系是解决本题的关键.2.(5分)i是虚数单位,复数的共轭复数是()A.﹣1+2i B.﹣1﹣2i C.2﹣i D.2+i【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【解答】解:∵=,∴复数的共轭复数是2+i.故选:D.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础的计算题.3.(5分)演绎推理“因为对数函数y=log a x(a>0且a≠1)是增函数,而函数是对数函数,所以是增函数”所得结论错误的原因是()A.大前提错误B.小前提错误C.推理形式错误D.大前提和小前提都错误【分析】对于对数函数来说,底数的范围不同,则函数的增减性不同,当a>1时,函数是一个增函数,当0<a<1时,对数函数是一个减函数,对数函数y=log a x (a>0且a≠1)是增函数这个大前提是错误的.【解答】解:∵当a>1时,函数y=log a x(a>0且a≠1)是一个增函数,当0<a<1时,此函数是一个减函数∴y=log a x(a>0且a≠1)是增函数这个大前提是错误的,从而导致结论错.故选A.【点评】本题考查演绎推理的基本方法,考查对数函数的单调性,是一个基础题,解题的关键是理解函数的单调性,分析出大前提是错误的.4.(5分)用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除【分析】“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设a,b都不能被3整除.【解答】解:反证法证明命题时,应假设命题的反面成立.“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设a,b都不能被3整除,故选B.【点评】本题考查用反证法证明命题,应假设命题的反面成立.5.(5分)若P=+,Q=+(a≥0),则P,Q的大小关系是()A.P>Q B.P=QC.P<Q D.由a的取值确定【分析】本题考查的知识点是证明的方法,观察待证明的两个式子P=+,Q=+,很难找到由已知到未知的切入点,故我们可以用分析法来证明.【解答】解:∵要证P<Q,只要证P2<Q2,只要证:2a+7+2<2a+7+2,只要证:a2+7a<a2+7a+12,只要证:0<12,∵0<12成立,∴P<Q成立.故选C【点评】分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.6.(5分)对于“a,b,c”是不全相等的正数,给出下列判断:①(a﹣b)2+(b﹣c)2+(c﹣a)2≠0;②a=b与b=c及a=c中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立,其中判断正确的个数是()A.0个 B.1个 C.2个 D.3个【分析】“a,b,c”是不全相等的正数是对“a,b,c”是全相等的正数的否定,从而对三个命题依次判断即可.【解答】解:∵“a,b,c”是不全相等的正数,∴①(a﹣b)2,(b﹣c)2,(c﹣a)2三个数中至少有两个是正值,故(a﹣b)2+(b﹣c)2+(c﹣a)2>0,故正确;②当a,b,c全不相等,如a=1,b=2,c=3时,故错误;③由a=1,b=2,c=3知,a≠c,b≠c,a≠b可以同时成立,故错误;故仅有①正确;故选B.【点评】本题考查了数学中的否定,注意数学中的否定与俗语中的不同,属于中档题.7.(5分)如图阴影部分的面积是()A.e+B.e+﹣1 C.e+﹣2 D.e﹣【分析】利用定积分可得阴影部分的面积.【解答】解:利用定积分可得阴影部分的面积S==(e x+e﹣x)=e+﹣2.故选:C.【点评】本题考查利用定积分求阴影部分的面积,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.8.(5分)函数y=﹣2sinx 的图象大致是()A.B.C.D.【分析】根据函数的解析式,我们根据定义在R上的奇函数图象必要原点可以排除A,再求出其导函数,根据函数的单调区间呈周期性变化,分析四个答案,即可找到满足条件的结论.【解答】解:当x=0时,y=0﹣2sin0=0故函数图象过原点,可排除A又∵y'=故函数的单调区间呈周期性变化分析四个答案,只有C满足要求故选C【点评】本题考查的知识点是函数的图象,在分析非基本函数图象的形状时,特殊点、单调性、奇偶性是我们经常用的方法.9.(5分)用数学归纳法证明不等式++…+>(n>1,n∈N*)的过程中,从n=k到n=k+1时左边需增加的代数式是()A.B.﹣C.+D.【分析】求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【解答】解:当n=k时,左边的代数式为++…+,当n=k+1时,左边的代数式为++…+++,故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:+﹣=﹣.故选B.【点评】本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n=k 到n=k+1项的变化.10.(5分)已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则”,若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则=()A.1 B.2 C.3 D.4【分析】类比平面几何结论,推广到空间,则有结论:“=3”.设正四面体ABCD 边长为1,易求得AM=,又O到四面体各面的距离都相等,所以O为四面体的内切球的球心,设内切球半径为r,则有r=,可求得r即OM,从而可验证结果的正确性.【解答】解:推广到空间,则有结论:“=3”.设正四面体ABCD边长为1,易求得AM=,又O到四面体各面的距离都相等,所以O为四面体的内切球的球心,设内切球半径为r,则有r=,可求得r即OM=,所以AO=AM﹣OM=,所以=3故答案为:3【点评】本题考查类比推理、几何体的结构特征、体积法等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.属于基础题.11.(5分)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.﹣x0是f(﹣x)的极小值点C.﹣x0是﹣f(x)的极小值点D.﹣x0是﹣f(﹣x)的极小值点【分析】A项,x0(x0≠0)是f(x)的极大值点,不一定是最大值点,故不正确;B项,f(﹣x)是把f(x)的图象关于y轴对称,因此,﹣x0是f(﹣x)的极大值点;C项,﹣f(x)是把f(x)的图象关于x轴对称,因此,x0是﹣f(x)的极小值点;D项,﹣f(﹣x)是把f(x)的图象分别关于x轴、y轴做对称,因此﹣x0是﹣f (﹣x)的极小值点.【解答】解:对于A项,x0(x0≠0)是f(x)的极大值点,不一定是最大值点,因此不能满足在整个定义域上值最大,故A错误;对于B项,f(﹣x)是把f(x)的图象关于y轴对称,因此,﹣x0是f(﹣x)的极大值点,故B错误;对于C项,﹣f(x)是把f(x)的图象关于x轴对称,因此,x0是﹣f(x)的极小值点,故C错误;对于D项,﹣f(﹣x)是把f(x)的图象分别关于x轴、y轴做对称,因此﹣x0是﹣f(﹣x)的极小值点,故D正确.故选:D.【点评】本题考查函数的极值,考查函数图象的对称性,考查学生分析解决问题的能力,属于中档题.12.(5分)已知函数y=f(x﹣1)的图象关于点(1,0)对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3)•f(log3),则a,b,c的大小关系是()A.a>b>c B.c>b>a C.c>a>b D.a>c>b【分析】由“当x∈(﹣∞,0)时不等式f(x)+xf′(x)<0成立”知xf(x)是减函数,要得到a,b,c的大小关系,只要比较30.3,,的大小即可.【解答】解:∵当x∈(﹣∞,0)时不等式f(x)+xf′(x)<0成立即:(xf(x))′<0,∴xf(x)在(﹣∞,0)上是减函数.又∵函数y=f(x﹣1)的图象关于点(1,0)对称,∴函数y=f(x)的图象关于点(0,0)对称,∴函数y=f(x)是定义在R上的奇函数∴xf(x)是定义在R上的偶函数∴xf(x)在(0,+∞)上是增函数.又∵30.3>1>>0>=﹣2,2=﹣>30.3>1>>0.∴(﹣)•f(﹣)>30.3•f(30.3)>()•f()即()•f()>30.3•f(30.3)>()•f()即:c>a>b故选C.【点评】本题主要考查了函数的奇偶性以及函数的单调性,同时考查了分析问题的能力和运算求解的能力,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分,请把答案填在答题卡的横线上.13.(5分)变速直线运动的物体的速度为v(t)=1﹣t2(m/s)(其中t为时间,单位:s),则它在前1s内所走过的路程为m.【分析】根据题意,由定积分的物理意义,该物体在前1s内所走过的路程为v (t)dt,由定积分计算公式计算可得答案.【解答】解:根据题意,由物体的速度为v(t)=1﹣t2m/s,由定积分的物理意义,该物体在前1s内所走过的路程为v(t)dt,则v(t)dt=(1﹣t2)dt=(t﹣)|01=,故答案为:.【点评】本题考查定积分的物理意义以及定积分的计算,关键是理解积分与导数的关系.14.(5分)若函数f(x)=mx2﹣2x+3只有一个零点,则实数m的取值是0或.【分析】由题意得m=0,或,由此解得m的值.【解答】解:由题意得m=0,或,解得m=0或m=.答案:0或.【点评】本题主要考查二次函数的性质,函数的零点的定义,属于基础题.15.(5分)已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是.【分析】先求函数的导数,因为函数f(x)在(﹣∞,+∞)上是单调函数,所以在(﹣∞,+∞)上f′(x)≤0恒成立,再利用一元二次不等式的解得到a的取值范围即可.【解答】解:f(x)=﹣x3+ax2﹣x﹣1的导数为f′(x)=﹣3x2+2ax﹣1,∵函数f(x)在(﹣∞,+∞)上是单调函数,∴在(﹣∞,+∞)上f′(x)≤0恒成立,即﹣3x2+2ax﹣1≤0恒成立,∴△=4a2﹣12≤0,解得﹣≤a≤∴实数a的取值范围是故答案为【点评】本题主要考查函数的导数与单调区间的关系,以及恒成立问题的解法,属于导数的应用.16.(5分)图1是一个由27个棱长为1的小正方体组成的魔方,图2是由棱长为1的小正方体组成的5种简单组合体.如果每种组合体的个数都有7个,现从总共35个组合体中选出若干组合体,使它们恰好可以拼成1个图1所示的魔方,则所需组合体的序号和相应的个数是4个③和1个⑤.(提示回答形式,如2个①和3个②,只需写出一个正确答案)【分析】利用图1是一个由27个棱长为1的小正方体组成的魔方,图2是由棱长为1的小正方体组成的5种简单组合体,即可得出结论.【解答】解:根据图1是一个由27个棱长为1的小正方体组成的魔方,图2是由棱长为1的小正方体组成的5种简单组合体,可得4个③和1个⑤可组成魔方.故答案为:4个③和1个⑤【点评】本题考查简单空间图形的三视图,比较基础.三、解答题:本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.请在答题卡各自题目的答题区域内作答.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为,其中左焦点为F(﹣2,0).(1)求椭圆C的方程;(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.【分析】(1)直接由已知列关于a,b,c的方程组,求解方程组得到a,b的值,则椭圆方程可求;(2)联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得线段AB的中点M的坐标,代入圆的方程求得m的值.【解答】解:(1)由题意椭圆C:+=1(a>b>0)的离心率为,其中左焦点为F(﹣2,0),得a2=b2+c2.c=2,可得a=2,解得b=2,∴椭圆C的方程为:.(2)设点A,B的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),由,消去y得,3x2+4mx+2m2﹣8=0,△16m2﹣12(2m2﹣8)=96﹣8m2>0,∴﹣2<m<2,∵x0=(x1+x2)=﹣m,∴y0=x0+m=m,∵点M(x0,y0)在圆x2+y2=1上,∴m2+m2=1,∴m=±.【点评】本题考查椭圆的简单性质,考查了直线与圆锥曲线位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.18.(12分)某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为t元(t为常数,且2≤t≤5),设该食品厂每公斤蘑菇的出厂价为x元(25≤x≤40),根据市场调查,销售量q与e x成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(Ⅰ)求该工厂的每日利润y元与每公斤蘑菇的出厂价x元的函数关系式;(Ⅱ)若t=5,当每公斤蘑菇的出厂价x为多少元时,该工厂的利润y最大,并求最大值.【分析】(I)由条件“日销售量与e x(e为自然对数的底数)成反比例”可设日销量为,根据日利润y=每件的利润×件数,建立函数关系式,注意实际问题自变量的范围.(II)先对函数进行求导,求出极值点,讨论极值是否在25≤x≤40范围内,利用单调性求出函数的最值.【解答】解:(Ⅰ)设日销量,∴k=100e30,∴日销量∴.(Ⅱ)当t=5时,由y'≥0得x≤26,由y'≤0得x≥26∴y在[25,26]上单调递增,在[26,40]上单调递减.∴当x=26时,y max=100e4.当每公斤蘑菇的出厂价为26元时,该工厂的利润最大,最大值为100e4元.【点评】解决实际问题的关键在于建立数学模型和目标函数,把“问题情境”译为数学语言,找出问题的主要关系,并把问题的主要关系抽象成数学问题,在数学领域寻找适当的方法解决,再返回到实际问题中加以说明.19.(12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°﹣sin13°cos17°(2)sin215°+cos215°﹣sin15°cos15°(3)sin218°+cos212°﹣sin18°cos12°(4)sin2(﹣18°)+cos248°﹣sin(﹣18°)cos48°(5)sin2(﹣25°)+cos255°﹣sin(﹣25°)cos55°(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【分析】(Ⅰ)选择(2),由sin215°+cos215°﹣sin15°cos15°=1﹣sin30°=,可得这个常数的值.(Ⅱ)推广,得到三角恒等式sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)=.证明方法一:直接利用两角差的余弦公式代入等式的左边,化简可得结果.证明方法二:利用半角公式及两角差的余弦公式把要求的式子化为+﹣sinα(cos30°cosα+sin30°sinα),即1﹣+cos2α+sin2α﹣sin2α﹣,化简可得结果.【解答】解:选择(2),计算如下:sin215°+cos215°﹣sin15°cos15°=1﹣sin30°=,故这个常数为.(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广,得到三角恒等式sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)=.证明:(方法一)sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)=sin2α+﹣sinα(cos30°cosα+sin30°sinα)=sin2α+cos2α+sin2α+s inαcosα﹣sinαcosα﹣sin2α=sin2α+cos2α=.(方法二)sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)=+﹣sinα(cos30°cosα+sin30°sinα)=1﹣+(cos60°cos2α+sin60°sin2α)﹣sin2α﹣sin2α=1﹣+cos2α+sin2α﹣sin2α﹣=1﹣﹣+=.【点评】本题主要考查两角差的余弦公式,二倍角公式及半角公式的应用,考查归纳推理以及计算能力,属于中档题.20.(12分)已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.【分析】(I)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,然后求出切点坐标,再用点斜式写出直线方程,最后化简成一般式即可;(II)先求出导函数f'(x),讨论k=0,0<k<1,k=1,k>1四种情形,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0即可.【解答】解:(I)当k=2时,由于所以曲线y=f(x)在点(1,f(1))处的切线方程为.即3x﹣2y+2ln2﹣3=0(II)f'(x)=﹣1+kx(x>﹣1)当k=0时,因此在区间(﹣1,0)上,f'(x)>0;在区间(0,+∞)上,f'(x)<0;所以f(x)的单调递增区间为(﹣1,0),单调递减区间为(0,+∞);当0<k<1时,,得;因此,在区间(﹣1,0)和上,f'(x)>0;在区间上,f'(x)<0;即函数f(x)的单调递增区间为(﹣1,0)和,单调递减区间为(0,);当k=1时,.f(x)的递增区间为(﹣1,+∞)当k>1时,由,得;因此,在区间和(0,+∞)上,f'(x)>0,在区间上,f'(x)<0;即函数f(x)的单调递增区间为和(0,+∞),单调递减区间为.【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及函数的单调性等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想、分类讨论的数学思想,属于基础题.21.(12分)已知函数f(x)=e1﹣x(﹣a+cosx)(a∈R).(Ⅰ)若函数f(x)存在单调递减区间,求实数a的取值范围;(Ⅱ)若a=0,证明:,总有f(﹣x﹣1)+2f'(x)•cos(x+1)>0.【分析】(Ⅰ)求出函数的导数,问题转化为存在取值区间,求出a的范围即可;(Ⅱ)问题转化为证对恒成立,首先令g(x)=e2x+1﹣(2x+2),根据函数的单调性证明即可.【解答】解:(Ⅰ)由题意得f'(x)=﹣e1﹣x(﹣a+sinx+cosx),…(1分)若函数f(x)存在单调减区间,则f'(x)=﹣e1﹣x(﹣a+sinx+cosx)≤0…(2分)即﹣a+sinx+cosx≥0存在取值区间,即存在取值区间…(4分)所以.…(5分)(Ⅱ)当a=0时,f(x)=e1﹣x cosx,f'(x)=﹣e1﹣x(sinx+cosx),…(6分)由有,从而cos(x+1)>0,要证原不等式成立,只要证对恒成立,…(7分)首先令g(x)=e2x+1﹣(2x+2),由g'(x)=2e2x+1﹣2,可知,当时g(x)单调递增,当时g(x)单调递减,所以,有e2x+1≥2x+2…(9分)构造函数,,因为=,可见,在x∈[﹣1,0]时,h'(x)≤0,即h(x)在[﹣1,0]上是减函数,在时,h'(x)>0,即h(x)在上是增函数,所以,在上,h(x)min=h(0)=0,所以g(x)≥0.所以,,等号成立当且仅当x=0时,…(11分)综上:,由于取等条件不同,故,所以原不等式成立.…(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用,考查函数恒成立问题,是一道综合题.选修4-4;坐标系与参数方程22.(10分)平面直角坐标系xOy,直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数).以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求直线l和圆C的极坐标方程;(2)设直线l和圆C相交于A,B两点,求弦AB与其所对的劣弧围成的图形的面积.【分析】(1)直线l的参数方程为(t为参数),消去参数t可得直线l 的普通方程.将x=ρcosθ,y=ρsinθ代入上式可得极坐标方程.圆C 的参数方程为(θ为参数),利用cos 2θ+sin 2θ=1可得直角坐标方程,进而得到圆C 的极坐标方程.(2)联立,解得:A ,B .再利用扇形与三角形的面积计算公式得出.【解答】解:(1)直线l 的参数方程为(t 为参数),消去参数t 直线l 的普通方程为﹣2=0.将x=ρcosθ,y=ρsinθ代入上式可得:ρcosθ+ρsinθ﹣2=0. 化简得直线l 的方程为=1.圆C 的参数方程为(θ为参数),可得直角坐标方程:x 2+y 2=4,可得圆C 的极坐标方程为ρ=2.(2)由,解之得:A (2,0),B (2,). ∴∠AOB=,∴S 扇形AOB ===. ∴S △AOB =|OA ||OB |sinα=.∴S=S 扇形AOB ﹣S △AOB =﹣.【点评】本题考查了直角坐标与极坐标的互化、参数方程化为普通方程、曲线的交点、扇形与三角形面积计算公式,考查了推理能力与计算能力,属于中档题.选修4-5;不等式选讲23.设f(x)=|2x﹣1|+|1﹣x|.(Ⅰ)解不等式f(x)≤3x+4;(Ⅱ)对任意的x,不等式f(x)≥(m2﹣3m+3)•|x|恒成立,求实数m的取值范围.【分析】(Ⅰ)分情况将原不等式绝对值符号去掉,然后求解;(Ⅱ)分x=0与x≠0两种情况研究:当x=0时,显然成立;当x≠0时,两边同除以|x|,然后求出左边的最小值,解关于m的不等式即可.【解答】解:(Ⅰ)当x≤时,原不等式可化为﹣(2x﹣1)﹣(x﹣1)≤3x+4,解得x≥﹣,故此时﹣≤x≤;当<x≤1时,原不等式可化为2x﹣1﹣(x﹣1)≤3x+4,解得x≥﹣2,故此时<x≤1;当x>1时,原不等式可化为2x﹣1+x﹣1≤3x+4,即﹣2≤4,显然成立,故此时x>1.综上可得,原不等式的解集为{x|x≥﹣}.(Ⅱ)当x=0时,原不等式为2≥0,显然恒成立;当x≠0时,原不等式两边同除以|x|,则不等式可化为:|2﹣|+|﹣1|≥m2﹣3m+3恒成立.因为|2﹣|+|﹣1|≥|(2﹣)+(﹣1)|=1.所以要使原式恒成立,只需m2﹣3m+3≤1即可,即m2﹣3m+2≤0.解得1≤m≤2.【点评】本题考查了绝对值不等式的解法以及不等式恒成立问题的解题思路,一般的不等式恒成立问题要转化为函数的最值问题来解.本题还考查了分类讨论思想的应用.。
绝密★启用前福建省泉港一中2016-2017学年高二下学期期末考文科数学试题考试范围:xxx ;考试时间:120分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知全集,集合,,则( )A .B .C .D .【答案】D 【解析】全集,集合,,则,故选D.2、如果函数 的相邻两个对称中心之间的距离为,则=( )A .3B .6C .12D .24【答案】B试卷第2页,共17页【解析】函数的相邻两个零点之间的距离为,又,解得,故选.3、已知抛物线的准线经过点,则抛物线焦点坐标为()A .B .C .D .【答案】B【解析】试题分析:利用抛物线的准线经过点(-1,1),求得,即可求出抛物线焦点坐标.∵抛物线的准线经过点(-1,1),,∴该抛物线焦点坐标为(1,0),故选B . 考点:抛物线的简单性质 4、已知函数,则曲线在点处的切线与两坐标轴所围成的三角形的面积为( )A .B .C .D .2【答案】C【解析】求导函数,可得,当时,,函数,则曲线在点处的切线方程为,即,令,可得,令,可得,曲线,在点处切线与两座标轴,所围成的三角形面积是,故选.5、若,是第三象限的角,则等于( )A .B .C .D .【答案】A【解析】由得 ,因为是第三象限角,所以,又将代入上式,可得 ,故选.6、下列命题正确的个数为( ) ①“都有”的否定是“使得”;②“”是“”成立的充分条件;③命题“若,则方程有实数根”的否命题为真命题A .0B .1C .2D .3【答案】B【解析】由存在性命题与全称命题的否定的形式可知答案①是错误的;当,但,故命题②也是不正确的;由于当时, ,即方程有实数根,所以三个答案中只有一个是真命题,应选答案B 。
福建省2016-2017学年高二数学下学期期中试卷文(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省2016-2017学年高二数学下学期期中试卷文(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省2016-2017学年高二数学下学期期中试卷文(含解析)的全部内容。
2016-2017学年福建高二(下)期中数学试卷(文科)一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=4x+1上,则这组样本数据的样本相关系数为()A.4 B.0 C.﹣1﹣i D.12.i为虚数单位,i607的共轭复数为( )A.i B.﹣i C.1 D.﹣13.复数z=m2+2m+(m2+3m+2)i是纯虚数,则实数m的值是()A.0 B.﹣2 C.0或﹣2 D.﹣14.给出下面类比推理:①“若2a<2b,则a<b”类比推出“若a2<b2,则a<b”;②“(a+b)c=ac+bc(c≠0)”类比推出“=+(c≠0)”;③“a,b∈R,若a﹣b=0,则a=b"类比推出“a,b∈C,若a﹣b=0,则a=b”;④“a,b∈R,若a﹣b>0,则a>b"类比推出“a,b∈C,若a﹣b>0,则a>b(C为复数集)”.其中结论正确的个数为( )A.1 B.2 C.3 D.45.满足条件|z﹣i|=|3+4i|复数z在复平面上对应点的轨迹是()A.一条直线B.两条直线C.圆D.椭圆6.下列推理是演绎推理的是()A.由圆x2+y2=r2的面积S=πr2,猜想椭圆=1(a>b>0)的面积S=πabB.由金、银、铜、铁可导电,猜想:金属都可导电C.猜想数列,,的通项公式为a n=(n∈N*)D.半径为r的圆的面积S=πr2,则单位圆的面积S=π7.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”右图是该算法的程序框图,如果输入a=153,b=119,则输出的a值是()A.16 B.17 C.18 D.198.已知圆C的极坐标方程为ρ=4cosθ﹣2sinθ,圆心为C点A(,),则线段AC的长为()A.B.5 C. D.9.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃xα∈R,f(xα)=0B.函数y=f(x)的图象是中心对称图形C.若xα是f(x)的极小值点,则f(x)在区间(﹣∞,xα)单调递减D.若xα是f(x)的极值点,则f′(xα)=010.已知函数f(x)=f′()sinx+x,则f′(π)=()A.B.﹣C.1 D.﹣111.已知函数g(x)=|e x﹣1|的图象如图所示,则函数y=g′(x)图象大致为( )A. B.C.D.12.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞) C.(﹣∞,﹣2)D.(﹣∞,﹣1)二、填空题:(每小题5分,共20分)13. = .14.已知方程x2﹣(2i﹣1)x+3m﹣i=0有实数根,则实数m为.15.某少数民族刺绣有着悠久历史,下图中的(1)(2)(3)(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成的,小正方形越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形,则f(5)= ,f(n)= .16.奇函数f(x)定义域为(﹣π,0)∪(0,π),其导函数为f′(x).当0<x<π时,有f′(x)sinx﹣f(x)cosx<0,则关于x的不等式f(x)<f()sinx的解集是.三、解答题:(本大题共2小题,共70分)17.某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:广告支出x(单位:万元)1234销售收入y(单位:万元)12284256(Ⅰ)求出y对x的线性回归方程;(Ⅱ)若广告费为9万元,则销售收入约为多少万元?(线性回归方程系数公式: ==, =﹣.18.某机构随机调查了某市部分成年市民某月骑车次数,统计如下:次数人数年龄[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]18岁至31岁812206014015032岁至44岁1228201406015045岁至59岁25508010022545060岁及以上2510101852联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.月骑车次数不少于30次者称为“骑行爱好者”.根据以上数据,用样本估计总体,能否在犯错误的概率不超过0.005的前提下认为“骑行爱好者”与“青年人”有关?P(K2≥k)0。
2016-2017学年高二下学期期中考试数学(理)试题时间:120分 满分150分本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考试结束后,只交答题纸和答题卡,试题自己保留。
注意事项1.答题前,考生在答题纸和答题卡上务必用直径0.5毫米黑色签字笔将自己的班级、姓名、考号填写清楚。
请认真核准考号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3. 填空题和解答题的答案必须写在答题纸上,写在试卷上无效.第Ⅰ卷一. 选择题(每小题5分,满分60分)1.已知某条曲线的参数方程是12()(12()x t tt y t t ⎧=+⎪⎪⎨⎪=-⎪⎩是参数),则该曲线是( )A.直线B.圆C.椭圆D.双曲线2.已知变量x 与y 负相关,且由观测数据算得样本平均数3x =,3.5y =,则由观测的数据得线性回归方程可能为( )A. 0.4 2.3y x =+B. 2 2.4y x =-C. 29.5y x =-+D. 0.3 4.5y x =-+3.若22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是第( )项A.4B.3C.2D.1 4. 下列说法不正确的是( )A.随机变量,ξη满足23ηξ=+,则其方差的关系为()4()D D ηξ=B.回归分析中,2R 的值越大,说明残差平方和越小 C.画残差图时,纵坐标一定为残差,横坐标一定为编号 D.回归直线一定过样本点中心5. 设随机变量X ~N (2,52),且P (X ≤0)=P (X ≥a -2),则实数a 的值为( ) A .6 B .8 C .10 D .12 6. 根据如下样本数据得到的回归方程为 ˆˆ,y bxa =+则 A.ˆˆ0a>>,b 0 B. ˆˆ0a ><,b 0 C. ˆˆ0a <>,b 0 D. ˆˆ0a <<,b 0 7. 掷两枚均匀的大小不同的骰子,记“两颗骰子的点数和为8”为事件A ,“小骰子出现的点数小于大骰子出现的点数”为事件B,则P(A|B), P(B|A)分别为( ) A.22,155 B. 33,145 C. 11,35D. 44,515 8. 某班主任对班级90名学生进行了作业量多少的调查,结合数据建立了下列列联表:利用独立性检验估计,你认为推断喜欢电脑游戏与认为作业多少有关系错误的概率介于A.0.15~0.25B.0.4~0.5C.0.5~0.6D.0.75~0.85 (观测值表如下)9.某商场利用下列盈利表中的数据进行决策,应选择的方案是 A. 4A B. 3A C. 2A D. 1A10.在二项式n的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A.16 B. 712 C. 13 D. 51211.在回归分析与独立性检验中:① 相关关系是一种确定关系 ② 在回归模型中,x 称为解释变量,y 称为预报变量 ③ 2R 越接近于1,表示回归的效果越好 ④ 在独立性检验中,||ad bc -越大,两个分类变量关系越弱;||ad bc -越小,两个分类变量关系越强 ⑤残差点比较均匀地落在水平的带状区域中,带状区域宽度越窄,回归方程的预报精度越高,正确命题的个数为( )A.5B.4C.3D.212. 设计院拟从4个国家级课题和6个省级课题中各选2个课题作为本年度的研究项目,若国家级课题A 和省级课题B 至少有一个被选中的不同选法种数是m,那么二项式28(1)mx +的展开式中4x 的系数为( ) A.54000 B.100400 C. 100600 D.100800第Ⅱ卷二.填空题(每小题5分,满分20分)13. 在40件产品中有12件次品,从中任取2件,则恰有1件次品的概率为 . 14.64(1)(1)x x -+的展开式2x 的系数是 .15. 已知服从正态分布2(,)N μσ的随机变量,在区间(,),(2,2)μσμσμσμσ-+-+和(3,3)μσμσ-+内取值的概率分别为68.27%,95.45%和99.73%,某中学为10000名员工定制校服,设学生的身高(单位:cm )服从正态分布N (173,25),则适合身高在158~188cm 范围内学生穿的校服大约要定制 套.16. 设集合U={1,2,3,4,5},从集合U 中选4个数,组成没有重复数字的四位数,并且此四位数大于2345,同时小于4351,则满足条件的四位数共有 .三.解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.在直角坐标系x0y 中,直线l 的参数方程为1(4x t t y t =+⎧⎨=+⎩为参数),在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=.(1) 写出直线l 一般式方程与曲线C 的直角坐标的标准方程; (2) 设曲线C 上的点到直线l 的距离为d ,求d 的取值范围.18.已知在n 的展开式中,只有第5项二项式系数最大.(1) 判断展开式中是否存在常数项,若存在,求出常数项;若不存在,说明理由; (2)求展开式的所有有理项.19. 在直角坐标系x0y 中,以原点O 为极点,x 轴的正半轴为极轴,曲线C 的极坐标方程为2sin 1sin θρθ=-. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)过点P (0,2)作斜率为1的直线l 与曲线C 交于A,B 两点, ① 求线段AB 的长; ②11||||PA PB +的值. 20. 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(1)确定x,y 的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...3 钟的概率. (注:将频率视为概率)21. 某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,在学习积极性高的25名学生中有7名不太主动参加班级工作,而在积极参加班级工作的24名学生中有6名学生学习积极性一般.(1) 填写下面列联表;(2)参加班级工作且学习积极性一般的学生的概率是多少?(3)试运用独立性检验的思想方法分析:能否在犯错误概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.(观测值表如下)22.在《我是歌手》的比赛中,有6位歌手(1~6号)进入决赛,在决赛中由现场的百家媒体投票选出最受欢迎的歌手,各家媒体独立地在投票器上选出3位候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他一定不选2号,;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1) 求媒体甲选中5号且媒体乙未选中5号歌手的概率;(2) ξ表示5号歌手得到媒体甲,乙,丙的票数之和,求ξ的分布列及数学期望.2016-2017学年高二下学期期中考试数学(理)试题参考答案1~12 DCBCA BABBD CD 13.286514. -3 15. 9973 16. 54 17. (1) 223013y x y x -+=+=minmax 2sin()3(2)2222d d d d πα-+====⎢⎣⎦的取值范围为,18.(1)n=8116388((1)814216-3014316,,kC kk k k k T C xk k k T k k k N --==-+=+=∈若为常数项,则即又这不可能,所以没有常数项(2)解:若1T k +为有理项,当且仅当16304k-=为整数 因为08,,0,4,8k k N k ≤≤∈=所以即展开式中的有理项检有3项,它们是59421351,,8256T x x xT T -===19.22(1)2(2),22y x x y x y =⎧=⎪⎪=⎨⎪=+⎪⎩代入得2121240,4,11||||||4t t t t t AB PA PB --==-+==+=①②20. (1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得153303251(1),( 1.5),(2),10020100101004p X p X p X ========= 201101( 2.5),(3).100510010p X p X ======X 的分布为X 的数学期望为33111()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过3钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则由于顾客的结算相互独立得121212121212()(1)1)(1)( 1.5)( 1.5)(1)(1)2)(2)(1)( 1.5)( 1.5)P A P X P X P X P X P X P X P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=+=⨯=+=⨯=+=⨯=((3333331331331112020201010204202041010400=⨯+⨯+⨯+⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过3 钟的概率为111400.21. (1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此由古典概型概率的计算公式可得抽到积极参加班级工作的学生的概率是P 1=2450=1225,又因为不太主动参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P 2=1950.(2)由K 2统计量的计算公式得k =50× 18×19-6×7 224×26×25×25≈11.538,由于11.538>10.828,所以能否在犯错误概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.22. 设A 表示事件上:“媒体甲选中5号歌手”,事件B 表示“媒体乙选中5号歌手”, (1)1244235523()()55P A P B CC CC====所以__234()()()15525P A B P A P B ⎛⎫==⨯-= ⎪⎝⎭ (2) 事件C 表示“媒体乙选中5号歌手”25361()2P C C C== 因为X 可能的取值为0,1,2,3,所以3)25__231(0)()(1(1)(1)552P X P A B C ===-⨯-⨯-= ______(1)()()()23123132119(1)(1)(1)(1)55255255250P X P A B C P A B C P A B C ==++=⨯-⨯-+-⨯⨯-+⨯⨯= ___(2)()()()2312123311955252555250P X P AB C P A B C P A BC ==++=⨯⨯+⨯⨯+⨯⨯=2313(3)()55225P X P ABC ===⨯⨯=所以X 的分布列为所为X 的期望为3191933()0123255050252E X =⨯+⨯+⨯+⨯=。
2016-2017学年福建省泉州市泉港一中高一(下)期中数学试卷一、选择题(每题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的)1.在空间直角坐标系中,A(0,2,4),B(1,4,6),则|AB|等于()A.2 B.2C.D.32.过点P(﹣1,2),倾斜角为135°的直线方程为()A.x+y﹣1=0 B.x﹣y+1=0 C.x﹣y﹣1=0 D.x+y+1=03.下列命题正确的是()A.若两个平面平行于同一条直线,则这两个平面平行B.若有两条直线与两个平面都平行,则这两个平面平行C.若有一条直线与两个平面都垂直,则这两个平面平行D.若有一条直线与这两个平面所成的角相等,则这两个平面平行4.水平放置的△ABC的直观图如图,其中B′O′=C′O′=1,A′O′=,那么原△ABC是一个()A.等边三角形B.直角三角形C.三边中只有两边相等的等腰三角形D.三边互不相等的三角形5.若某几何体的三视图(单位:cm)如图所示,则此几何体的侧面积等于()A.12π cm2B.15π cm2C.24π cm2D.30π cm26.若三棱锥P﹣ABC的三个侧面与底面ABC所成角都相等,则顶点P在底面的射影为△ABC 的()A.外心 B.重心 C.内心 D.垂心7.圆C1:x2+y2﹣4x﹣2y+1=0与圆C2:x2+y2+4x﹣8y+11=0的位置关系为()A.相交 B.相离 C.外切 D.内切8.若P(2,﹣1)为圆x2+y2﹣2x﹣24=0的弦AB的中点,则直线AB的方程是()A.x﹣y﹣3=0 B.2x+y﹣3=0 C.x+y﹣1=0 D.2x﹣y﹣5=09.已知点P是圆x2+y2=1上动点,定点Q(6,0),点M是线段PQ靠近Q点的三等分点,则点M的轨迹方程是()A.(x+3)2+y2=4 B.(x﹣4)2+y2=C.(2x﹣3)2+4y2=1 D.(2x+3)2+4y2=110.若圆x2+y2﹣4x=0上恰有四个点到直线2x﹣y+m=0的距离等于1,则实数m的取值范围是方程是()A.B.C.D.11.已知实数x,y满足方程2x+y+5=0,那么的最小值为()A.2B. C.2 D.12.函数的值域为()A.B.C.[﹣2,﹣1] D.二、填空题(每小题5分,共20分)13.如图,在正方体ABCD﹣A1B1C1D1中,E,F,G,H分别为AA1,AB,BB1,B1C1的中点,则异面直线EF与GH所成的角等于.14.已知直线l1:y=3x﹣4和直线l2:关于点M(2,1)对称,则l2的方程为.15.如果直线y=ax+2与直线y=3x﹣b关于直线y=x对称,那么a+b= .16.已知⊙M:x2+(y﹣2)2=1,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点,求动弦AB的中点P的轨迹方程为.三、解答题.(本大题共6小题,满分70分,解答应写出文字说明,推理过程或演算步骤)17.求经过直线l1:3x﹣4y﹣1=0与直线l2:x+2y+8=0的交点M,且满足下列条件的直线l 的方程:(1)与直线2x+y+5=0平行;(2)与直线2x+y+5=0垂直.18.如图,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求PB与平面ABCD所成角的正弦值.19.已知△ABC的顶点A(2,3),B(﹣2,1),重心G(1,2)(1)求BC边中点D的坐标;(2)求AB边的高线所在直线的方程;(3)求△ABC的面积.20.已知圆C:(x﹣2)2+(y﹣3)2=16及直线l:(m+2)x+(3m+1)y=15m+10(m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)当直线l被圆C截得的弦长的最短时,求此时直线l方程.21.如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H 分别为BP,BE,PC的中点.(1)求四棱锥P﹣BCD外接球(即P,B,C,D四点都在球面上)的表面积;(2)求证:平面FGH⊥平面AEB;(3)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.22.如图,已知圆C:x2+y2﹣4x﹣14y+45=0及点Q(﹣2,3)(1)若点P(m,m+1)在圆C上,求直线PQ的斜率以及直线PQ与圆C的相交弦PE的长度;(2)若N(x,y)是直线x+y+1=0上任意一点,过N作圆C的切线,切点为A,当切线长|NA|最小时,求N点的坐标,并求出这个最小值.(3)若M(x,y)是圆上任意一点,求的最大值和最小值.2016-2017学年福建省泉州市泉港一中高一(下)期中数学试卷参考答案与试题解析一、选择题(每题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的)1.在空间直角坐标系中,A(0,2,4),B(1,4,6),则|AB|等于()A.2 B.2 C.D.3【考点】JI:空间两点间的距离公式.【分析】直接利用空间距离公式求解即可.【解答】解:在空间直角坐标系中,A(0,2,4),B(1,4,6),则|AB|==3.故选:D.2.过点P(﹣1,2),倾斜角为135°的直线方程为()A.x+y﹣1=0 B.x﹣y+1=0 C.x﹣y﹣1=0 D.x+y+1=0【考点】IK:待定系数法求直线方程.【分析】由直线l的倾斜角为135°,所以可求出直线l的斜率,进而根据直线的点斜式方程写出即可.【解答】解:∵直线l的倾斜角为135°,∴斜率=tan135°=﹣1,又直线l过点(﹣1,2),∴直线的点斜式为y﹣2=﹣1(x+1),即x+y﹣1=0.故选:A.3.下列命题正确的是()A.若两个平面平行于同一条直线,则这两个平面平行B.若有两条直线与两个平面都平行,则这两个平面平行C.若有一条直线与两个平面都垂直,则这两个平面平行D.若有一条直线与这两个平面所成的角相等,则这两个平面平行【考点】LP:空间中直线与平面之间的位置关系.【分析】在A中,这两个平面平行或相交;在B中,这两个平面平行或相交;在C中,由线面垂直的判定定理得这两个平面平行;在D中,这两个平面平行或相交.【解答】解:在A中,若两个平面平行于同一条直线,则这两个平面平行或相交,故A错误;在B中,若有两条直线与两个平面都平行,则这两个平面平行或相交,故B错误;在C中,若有一条直线与两个平面都垂直,则由线面垂直的判定定理得这两个平面平行,故C正确;在D中,若有一条直线与这两个平面所成的角相等,则这两个平面平行或相交,故D错误.故选:C.4.水平放置的△ABC的直观图如图,其中B′O′=C′O′=1,A′O′=,那么原△ABC是一个()A.等边三角形B.直角三角形C.三边中只有两边相等的等腰三角形D.三边互不相等的三角形【考点】LB:平面图形的直观图.【分析】由图形和A′O′=通过直观图的画法知在原图形中三角形的底边BC=B'C',AO⊥BC,且AO=,故三角形为正三角形.【解答】解:由图形知,在原△ABC中,AO⊥BC,∵A′O′=∴AO=∵B′O′=C′O′=1∴BC=2∴AB=AC=2∴△ABC为正三角形.故选A5.若某几何体的三视图(单位:cm)如图所示,则此几何体的侧面积等于()A.12π cm2B.15π cm2C.24π cm2D.30π cm2【考点】L!:由三视图求面积、体积.【分析】由三视图还原原几何体,可知原几何体是圆锥,且底面半径为r=3,母线长l=5,代入圆锥侧面积公式得答案.【解答】解:由三视图可知,原几何体是圆锥,且底面半径为r=3,母线长l=5,如图:则几何体的侧面积为πrl=15π(cm2).故选:B.6.若三棱锥P﹣ABC的三个侧面与底面ABC所成角都相等,则顶点P在底面的射影为△ABC 的()A.外心 B.重心 C.内心 D.垂心【考点】L3:棱锥的结构特征;%5:三角形中的几个特殊点:旁心、费马点和欧拉线.【分析】作出三个二面角,利用三角形全等得出O到△ABC的三边距离相等,得出结论.【解答】解:设P在底面ABC的射影为O,过O向△ABC的三边作垂线OD,OE,OF,连结PD,PE,PF,∵PO⊥平面ABC,AB⊂平面ABC,∴PO⊥AB,又OD⊥AB,OD∩OP=O,∴AB⊥平面OPD,∴AB⊥PD,∴∠PDO为侧面PAB与平面ABC的二面角,同理∠PEO,∠PFO为其余两侧面与底面ABC的二面角,∴∠PDO=∠PEO=∠PFO,又PO⊥OD,PO⊥OE,PO⊥OF,PO为公共边,∴Rt△POD≌Rt△POE≌Rt△POF,∴OD=OE=OF,∴O是△ABC的内心.故选C.7.圆C1:x2+y2﹣4x﹣2y+1=0与圆C2:x2+y2+4x﹣8y+11=0的位置关系为()A.相交 B.相离 C.外切 D.内切【考点】JA:圆与圆的位置关系及其判定.【分析】求出两个圆的圆心与半径,通过圆心距与半径的关系判断选项即可.【解答】解:圆C1:x2+y2﹣4x﹣2y+1=0的圆心(2,1),半径为:2;与圆C2:x2+y2+4x﹣8y+11=0的圆心(﹣2,4),半径为:3;圆心距为:,可知两个圆的位置关系是外切.故选:C.8.若P(2,﹣1)为圆x2+y2﹣2x﹣24=0的弦AB的中点,则直线AB的方程是()A.x﹣y﹣3=0 B.2x+y﹣3=0 C.x+y﹣1=0 D.2x﹣y﹣5=0【考点】J9:直线与圆的位置关系.【分析】求出圆的圆心和半径,由弦的性质可得CP⊥AB,求出CP的斜率,可得AB的斜率,由点斜式求得直线AB的方程.【解答】解:圆x2+y2﹣2x﹣24=0即(x﹣1)2+y2=25,表示以C(1,0)为圆心,以5为半径的圆.由于P(2,﹣1)为圆x2+y2﹣2x﹣24=0的弦AB的中点,故有CP⊥AB,CP的斜率为=﹣1,故AB的斜率为1,由点斜式求得直线AB的方程为y+1=x﹣2,即 x﹣y﹣3=0,故选:A.9.已知点P是圆x2+y2=1上动点,定点Q(6,0),点M是线段PQ靠近Q点的三等分点,则点M的轨迹方程是()A.(x+3)2+y2=4 B.(x﹣4)2+y2=C.(2x﹣3)2+4y2=1 D.(2x+3)2+4y2=1【考点】J3:轨迹方程;JE:直线和圆的方程的应用.【分析】点M是靠近点Q的三等分点,设M(x,y),则P(3x,3y﹣8),代入圆的方程即得M的轨迹方程.【解答】解:点M是靠近点Q的三等分点,设M(x,y),P(x′,y′),=3,则P(3x﹣12,3y),代入圆的方程得(3x﹣12)2+(3y)2=1.M的轨迹方程是:(x﹣4)2+y2=.故选:B.10.若圆x2+y2﹣4x=0上恰有四个点到直线2x﹣y+m=0的距离等于1,则实数m的取值范围是方程是()A.B.C.D.【考点】J9:直线与圆的位置关系.【分析】圆方程化为标准方程,圆x2+y2﹣4x=0上恰有四个点到直线2x﹣y+m=0的距离等于1,可得圆心到直线的距离小于1,即可求得实数m的取值范围.【解答】解:圆x2+y2﹣4x=0可化为(x﹣2)2+y2=4,圆心(2,0),半径为2.∵圆x2+y2﹣4x=0上恰有四个点到直线2x﹣y+m=0的距离等于1,∴∴﹣4﹣<m<﹣4+故选:B.11.已知实数x,y满足方程2x+y+5=0,那么的最小值为()A.2B. C.2 D.【考点】3H:函数的最值及其几何意义.【分析】由=,可知其几何意义为直线2x+y+5=0上的动点到定点A(2,1)的距离,再由点到直线的距离公式求解.【解答】解: =,其几何意义为直线2x+y+5=0上的动点到定点A(2,1)的距离,如图:∴的最小值为A到直线2x+y+5=0的距离,等于.故选:C.12.函数的值域为()A.B.C.[﹣2,﹣1] D.【考点】HW:三角函数的最值.【分析】把函数y 看成P(cosθ,sinθ)与A(﹣2,3)两点连线的斜率,P点的轨迹是圆心为原点的单位圆的一部分,求出直线PA与圆相切时的斜率,结合图形可得函数y的值域.【解答】解:记P(cosθ,sinθ),A(﹣2,3),则y=k PA=,θ∈[﹣,];其中P点的轨迹是圆心为原点的单位圆的一部分,如图所示:当直线PA与圆相切时,设切线方程为y﹣3=k(x+2),即 kx﹣y+2k+3=0,由d==1,解得 k=﹣2+,或 k=﹣2﹣(不合题意,舍去),当直线PA过点M(0,﹣1)时,k==﹣2,综上,y=k PA∈[﹣2,﹣2+],即函数的值域为[﹣2,﹣2+].故选:D.二、填空题(每小题5分,共20分)13.如图,在正方体ABCD﹣A1B1C1D1中,E,F,G,H分别为AA1,AB,BB1,B1C1的中点,则异面直线EF与GH所成的角等于60°.【考点】LM:异面直线及其所成的角.【分析】利用异面直线夹角的定义,将EF平移至MG(G为A1B1中点),通过△MGH为正三角形求解.【解答】解:取A1B1 中点M连接MG,MH,则MG∥EF,MG与GH所成的角等于EF与GH所成的角.容易知道△MGH为正三角形,∠MGH=60°∴EF与GH所成的角等于60°故答案为:60°14.已知直线l1:y=3x﹣4和直线l2:关于点M(2,1)对称,则l2的方程为3x﹣y﹣6=0 .【考点】IQ:与直线关于点、直线对称的直线方程.【分析】在直线线l2上任意取一点A(x,y),则由题意可得,点A关于点M的对称点B在直线l1:y=3x﹣4上,由此求得关于x、y的方程,即为所求.【解答】解:在直线l2上任意取一点A(x,y),则由题意可得,点A关于点M(2,1)的对称点B(4﹣x,2﹣y)在直线l1:y=3x﹣4上,故有3(4﹣x)﹣4=2﹣y,即3x﹣y﹣6=0.故答案为:3x﹣y﹣6=0.15.如果直线y=ax+2与直线y=3x﹣b关于直线y=x对称,那么a+b= .【考点】IQ:与直线关于点、直线对称的直线方程.【分析】由直线y=ax+2,解得(a≠0)x=,把x与y互换可得:y=.根据直线y=ax+2与直线y=3x﹣b关于直线y=x对称,可得3=,﹣ =﹣b,解得a,b.【解答】解:由直线y=ax+2,解得(a≠0)x=,把x与y互换可得:y=.∵直线y=ax+2与直线y=3x﹣b关于直线y=x对称,∴3=,﹣ =﹣b,解得a=,b=6.∴a+b=.故答案为:.16.已知⊙M:x2+(y﹣2)2=1,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点,求动弦AB的中点P的轨迹方程为(≤y<2).【考点】J3:轨迹方程.【分析】连接MB,MQ,设P(x,y),Q(|a|,0),点M、P、Q在一条直线上,利用斜率相等建立等式,进而利用射影定理|MB|2=|MP|•|MQ|,联立消去a,求得x和y的关系式,根据图形可知y<2,进而可求得动弦AB的中点P的轨迹方程.【解答】解:连接MB,MQ,设P(x,y),Q(|a|,0),点M、P、Q在一条直线上,得=.①由射影定理,有|MB|2=|MP|•|MQ|,即•=1.②由①及②消去a,可得x2+(y﹣)2=和x2+(y﹣)2=.又由图形可知y<2,因此x2+(y﹣)2=舍去.因此所求的轨迹方程为x2+(y﹣)2=(≤y<2).故答案为:x2+(y﹣)2=(≤y<2).三、解答题.(本大题共6小题,满分70分,解答应写出文字说明,推理过程或演算步骤)17.求经过直线l1:3x﹣4y﹣1=0与直线l2:x+2y+8=0的交点M,且满足下列条件的直线l 的方程:(1)与直线2x+y+5=0平行;(2)与直线2x+y+5=0垂直.【考点】II:直线的一般式方程与直线的平行关系;IJ:直线的一般式方程与直线的垂直关系.【分析】联立,解得交点M,(1)由平行关系可得直线的斜率,进而可得点斜式方程,化为一般式即可;(2)由垂直关系可得直线的斜率,进而可得点斜式方程,化为一般式即可.【解答】解:联立,解得,可得交点M(﹣3,﹣).(1)若直线平行于直线2x+y+5=0,则斜率为﹣2,故可得方程为,即4x+2y+17=0;(2)若直线垂直于直线2x+y+5=0,则斜率为,故可得方程为,即x﹣2y﹣2=0.18.如图,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求PB与平面ABCD所成角的正弦值.【考点】MI:直线与平面所成的角;LS:直线与平面平行的判定.【分析】(1)取PB中点F,连EF,CF,通过证明四边形DEFC是平行四边形得出DE∥CF,故而DE∥平面PBC;(2)取AD的中点O,连BO,则PO⊥平面ABCD,故而∠PBO为所求的线面角,利用勾股定理计算PB,OP即可得出sin∠PBO.【解答】(1)证明:取PB中点F,连EF,CF,∵E是PA的中点,F是PB的中点,∴EF∥AB,EF=AB,∵CD∥AB,CD=AB,∴EF∥CD,EF=CD,∴四边形DEFC为平行四边形,∴DE∥CF,又DE⊄平面PBC,CF⊂平面PBC,∴DE∥平面PBC.(2)解:取AD的中点O,连BO,∵侧面PAD是边长为2的等边三角形,∴PO⊥AD,又∵侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥底面ABCD,∴∠PBO就是PB与平面ABCD所成角,∵在直角△PBO中,,,,∴sin∠PBO===.19.已知△ABC的顶点A(2,3),B(﹣2,1),重心G(1,2)(1)求BC边中点D的坐标;(2)求AB边的高线所在直线的方程;(3)求△ABC的面积.【考点】IJ:直线的一般式方程与直线的垂直关系;IG:直线的一般式方程.【分析】(1)利用重心的性质可得D.(2)中点坐标公式可得:C(3,2),利用相互垂直的直线斜率之间的关系、点斜式即可得出.(3)利用两点之间的距离公式可得|AB|,利用点到直线的距离公式可得点C到直线AB的距离d,即可得出面积.【解答】解:(1)∵△ABC的重心为G,∴…设D(a,b),则a=0.5 b=1.5 …(2)由中点坐标公式可得:C(3,2),…,可得y﹣2=﹣2(x﹣3),即2x+y﹣8=0∴AB边的高线所在直线的方程为2x+y﹣8=0…(3)…直线AB方程:x﹣2y+4=0…点C到直线AB的距离…∴S△ABC=3…20.已知圆C:(x﹣2)2+(y﹣3)2=16及直线l:(m+2)x+(3m+1)y=15m+10(m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)当直线l被圆C截得的弦长的最短时,求此时直线l方程.【考点】J9:直线与圆的位置关系.【分析】(1)利用直线系求出直线恒过的定点坐标判断点与圆的位置关系,推出结果即可.(2)利用圆的半径弦心距与半弦长的关系判断所求直线的位置,求出斜率,即可得到直线方程.【解答】解:(1)证明:直线l可化为2x+y﹣10+m(x+3y﹣15)=0,即不论m取什么实数,它恒过两直线2x+y﹣10=0与x+3y﹣15=0的交点.两方程联立,解得交点为(3,4).又有(3﹣2)2+(4﹣3)2=2<16,∴点(3,4)在圆内部,∴不论m为何实数,直线l与圆恒相交.…(2)解:从(1)的结论和直线l过定点M(3,4)且与过此点的圆C的半径垂直时,l被圆所截的弦长|AB|最短,…此时,k l=﹣,从而k l=﹣=﹣1,…∴l的方程为y﹣4=﹣(x﹣3),即x+y=7.…21.如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H 分别为BP,BE,PC的中点.(1)求四棱锥P﹣BCD外接球(即P,B,C,D四点都在球面上)的表面积;(2)求证:平面FGH⊥平面AEB;(3)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.【考点】LY:平面与平面垂直的判定;LW:直线与平面垂直的判定.【分析】(1)证明PD⊥BD,PC⊥BC,根据直角三角形的中线特点得出F为外接球的球心,计算出球的半径代入面积公式计算即可;(2)证明BC⊥平面ABE,FH∥BC即可得出FH⊥平面ABE,于是平面FGH⊥平面AEB;(3)证明EF⊥PB,故只需FM⊥PB即可,利用相似三角形计算出PM.【解答】解:(1)连结FD,FC,∵EA⊥平面ABCD,PD∥EA,∴PD⊥平面ABCD,又BD⊂平面ABCD,∴PD⊥BD,∵F是PB的中点,∴DF=PB,同理可得FC=PB,∴F为棱锥P﹣BCD的外接球的球心.∵AD=PD=2EA=2,∴BD=2,PB==2,∴四棱锥P﹣BCD外接球的表面积为4π•()2=12π.(2)证明:∵EA⊥平面ABCD,BC⊂平面ABCD,∴EA⊥CB.又CB⊥AB,AB∩AE=A,∴CB⊥平面ABE.∵F,H分别为线段PB,PC的中点,∴FH∥BC.∴FH⊥平面ABE.又FH⊂平面FGH,∴平面FGH⊥平面ABE.(3)在直角三角形AEB中,∵AE=1,AB=2,∴.在直角梯形EADP中,∵AE=1,AD=PD=2,∴,∴PE=BE.又F为PB的中点,∴EF⊥PB.假设在线段PC上存在一点M,使PB⊥平面EFM.只需满足PB⊥FM即可,∵PD⊥平面ABCD,BC⊂平面ABCD,∴PD⊥CB,又CB⊥CD,PD∩CD=D,∴CB⊥平面PCD,∵PC⊂平面PCD,∴CB⊥PC.若PB⊥FM,则△PFM∽△PCB,∴.∵,,,∴.∴线段PC上存在一点M,使PB⊥平面EFM,此时PM=.22.如图,已知圆C:x2+y2﹣4x﹣14y+45=0及点Q(﹣2,3)(1)若点P(m,m+1)在圆C上,求直线PQ的斜率以及直线PQ与圆C的相交弦PE的长度;(2)若N(x,y)是直线x+y+1=0上任意一点,过N作圆C的切线,切点为A,当切线长|NA|最小时,求N点的坐标,并求出这个最小值.(3)若M(x,y)是圆上任意一点,求的最大值和最小值.【考点】JE:直线和圆的方程的应用.【分析】(1)通过点P(m,m+1)在圆C上,求出m=4,推出P的坐标,求出直线PQ的斜率,得到直线PQ的方程,利用圆心(2,7)到直线的距离d,求解即可.(2)判断当NC最小时,NA最小,结合当NC⊥l时,NC最小,求出|NC|的最小值,然后求解直线方程.(3)利用k MQ=,题目所求即为直线MQ的斜率k的最值,且当直线MQ为圆的切线时,斜率取最值.设直线MQ的方程为y﹣3=k(x+2),利用圆心到直线的距离求解即可.【解答】解:(1)∵点P(m,m+1)在圆C上,代入圆C的方程,解得m=4,∴P(4,5)故直线PQ的斜率k==.因此直线PQ的方程为y﹣5=(x﹣4).即x﹣3y+11=0,而圆心(2,7)到直线的距离d===,所以PE=2===.…(2)∵∴当NC最小时,NA最小又知当NC⊥l时,NC最小,∴…⇒过C且与直线x+y+1=0垂直的直线方程:x﹣y+5=0,∴N(﹣3,2)…(3)∵k MQ=,∴题目所求即为直线MQ的斜率k的最值,且当直线MQ为圆的切线时,斜率取最值.设直线MQ的方程为y﹣3=k(x+2),即kx﹣y+2k+3=0.当直线与圆相切时,圆心到直线的距离d==r=2.两边平方,即(4k﹣4)2=8(1+k2),解得k=2﹣,或k=2+.所以的最大值和最小值分别为2+和2﹣.…。
泉港一中2016-2017学年高二上学期数学(理)期中试卷一、选择题(本大题共12小题,共60分) 1.已知椭圆上的一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离( )A.2B.3C.5D.7 2.阅读程序框图,运行相应的程序,则输出i 的值为( ) A.3 B.4 C.5 D.63.下列各数中,最小的数是( )A.75B.111111(2)C.210(6)D.85(9) 4.设命题12:1log 0,:21x p x q -<<>,则p 是q 成立的是( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 5.若椭圆+=1的两个焦点F 1,F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2是( )A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形6.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷A ,编号落入区间的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ) A.7 B.9 C.10 D.157.已知点P 是以21,F F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PF ,21tan 21=∠F PF ,则椭圆的离心率为( ) A .31 B .21 C .35 D .328. 下列命题的说法错误..的是( ) A. 命题“若2320,x x -+= 则 1=x ”的逆否命题为:“若1≠x ,则2320x x -+≠”.B . “1=x ”是“2320x x -+=”的充分不必要条件.C .命题p :“∀x ∈R,sinx +cosx ≤”是真命题D . 若()p q ⌝∧为真命题,则p 、q 均为假命题.9.已知袋子中装有3个红球、2个白球、1个黑球,如果从中随机任取2个,则下列两个事件中是互斥而不对立的是( )A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.至少有一个白球;红球、黑球各一个D.恰有一个白球;白球、黑球各一个10.AB 为过椭圆(a >b >0)中心的弦,F (c ,0)是椭圆的右焦点,则△ABF 面积的最大值是( )A.bcB.acC.abD.b 211.若直线mx +ny =4和⊙O:x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆的交点个数为( )A.0个B.1个C. 2个D. 至多1个12. 已知区域{}⎪⎩⎪⎨⎧-≤≥=Ω240),(xy y y x , 当直线m mx y 2+=和曲线24x y -=有两个不同的交点时,设它们围成的平面区域为M ,向区域Ω上随机投一点A ,点A 落在区域M 内的概率为P(M),若P(M)∈⎥⎦⎤⎢⎣⎡-1,22ππ,则实数m 的取值范围为 ( )A .⎥⎦⎤⎢⎣⎡1,21 B .⎥⎦⎤⎢⎣⎡33,0 C .⎥⎦⎤⎢⎣⎡1,33 D .[]1,0二、选择题(本大题共4小题,共20分)13. 命题“∀x ∈R,|x -2|<3”的否定是 ________________________ . 14.椭圆+=1的焦距为2,则m 的值等于______________________ .15.从{a ,b ,c ,d ,e }的所有子集中任取一个集合,则这个集合是集合{c ,d ,e }的真子集的概率是______________________ . 16.已知椭圆+=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,椭圆上总存在点P 使得PF 1⊥PF 2,则椭圆的离心率的取值范围为______________________ .三、解答题(本大题共6小题,共70分) 17.(本小题满分12分)己知命题p :方程22126x y m m +=--表示焦点在y 轴的椭圆;命题q :关于x 的不等式022>+-m x x 的解集是R ;若“q p ∧” 是假命题,“q p ∨”是真命题,求实数m 的取值范围。
福建省泉州市泉港区2016-2017学年高二数学下学期期中试题 文(考试时间:120分钟 总分:150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{1,0,1,2,3,4},{|16,}A B x x x N =-=<∈,则A B I 等于( ) A .{1,0,1,2,3}- B .{0,1,2,3,4} C .{1,2,3} D .{0,1,2,3}2.已知集合}{)32lg(2++-==x x y x A ,且A B φ=I ,则集合B 的可能是( ) A .{}2,5 B . (,1)-∞- C .()1,2 D . 2{|1}x x ≤3.设0x 是方程xx 2)1ln(=+的解,则0x 在下列哪个区间内( ) A .)1,0(B .)2,1(C .),2(eD .)4,3(4.已知()f x 是奇函数,当0>x 时,()1,f x gx =设(3)a f =,b=1()4f ,(2)c f =-,则( ) A. b c a >> B. c b a >> C. b a c >> D. c a b >> 5.若函数xmx x f 1)(2+=,则下列结论正确的是( ) A .R m ∈∀,函数)(x f 是奇函数 B .R m ∈∃,函数)(x f 是偶函数C .R m ∈∀,函数)(x f 在(0,+∞)上是增函数D .R m ∈∃,函数)(x f 在(0,+∞)上是减函数 6.实数22.0=a ,2.0log2=b ,2.0)2(=c 的大小关系正确的是( ) A .a c b << B .a b c << C .b a c << D .b c a << 7.若x b a x21log ,2==则“1>x ”是 “b a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 函数x x f xx cos 1212)(⋅-+=的图象大致是( )A B C D9.已知奇函数()f x 满足)()1(x f x f -=+,当01x <<时,()2xf x =,则2(log 9)f 的值为( ) A .169-B .169C . 9D .19- 10.函数32()(3)f x x ax a x =++-()a R ∈的导函数是'()f x ,若'()f x 是偶函数,则以下结论正确的是( )A .()y f x =的图像关于y 轴对称B .()y f x =的极小值为2-C .()y f x =的极大值为2-D .()y f x =在上是增函数)2,0(11.函数x x x f sin )(=,若α、β⎥⎦⎤⎢⎣⎡-∈2,2ππ,且)()(βαf f >,则以下结论正确的是( )A .αβ>B .αβ<C .αβ>D .αβ<12.已知函数3ln )(x x x f -=与3()g x x ax =-的图象上存在关于x 轴的对称点,则实数a 的取值范围为( )A .(,e)-∞B .(,e]-∞C .1(,)e -∞D .1(,]e-∞二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的相应位置.13. 已知函数ln ,0(),0x x x f x a x >⎧=⎨≤⎩(1,0≠>a a ).若2()(2)f e f =-,则实数a = .14.函数)(x f 的图象是如图所示的折线段OAB ,点A 坐标为(1,2),点B 坐标为(3,0), 定义函数)1()()(-⋅=x x f x g ,则函数)(x g最大值为 .15.已知)(x f y =为偶函数,当0x <时,()()ln 3f x x x =-+,则曲线)(x f y =在点)3,1(-处的切线方程是_______________.16.已知函数)(x f y =和)(x g y =在[]2,2-的图象如右图所示:则方程[]0)(=x g f 有且仅有________个根.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.已知函数)1,0(log )(≠>=a a x x f a ,且1)2()4(=-f f . (1)若)12()33(+<-m f m f ,求实数m 的取值范围; (2)求使3log )2(2=+xx f 成立的x 的值.18.已知函数xnx m x f 2ln )(-= ),(R n m ∈在1x =处有极值1. (1)求实数m ,n 的值; (2)求函数()f x 的单调区间.19.如图,在四棱锥E ABCD -中,四边形ABCD 为矩形,EB BC ⊥,,,EA EB M N ⊥分别为,AE CD 的中点,求证:(1)直线//MN 平面EBC ; (2)直线EA ⊥平面EBC .20.已知二次函数)(x f y =满足0)1(,3)0(==f f 且)2(+x f 是偶函数. (1)若()f x 在区间[2a ,a +2]上不单调,求a 的取值范围; (2)若[,2]x t t ∈+,试求()y f x =的最小值.21.已知函数1)(),(ln )(-=∈+=xe x g R a x a x xf (1)若直线0y =与函数()y f x =的图象相切,求a 的值;(2)设0>a ,对于[)1212,3,(),x x x x ∀∈+∞≠都有1212()()()(),f x f x g x g x --<求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在平面直角坐标系xoy 中,以O 为极点,x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin 2θ=4cosθ,直线l 的参数方程为:⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 224222为参数t ,两曲线相交于M ,N 两点. (1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)若)4,2(--P ,求|PM|+|PN|的值.23.设函数a x x x f -+-=4)( )1(>a ,且)(x f 的最小值为3. (1)求a 的值;(2)若5)(≤x f ,求满足条件的x 的集合.高二文科数学参考答案一、选择题(本大题共12小题,每小题5分,计60分,每小题只有一个答案是正确的)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DBBADCACABCD二、填空题(本大题共4小题,每小题5分,计20分)13、2214、1 15、012=++y x 16、 6三、解答题(共6题,满分70分)解答应写出演算步骤。
泉港一中2016—2017学年上学期期中考高二文科数学试题一、选择题(本大题共12小题,共60分) 1.已知x ,y 的值如表所示:如果y 与x 呈线性相关且回归直线方程为=bx +3。
4,则b =( )A.1。
2B.2。
2 C 。
3.2 D 。
4.2 2.下列各数中,最小的数是( )A 。
75B 。
111111(2)C 。
210(6)D 。
85(9)) 3。
设x ∈R,则“x >”是“2x 2+x —1>0"的( ) A 。
充分而不必要条件 B 。
必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,如果输入a =-1,b =-2,则输出的a 的值为( )A 。
16B 。
8 C.4 D.25.过点(3,1)作一直线与圆(x -1)2+y 2=9相交于M 、N 两点,则|MN |的最小值为( ) A 。
B.2C.4D.66。
已知实数x ,y 满足方程x 2+y 2-4x +1=0,则的取值范围是( )A 。
[-1,1] B.[—,] C.[—,] D.[0,]x 1 2 3 4 5y 5 9 10 11 157.一个袋中装有大小相同的5个球,现将这5个球分别编号为1,2,3,4,5,从袋中取出两个球,每次只取出一个球,并且取出的球不放回.求取出的两个球上编号之积为奇数的概率为()A. B 。
C. D 。
8.下列说法正确的是()A.命题“∃x∈R使得x2+2x+3<0”的否定是:“∀x∈R,x2+2x+3>0"B.命题p:“∀x∈R,sinx+cosx ≤",则¬p是真命题C.“p∧q为真命题”是“p∨q为真命题"的必要不充分条件D.“a<1"是“a>0"的必要不充分条件9。
在区间[0,1]上随机取两个数x,y,记P为事件“x+y ≤”的概率,则P=()A. B.C 。
D 。
10。
已知椭圆C:+=1(a>b>0)的右顶点是圆x2+y2—4x+3=0的圆心,其离心率为,则椭圆C的方程为()A 。
福建省泉州市高二下学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)满足条件|z﹣i|+|z+i|=4的复数z在复平面上对应点的轨迹是()A . 一条直线B . 两条直线C . 圆D . 椭圆2. (2分) (2016高二下·珠海期末) 由1、2、3、4、5五个数字组成没有重复数字的五位数排成一递增数列,则首项为12345,第2项是12354…,直到末项(第120项)是54321,则第92项是()A . 43251B . 43512C . 45312D . 451323. (2分)若展开式中存在常数项,则n的最小值为()A . 5B . 6C . 7D . 84. (2分) (2016高二下·永川期中) 用反证法证明命题:“若(a﹣1)(b﹣1)(c﹣1)<0,则a,b,c中至少有一个小于1”时,下列假设中正确的是()A . 假设a,b,c中至多有一个大于1B . 假设a,b,c中至多有两个小于1C . 假设a,b,c都大于1D . 假设a,b,c都不小于15. (2分) (2018高二下·河南月考) 用数学归纳法证明“ ”时,由不等式成立,推证时,左边应增加的项数是()A .B .C .D .6. (2分) (2017高二下·临沭开学考) 设函数f(x)= x﹣lnx(x>0),则函数f(x)()A . 在区间(0,1)内有零点,在区间(1,+∞)内无零点B . 在区间(0,1)内有零点,在区间(1,+∞)内有零点C . 在区间(0,3),(3,+∞)均无零点D . 在区间(0,3),(3,+∞)均有零点7. (2分) (2018高二下·长春月考) 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线”的结论显然是错误的,这是因为()A . 大前提错误B . 小前提错误C . 推理形式错误D . 非以上错误8. (2分) (2017高二下·安徽期中) 已知;,则f(n+1)﹣f(n)=()A .B .C .D .9. (2分)若S1=, S2=, S3=,则S1 , S2 , S3的大小关系为()A . S1<S2<S3B . S2<S1<S3C . S1<S3<S2D . S3<S1<S210. (2分) (2016高二下·高密期末) 袋子中放有大小、性质完全相同的4个白球和5个黑球,如果不放回地依次摸出2个球,则在第一次摸到白球的条件下,第二次摸到黑球的概率为()A .B .C .D .11. (2分)如图,在长方体ABCD﹣A′B′C′D′中,P是对角线AC与BD的交点,若P为四棱锥的顶点,棱锥的底面为长方体的一个面,则这样的四棱锥有()A . 3个B . 4个C . 5个D . 6个12. (2分) (2016高二下·武汉期中) 甲、乙两名篮球运动员轮流投篮直至某人投中为止,计每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则P(ξ=k)等于()A . 0.6k﹣1×0.4B . 0.24k﹣1×0.76C . 0.4k﹣1×0.6D . 0.6k﹣1×0.24二、填空题: (共4题;共5分)13. (1分) (2017高三上·济宁期末) 根据下面一组等式:S1=1S2=2+3=5S3=4+5+6=15S4=7+8+9+10=34S5=11+12+13+14+15=65S6=16+17+18+19+20+21=111S7=22+23+24+25+26+27+28=175…可得S1+S3+S5+…+S2n﹣1=________.14. (1分)(2017·榆林模拟) 已知(1+x)(1﹣2x)6=a0+a1(x﹣1)+a2(x﹣1)2+…+a7(x﹣1)7 ,则a3=________.15. (2分)(2018高二下·黄陵期末) 若随机变量X服从二项分布,且 ,则=________ , =________.16. (1分)已知复数z=,则z的共轭复数的模为________三、解答题: (共6题;共55分)17. (5分) (2018高二下·巨鹿期末) 已知复数 , ,且为纯虚数,求复数 .18. (5分) (2015高二下·霍邱期中) 近年来,福建省大力推进海峡西岸经济区建设,福州作为省会城市,在发展过程中,交通状况一直倍受有关部门的关注,据有关统计数据显示上午6点到10点,车辆通过福州市区二环路某一路段的用时y(分钟)与车辆进入该路段的时刻t之间关系可近似地用如下函数给出:y=.求上午6点到10点,通过该路段用时最多的时刻.19. (10分)设有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从这些国画、油画、水彩画中各选一幅画布置房间,有几种不同的选法?(2)从这些画中任选出两幅不同画种的画布置房间,有几种不同的选法?20. (15分) (2017高二下·桃江期末) 设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+bx+c=0实根的个数(重根按一个计).(1)求方程x2+bx+c=0有实根的概率;(2)(理)求ξ的分布列和数学期望(文)求P(ξ=1)的值(3)(理)求在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根的概率.21. (10分) (2017高二下·桂林期末) 设数列{an}满足:a1=2,an+1=an2﹣nan+1.(1)求a2,a3,a4;(2)猜想an的一个通项公式,并用数学归纳法证明.22. (10分) (2017高二下·烟台期中) 已知函数fn(x)= ,数列{an}满足an+1=f'n(an),a1=3.(1)是否存在n,使得fn(x)在x=1处取得极值,若存在,求n的值,若不存在,说明理由;(2)求a2,a3,a4的值,请猜想数列{an}的通项公式,并用数学归纳法证明.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题: (共6题;共55分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、第11 页共11 页。
福建省泉州市泉港区2016-2017学年高二数学下学期期中试题 理一、选择题(每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求) 1.在复平面内,复数(2)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.在nxx )3(+的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且72=+B A ,则展开式中常数项的值为 ( )A 、6B 、9C 、12D 、183.我们知道,“心有灵犀”一般是对人的心理活动非常融洽的一种描述,它也可以用数学来定义:甲、乙两人都在}6,5,4,3,2,1{中选一个数,甲选的数记为a ,乙选的数记为b ,若1||≤-b a ,则称甲乙两人“心有灵犀”,由此可得甲乙两人“心有灵犀”的概率是( ) A.91 B. 92 C. 31 D. 944.收集一只棉铃虫的产卵数y 与温度x 的几组数据后发现两个变量有相关关系,并按不同的曲线来拟合y 与x 之间的关系,算出了对应的相关指数R 2的值如下表:则这组数据的回归方程的最佳选择应是A. 7.4638.19ˆ-=x yB.84.327.0ˆ-=x e yC.202367.0ˆ2-=x yD. 1)78.0(ˆ2--=x y 5.已知随机变量ξ服从正态分布2(1,)N σ.若4.0)10(=≤<ξP ,则=≥)2(ξP ( ) A .0.4 B .0.3 C .0.2 D .0.16.nx )31(+(其中n ∈N 且n ≥6)的展开式中5x 与6x 的系数相等,则n=( ) A .7 B .8 C .9 D .117.设随机变量X 的概率分布列如右表,则(|3|1)P X -==( ) A.712 B.512 C.14 D.168.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( ) A.175 B. 275 C.375 D.4759.反证法证明三角形的内角中至少有一个不小于60°,反设正确的是( ) A.假设三内角都不大于60° B.假设三内角都小于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个小于60°10.某单位拟安排6位员工在今年5月28日至30日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值28日,乙不值30日,则不同的安排方法共有( ) A.30种 B.36种 C.42种 D.48种 11.将数字“123367”重新排列后得到不同的偶数个数为( ) A .72 B .120 C .192 D .24012.在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为( )A .0.998B .0.046C .0.002D .0.954 二、填空题(每小题5分,共20分。
答案请写在答题卡上) 13.复数1i2ia +-(,i a R ∈为虚数单位)为纯虚数,则复数i z a =+的模为 . 14.在()()5211x x +-的展开式中含3x 项的系数是______(用数字作答).15.如图所示,在边长为1的正方形OABC 内任取一点P ,用A 表示事件“点P 恰好取自由曲线y =1x =及x 轴所围成的曲边梯形内”, B 表示事件“点P 恰好取自阴影部分内”,则(|)P B A =_____16.有6名选手参加学校唱歌比赛,学生甲猜测:4号或5号选手得第一名;学生乙猜测:3号选手不可能得第一名;学生丙猜测:1,2,6号选手中的一位获得第一名;学生丁猜测:4,5,6号选手都不可能获得第一名。
比赛后发现没有并列名次,且甲、乙、丙、丁四人中只有1人猜对,则获得第一名的选手号数是______.三、解答题(6大题,共70分。
解答时应按要求写出证明过程或演算步骤) 17.(本题10分).已知盒子中有4个红球,2个白球,从中一次抓三个球,(1)求没有抓到白球的概率;(2)记抓到球中的红球数为X ,求X 的分布列和数学期望.18.(本题12分)如图,四棱锥的底面ABCD 是正方形, 侧棱PD ⊥底面ABCD ,DC PD =,E 是PC 的中点. (1)证明:PA ∥平面BDE ; (2)求二面角C DE B --的余弦值.19.(本题12分)某单位共有10名员工,他们某年的收入如下表:(1)求该单位员工当年年薪的平均值和中位数;(2)从该单位中任取2人,其中年薪收入高于7万的人数记为ξ,求ξ的分布列和期望; (3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元,5.5万元,6万元,8.5万元,预测该员工第五年的年薪为多少?附:线性回归方程ˆˆˆybx a =+中系数计算公式分别为: ()()()1217 1.45ˆni i i n i i x x y y b x x ==--===-∑∑,ˆˆa y bx =-,其中,x y 为样本均值.20.(本题12分)2016世界特色魅力城市200强新鲜出炉,包括泉州市在内的28个中国城市入选。
美丽的泉州风景和人文景观迎来众多宾客。
现在很多人喜欢自助游,某调查机构为了了解“自助游”是否与性别有关,在泉州旅游节期间,随机抽取了100人,得如下所示的列联表:(1)若在100这人中,按性别分层抽取一个容量为20的样本,女性应抽11人,请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料能否在犯错误的概率不超过0.05前提下,认为赞成“自助游”是与性别有关系?(2)若以抽取样本的频率为概率,从旅游节游客中随机抽取3人赠送精美纪念品,记这3人中赞成“自助游”人数为X ,求X 的分布列和数学期望. 附: ()()()()()22n ad bc K a b a d a c b d -=++++21.(本题12分)已知函数21()ln (0).2f x x a x a =-> (Ⅰ)若2,a =求()f x 在(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[1,e]上的最小值;(Ⅲ)若()f x 在区间(1,e)上恰有两个零点,求a 的取值范围.22.(本题12分)巳知椭圆2222:1(0)x y M a b a b +=>>的长轴长为22124+=x y 有相同的离心率.(Ⅰ)求椭圆M 的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与M 有两个交点A 、B ,且OA OB ⊥?若存在,写出该圆的方程,并求||AB 的取值范围,若不存在,说明理由.2016-2017学年下学期期中考 高二理科数学 参考答案一、选择题(共12题,共60分)13.5 14.-10 15.1416.3三、解答题(共6题,共70分) 17.【解析】(1)没有抓到白球,即取到的全是红球,∴没有抓到白球的概率是304236C C 1C 5=;…3分 (2)X 的所有可能取值为1,2,3………………………………………………………4分()124236C C 1P X 1,C 5===()214236C C P X 2C === 35, ()304236C C 1P X 3C 5===,………7分∴X 的分布列为………………………………………………………8分8()5E X =。
………………………………………………………10分18.【解析】(1)连接AC 交BD 于点O ,连接OE ; 在△CPA 中,E ,O 分别是边CP ,CA 的中点,∴OE ∥PA ,而OE ⊂平面BDE ,PA ⊄平面BDE ,∴PA ∥平面BDE . ……………………4分(2)如图建立空间直角坐标系,设PD =DC =2.则A (2,0,0),P (0,0,2),E (0,1,1),B (2,2,0),∴ DE =(0,1,1),DB=(2,2,0),……………………5分设n =(x ,y ,z )是平面BDE 的一个法向量,则由00n DE n DB ⎧⋅=⎪⎨⋅=⎪⎩得0220y z x y ⎧⎨⎩+=,+=取y =-1,得n =(1,-1,1), 又DA=(2,0,0)是平面DEC 的一个法向量.……………………9分∴cos 〈n ,DA 〉=n DA n DA⋅⋅.……………………11分 故结合图形知二面角B-DE-C……………………12分 19.【解析】(1)平均值为11万元,中位数为7万元. ……………………2分 (2)年薪高于7万的有5人,低于或等于7万的有5人;ξ取值为0,1,2.()25210209C P C ξ===, ()1155210519C C P C ξ===, ()25210229C P C ξ===,………6分∴ξ的分布列为数学期望为0121999E ξ=⨯+⨯+⨯=.……………………8分(3)设(),1,2,3,4i i x y i =分别表示工作年限及相应年薪,则 2.5,6x y ==,()()()12171.45ˆni i i n i i x x y y b x x ==--===-∑∑6 1.4 2.5ˆ 2.5ˆay bx =-=-⨯=, 得线性回归方程: 1.4 2.5y x =+.………………………………11分 可预测该员工第5年的年薪收入为9.5万元. …………………12分 20.【解析】 (1)将22⨯列联表中的数据代入计算,得2K 的观测值:()2100301045151003.030, 3.030 3.8414555752533K ⨯⨯-⨯==≈<⨯⨯⨯ ,∴在犯错误概率不超过0.05前提下,不能认为赞成“自助游”与性别有关系.………6分(2) X 的所有可能取值为0,1,2,3,依题意()()i 3ii 33313,,i ?·,i 0,1,2,3444X B P X C -⎛⎫⎛⎫⎛⎫~=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴X 的分布列为:()94E X np ==. ………………………………………………………………………12分 21.(Ⅰ)当2,a =212()2ln ,'(),2f x x x f x x x =-=- 1'(1)1,(1),2f f =-=()f x 在(1,(1))f 处的切线方程为()112y x -=--,即2230.x y +-=……………4分(Ⅱ)由2'().a x af x x x x-=-=由0a >及定义域为(0,)+∞,令'()0,f x x ==得1,01,a ≤<≤即在(1,e)上,'()0f x >,)(x f 在[1,e]上单调递增, 因此,()f x 在区间[1,e]的最小值为1(1)2f =.②若21e,1e ,a <<<即在(上,'()0f x <,)(x f 单调递减;在上,'()0f x >,)(x f 单调递增,因此()f x 在区间[1,e]上的最小值为1(1ln ).2f a a =-2e,e ,a ≥≥即在(1,e)上,'()0f x <,)(x f 在[1,e]上单调递减, 因此,在()f x 区间[1,e]上的最小值为21(e)e 2f a =-.综上,()2min221,01,21()1ln ,1,21,.2a f x a a a e e a a e ⎧<≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩………………………………………8分 (Ⅲ)由(Ⅱ)可知当01a <≤或2e a ≥时,)(x f 在(1,e)上是单调递增或递减函数,不可能存在两个零点.当21e a <<时,要使()f x 在区间(1,e)上恰有两个零点,则∴21(1ln )0,21(1)0,21(e)e 0,2a a f f a ⎧-<⎪⎪⎪=>⎨⎪⎪=->⎪⎩即2e 1e 2a a >⎧⎪⎨<⎪⎩,此时,21e e 2a <<.所以,a 的取值范围为21(e,e ).2 …12分 22.【解析】(I )椭圆的长轴长为a =又与椭圆22124x y +=有相同的离心率2e =,故2, 2.c b == 所以椭圆M 的方程为22184x y += ………………………………………………4分 (II)若l 的斜率存在,设:l ,y kx m =+因l 与C 相切,故r =, 即()2221m r k =+. ①……………………………………5分又将直线l 方程代入椭圆M 的方程得()222124280,k x kmx m +++-=…………6分设()()1122,,,,A x y B x y 由韦达定理得1x +2x =24,12km k -+12x x =222812m k-+, 由0OA OB ⋅= 得到12x x +12y y =()21k +222812m k-++km 2412km k -++2m =0 化简得22388m k =+,② ……………………………………………………8分联立①②得283r =。