九年级四边形基础讲解
- 格式:doc
- 大小:526.00 KB
- 文档页数:28
1. 菱形的性质学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。
②通过学生间的交流、计论、分析、类比、归纳、运用已学过的知识总结菱形的特征。
教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。
教学难点:菱形的性质的理解及菱形性质的灵活运用。
学习过程: 活动一:1. 如何从一个平行四边形中剪出一个菱形来?的四边形叫做菱形,生活中的菱形有 。
2. 按探究步骤剪下一个四边形。
①所得四边形为什么一定是菱形?②菱形为什么是轴对称图形? 有 对称轴。
图中相等的线段有: 图中相等的角有:③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?活动二:对比菱形与平行四边形的对角线 菱形的对角线:平行四边的对角线:活动三:菱形性质的应用1.菱形的两条对角线的长分别是6cm 和8cm ,求菱形的周长和面积。
平行四边形菱形 ?2.如图,菱形花坛ABCD 的边长为20cm ,∠ABC=60°沿菱形的两条对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积。
随堂练习: 一、填空(1)菱形的两条对角线长分别是12cm ,16cm ,它的周长等于 ,面积等于 。
(2)菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个内角是 。
(3)已知:菱形的周长是20cm ,两个相邻的角的度数比为1:2,则较短的对角线长是 。
(4)已知:菱形的周长是52 cm ,一条对角线长是24 cm ,则它的面积是 。
二、解答题已知:如图,在菱形ABCD 中,周长为8cm ,∠BAD=1200 对角线AC ,BD 交于点O ,求这个菱形的对角线长和面积。
菱形的性质作业1、菱形具有而一般平行四边形不具有的性质是( )A. 对角相等B. 对边相等C. 对角线互相垂直D. 对角线相等 2、 菱形的周长为100cm ,一条对角线长为14cm ,它的面积是( )A. 168cm 2B. 336cm 2C. 672cm 2D. 84cm 2 3、下列语句中,错误的是( )A. 菱形是轴对称图形,它有两条对称轴B. 菱形的两组对边可以通过平移而相互得到C. 菱形的两组对边可以通过旋转而相互得到D. 菱形的相邻两边可以通过旋转而相互得到4、菱形的两条对角线分别是6 cm ,8 cm ,则菱形的边长为_____,面积为______.5、四边形ABCD 是菱形,点O 是两条对角线的交点,已知AB =5, AO =4,求对角线BD 和菱形ABCD 的面积.A BC D O6、如图,在菱形ABCD中,∠ADC=120°,则BD:AC等于().(A)3:2 (B)3:3 (C)1:2 (D)3:17、菱形ABCD的周长为20cm,两条对角线的比为3∶4,求菱形的面积。
初三数学九年级上册知识点——特殊的平行四边形九年级数学上册知识点特殊的平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质1)平行四边形的对边平行且相等。
(对边)2)平行四边形相邻的角互补,对角相等(对角)3)平行四边形的对角线互相平分。
(对角线)4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
2)推论:夹在两条平行线间的平行线段相等。
3.平行四边形的判定1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。
(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。
(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
5.平行四边形的面积:S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质1)菱形的四条边相等,对边平行。
(边)2)菱形的相邻的角互补,对角相等。
(对角)3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)4)菱形既是中央对称图形又是轴对称图形;对称中央是对角线的交点(对称中央到菱形四条边的间隔相等);对称轴有两条,是对角线地点的直线。
3.菱形的判定1)定义:有一组邻边相等的平行四边形是菱形。
2)定理1:四边都相等的四边形是菱形。
(边)3)定理2:对角线互相垂直的平行四边形是菱形。
(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。
(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
九年级数学上册第三章知识点九年级数学上册第三章知识点一、平行四边形1、平行四边形的性质定理:平行四边形的对边相等。
平行四边形的对角相等(邻角互补)。
平行四边形的对角线互相平分。
2、平行四边形的判定方法:定义:两组对边分别平行的四边形是平行四边形。
判定定理:两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
二、矩形1、矩形的性质定理:矩形的四个角都是直角。
矩形的对角线相等。
2、矩形的判定方法:定义:有一个角是直角的平行四边形是矩形。
判定定理:有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
(对角线相等且互相平分的四边形是矩形。
)三、菱形1、菱形的性质定理:菱形的四条边都相等。
菱形的对角线相等,并且每条对角线平分一组对角。
2、菱形的判定方法:定义:有一组邻边相等的平行四边形是菱形。
判定定理:四条边都相等的四边形是菱形。
对角线互相垂直的平行四边形是菱形。
(对角线互相垂直且平分的四边形是菱形。
)四、正方形1、正方形的性质定理:正方形的'四个角都是直角,四条边都相等。
正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
2、正方形的判定定理:l 有一个角是直角的菱形是正方形。
l 有一组邻边相等的矩形是正方形。
l 有一个角是直角且有一组邻边相等的平行四边形是正方形。
l 对角线相等的菱形是正方形。
l 对角线互相垂直的矩形是正方形。
l 对角线相等且互相垂直的平行四边形是正方形。
l 对角线相等且互相垂直、平分的四边形是正方形。
五、等腰梯形1、等腰梯形的性质定理:等腰梯形的两条对角线相等。
等腰梯形在同一底上的两个角相等。
2、等腰梯形的判定方法:定义:两腰相等的梯形是等腰梯形。
判定定理:在同一底上的两个角相等的梯形是等腰梯形。
六、三角形的中位线1、定义:连接三角形两边中点的线段叫做三角形的中位线。
第一章特殊的平行四边形考点回顾:1、矩形的性质和判定性质:(1)矩形具有平行四边形的所有性质;(2)矩形的四个角都是直角;(3)矩形的对角线相等;(4)矩形既是轴对称图形,也是中心对称图形.判定:(2)有一个是直角的平行四边形叫矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2、菱形的性质与判定性质:(1)菱形具有平行四边形的所有性质;(2)菱形的四条边都相等;(3)菱形的对角线互相垂直,且每一条对角线平分一组对角;(4)菱形是轴对称图形,也是中心对称图形.判定:(1)一组邻边相等的平行四边形叫菱形;(2)对角线互相垂直平分的四边形是菱形;(3)四边相等的四边形是菱形.3、正方形有一组邻边相等的矩形是正方形,或有一个角为直角的菱形是正方形.考点精讲精练:例1、如图,在△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB和DE是否相等?并证明你的结论.证明:(1)∵AE、AD分别平分∠BAF,∠BAC,,∴AD⊥AE.(2)答:AB=DE.∵AB=AC,AD平分∠BAC,∴AD⊥BC.∠BDA=90°.又∵∠BEA、∠DAE都为直角,∴四边形ADBE为矩形.∴AB=DE.变式练习1、如图,将□ABCD的边DC延长到点E,使CE=DC,连AE,交BC于F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连AC,BE,求证:四边形ABEC为矩形.证明:(1)∵四边形ABCD为平行四边形,∴AB CD.又∵CE=CD,∴AB EC,∴四边形ABEC为平行四边形,∴ AF=EF,BF=CF,又∠AFB=∠EFC,∴△ABF≌△ECF.(2)在□ABCD中,∠ABC=∠D.∵∠AFC=2∠D=2∠ABC=∠ABC+∠BAF,∴∠ABF=∠BAF,∴FA=FB,∵FA=FE,FB=FC,∴FA=FB=FE=FC.∴BC=EA,∴四边形ABEC为矩形.例2、在菱形ABCD中,对角线AC与BD交于点O,AB=5,AC=6,过D点作DE∥AC,交BC的延长线于点E,如图所示.(1)求△BDE的周长;(2)点P为线段BC上的点,连PO并延长交AD于点Q,求证:BP=DQ.解:(1)在菱形ABCD中,AC⊥BD,且OB=OD.∵AB=5,AC=6,∴OA=3..∴BD=8.∵AD∥BC,∴AD∥CE,∴四边形ACED为平行四边形.∴DE=AC=6.BE=2BC=2AB=10.∴△BDE的周长为8+6+10=24.(2)证明:在菱形ABCD中,DA∥BC,∴∠ODQ=∠OBP,∠OQD=∠OPB.又OD=OB,∴△BPO≌△DQO.∴BP=DQ.变式练习2、如图,DE为□ABCD的∠ADC的平分线,EF∥AD交DC于F.(1)求证:四边形AEFD为菱形;(2)若∠A=60°,AD=5,求菱形AEFD的面积.证明:(1)∵DF∥AE,AD∥EF,∴四边形AEFD为平行四边形.∴∠FDE=∠AED.∵DE为∠ADC的平分线,∴∠ADE=∠FDE,∴∠ADE=∠AED,∴□ABCD为菱形.(2)∠A=60°,AD=AE,∴△ADE为等边三角形.例3、如图,在△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明结论;(3)在(2)的条件下,△ABC满足什么条件时,四边形AECF为正方形?证明你的结论.解:(1)∵EF∥BC,∴∠OEC=∠ECB,∵CE平分∠ACB,∴∠OCE=∠BCE,∴∠OEC=∠OCE,∴OE=OC,同理OF=OC,∴OE=OF.(2)当点O为AC的中点时,四边形AECF为矩形.∵OA=OC=OE=OF,∴四边形AECF为矩形.(3)当∠ACB=90°时,为正方形.∵当∠ACB=90°时,∵MN∥BC,∴∠AOE=90°,∴AC⊥EF.∴矩形AECF的对角线互相垂直,∴四边形AECF为正方形.变式练习3、已知,如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连AC交EF于点O,延长OC至点M,使OM=OA,连EM,FM,判断四边形AEMF是什么特殊四边形?证明你的结论.证明:(1)∵ AB=AD,∠B=∠D=90°,AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DE.(2)四边形AEMF为菱形,∵四边形ABCD为正方形,∴∠BCA=∠DCA=45°,BC=DC.∵BE=DF,∴BC-BE=DC-DF.即CE=CF,∴OE=OF.∵OM=OA,∴四边形AEMF为平行四边形.∵AE=AF,∴□AEMF为菱形.备考模拟一、填空题1、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__________.2、如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF 的面积为__________cm2.3、如图,四边形ABCD为矩形,点E在线段CB的延长线上,连DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为__________.4、如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以为__________.5、如图,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC =60°,则四边形ABCD的面积等于__________cm2.6、①如图,在四边形ABCD中,E、F、G、H分别为AB、BC、CD、AD边上的中点,则四边形EFGH 为__________.②若ABCD为平行四边形,则EFGH为__________.③若ABCD为矩形,则EFGH为__________.④若ABCD为菱形,则EFGH为__________.答案:1、135°2、3、4、15°;或165°5、6、①平行四边形;②平行四边形;③菱形;④矩形二、选择题7、如图,四边形ABCD是菱形,△AEF为正三角形,点E、F分别在边BC,CD上,且AB=AE,则∠B=().A.60°B.80°C.100°D.120°8、如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折叠为EF,若∠EFC′=125°,则∠ABE的度数为().A.15°B.20°C.25°D.30°9、如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别为边AB,BC的中点,点P在AC 上运动,在运动过程中,存在PE+PF的最小值,则这个最小值为().A.3 B.4 C.5 D.610、如图,菱形ABCD的周长为20cm,DE⊥AB于E,,则下列结论中正确的个数有().①DE=3cm;②BE=1cm;③菱形的面积为15cm2;④.A.1个B.2个C.3个D.4个11、如图,矩形ABCD中,AB=3,BC=5,过对角线交点O作OE⊥AC交AD于E,则AE的长为().A.1.6 B.2.5 C.3 D.3.47-11 BBCCD三、综合题12、如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并证明理由.(2)若AB=6,BC=8,求S四边形OCED.解:(1)∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形.又∵矩形ABCD中,OC=OD,∴四边形OCED为菱形.(2)连OE.则四边形BCEO为平行四边形,∴OE=BC=8..13、如图,边长为4的正方形ABCD中,点P在AB上从A向B运动,连DP交AC于点Q.(1)试证明:无论P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积为正方形ABCD面积的?解:(1)∵AD=AB,∠DAQ=∠BAQ,AQ=AQ,∴△ADQ≌△ABQ.(2)△ADQ的面积恰好为正方形ABCD面积的时,过点Q作QE⊥AD于E,QF⊥AB 于F,则QE=QF,.由△DEQ∽△DAP得,解得AP=2.∴当AP=2时,△ADQ的面积是正方形ABCD面积的.14、如图,在Rt△ABC中,∠B=90°,,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点随之停止运动,设点D、E运动的时间为t秒,过点D作DF⊥BC于点F,连DE、EF.(1)求证:AE=DF;(2)四边形AEFD能成为菱形吗?若能,求出相应的t值;若不能,说明理由.解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF.(2)能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.∴AC=2AB=10.∴AD=AC-DC=10-2t.若使□AEFD为菱形,则需AE=AD=10-2t,即. 即当时,四边形AEFD为菱形.。
第4讲四边形【学习目标】1. 掌握多边形内角和与外角和公式,灵活运用多边形内角和与外角和公式解决有关问题;通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解它们这些性质在生产、生活中的广泛应用.2. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系. 掌握它们的性质和判别方法, 并能运用这些知识进行证明和计算.3. 掌握三角形中位线定理,并能灵活应用.4. 理解用多边形进行镶嵌的应用,能灵活运用公式解决有关问题.体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【基础知识】一、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2. 正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有条对角线.二、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.三、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质与判定性质:(1).边的性质:平行四边形两组对边平行且相等;(2).角的性质:平行四边形邻角互补,对角相等;(3).对角线性质:平行四边形的对角线互相平分;(4).平行四边形是中心对称图形,对角线的交点为对称中心.判定:(1).两组对边分别平行的四边形是平行四边形;(2).两组对边分别相等的四边形是平行四边形;(3).一组对边平行且相等的四边形是平行四边形;(4).两组对角分别相等的四边形是平行四边形;(5).对角线互相平分的四边形是平行四边形.3.平行线的性质(1)平行线间的距离都相等(2)等底等高的平行四边形面积相等四、特殊的平行四边形1.矩形、菱形、正方形的定义有一个角是直角的平行四边形叫做矩形.有一组邻边相等的平行四边形叫做菱形.有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形.2.矩形的性质与判定性质:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.判定:1. 有三个角是直角的四边形是矩形.2. 对角线相等的平行四边形是矩形.3. 定义:有一个角是直角的平行四边形叫做矩形.3.菱形的性质与判定性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;3.菱形是轴对称图形,它有两条对称轴.判定:1. 四条边相等的四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3. 定义:有一组邻边相等的平行四边形是菱形.4正方形的性质与判定性质:1.正方形四个角都是直角,四条边都相等.2.正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角.3.正方形是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心. 判定:1.有一组邻边相等的矩形是正方形.2.有一个内角是直角的菱形是正方形.5.三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.五、镶嵌的概念和特征用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【考点剖析】考点一:多边形内角和的问题例1.1.下列多边形中,内角和为360°的图形是()A.B.C.D.【答案】B【分析】若多边形的边数是n,则其内角和计算公式为(n﹣2)•180°,据此进行解答即可.【详解】解:由多边形内角和公式可得,(n﹣2)•180°=360°,解得n=4,是四边形,故选择B.考点二:平行四边形例2.2.下列关于判定平行四边形的说法错误的是()A.一组对角相等且一组对边平行的四边形B.一组对边相等且另一组对边平行的四边形C.两组对角分别相等的四边形D.四条边相等的四边形【答案】B【分析】根据平行四边形的判定定理即可得到结论.【详解】A. 一组对角相等且一组对边平行的四边形是平行四边形,故本选项不符合题意;B. 一组对边相等且另一组对边平行的四边形不一定是平行四边形,故本选项符合题意;C. 两组对角分别相等的四边形是平行四边形,故本选项不符合题意;D. 四条边相等的四边形是平行四边形,故本选项不符合题意;故选:B考点三:矩形性质理解例3.3.菱形具有而矩形不一定具有的性质是()A.邻边相等B.对角线互相平分C.对角线相等D.邻角互补【分析】根据菱形的性质及矩形的性质,结合各选项进行判断即可得出答案.【详解】解:A、邻边相等,菱形具有而矩形不具有,故本选项正确;B、对角线互相平分,菱形具有而矩形也具有,故本选项错误;C、对角线相等,菱形不具有矩形具有,故本选项错误;D、邻角互补,菱形具有而矩形也具有,故本选项错误;故选:A.考点四:多边形的镶嵌例4.4.用一批完全相同的正多边形能镶嵌成一个平面图案的是()A.正五边形B.正六边形C.正七边形D.正八边形【答案】B【分析】根据镶嵌的性质即可判断.【详解】A. 正五边形内角为108°,不能被360°整除,不符合题意;B. 正六边形内角为120°,可以被360°整除,符合题意;C. 正七边形内角为128.571°,不能被360°整除,不符合题意;D. 正八边形内角为135°,不能被360°整除,不符合题意;故选B.【真题演练】1.用形状、大小完全相同的图形不能镶嵌成平面图案的是( )A.正三角形B.正方形C.正五边形D.正六边形【答案】C【分析】本题考查了平面镶嵌的条件分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.A 、正三角形的每个内角是60°,能整除360°,6个能镶嵌;B 、正方形的每个内角是90°,能整除360°,4个能镶嵌;C 、正五边形每个内角是1803605108︒︒︒-÷=,不能整除360°,不能镶嵌;D 、正六边形每个内角为120度,能整除360度,3个能镶嵌.故选C .2.用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( )A .正三角形B .正方形C .正八边形D .正六边形 【答案】C【解析】【详解】A 、正三角形的每个内角是60°,能整除360°,能密铺;B 、正方形的每个内角是90°,4个能密铺;C 、正八边形的每个内角为:180°-360°÷8=135°,不能整除360°,不能密铺;D 、正六边形的每个内角是120°,能整除360°,能密铺.故选C .3.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( )A .正方形与正三角形B .正五边形与正三角形C .正六边形与正三角形D .正八边形与正方形 【答案】B【分析】分别求出各个正多边形每个内角的度数,再结合镶嵌的条件即可作出判断.【详解】解:A.正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,能作平面镶嵌.B.正三角形的每个内角是60°,正五边形每个内角是180°-360°÷5=108°,60m+108n=360°,m=6-95n ,显然n 取任何正整数时,m 不能得正整数,故不能作平面镶嵌.C.正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,能作平面镶嵌.D.正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,能作平面镶嵌. 故选:B .4.下列说法错误的是()A.平行四边形的对角线互相平分B.矩形的对角线相等C.直角三角形斜边上的中线等于斜边的一半D.对角线互相垂直的四边形是菱形【答案】D【分析】根据菱形的判定、矩形和平行四边形和直角三角形斜边上的中线性质进行判定即可.【详解】A、平行四边形的对角线互相平分,说法正确,不符合题意;B、矩形的对角线相等,说法正确,不符合题意;C、直角三角形斜边上的中线等于斜边的一半,说法正确,不符合题意;D、对角线互相垂直且平分的四边形是菱形,故错误,故选:D.5.菱形具有而平行四边形不一定具有的性质是()A.对角相等B.对角线相等C.对角线互相平分D.对角线互相垂直【答案】D【分析】利用菱形的性质和平行四边形的性质进行判断可求解.【详解】解:∵菱形具有的性质有:四边相等,两组对边平行且相等,两组对角分别相等,对角线互相平分,对角线互相垂直;平行四边形的性质有:两组对边分别平行且相等,两组对角分别相等,对角线互相平分,∵菱形具有而平行四边形不一定具有的性质是四边相等,对角线互相垂直,故选:D.6.下面说法正确的有()∵等腰三角形底边上的任意一点到两腰的距离之和等于一腰上的高;∵如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形;∵等腰三角形的两个内角相等;∵到三角形三边距离相等的点是三边垂直平分线的交点;∵等腰三角形一腰上的高与底边的夹角是顶角的一半.A.2个B.3个C.4个D.5个【答案】C【分析】根据等腰三角形的性质、三角形的内心和外心、直角三角形斜边中线的性质一一判断即可.【详解】解:∵等腰三角形底边上的任意一点到两腰的距离之和等于一腰上的高,正确;∵如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形,正确;∵等腰三角形的两个内角相等,正确;∵在三角形中,到三角形三边距离相等的点是三条角平分线的交点,故此选项不正确;∵等腰三角形一腰上的高与底边的夹角是顶角的一半,正确;故选:C .7.矩形具有,而菱形不一定具有的性质是( )A .对角线互相平分B .对角线相等C .对边平行且相等D .内角和为360° 【答案】B【分析】列举出矩形和菱形的所有性质,找出矩形具有而菱形不具有的性质即可.【详解】解:矩形的性质有:∵矩形的对边相等且平行,∵矩形的对角相等,且都是直角,∵矩形的对角线互相平分、相等;菱形的性质有:∵菱形的四条边都相等,且对边平行,∵菱形的对角相等,∵菱形的对角线互相平分、垂直,且每一条对角线平分一组对角;矩形和菱形都属于四边形,其内角和均为360°∵矩形具有而菱形不一定具有的性质是对角线相等,故选:B .8.在菱形ABCD 中,对角线 2AC =,BD =S 菱形ABCD =( )A .B .C .3D 【答案】B【分析】根据菱形的面积等于其对角线积的一半,进而求解.【详解】由题意知,菱形ABCD 的面积122=⨯⨯= 故选B .【过关检测】1.下列性质中,平行四边形不一定具备的是()A.对角互补B.邻角互补C.对角相等D.内角和是360°【答案】A【分析】利用平行四边形的性质逐个判断,即可得出结论.【详解】解:四边形ABCD是平行四边形,∵对角相等,不一定互补,故A符合题意,C不符合题意.AB∵CD,AD∵BC,∵邻角互补,故B不符合题意.任意四边形的内角和为360°,故D不符合题意.故选:A.2.下列关于平行四边形的特征的描述中,正确的个数有()(1)对边相等;(2)对角相等;(3)对角线相等;(4)邻边相等;(5)邻角互补.A.2个B.5个C.3个D.4个【答案】C【分析】根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即可判断各选项的正误.【详解】解:∵平行四边形的对角相等,对角线互相平分,对边平行,对边相等,邻角互补可知(1)(2)(5)正确,故选:C.3.能判定四边形ABCD为平行四边形的题设是( )A.AB∵CD,AD=BC B.AB=CD,AD=BC C.∵A=∵B,∵C=∵D D.AB=AD,CB=CD【答案】B【分析】根据两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形可得答案.【详解】解:A、AB∵CD,AD=BC不能判定四边形ABCD为平行四边形,故此选项错误;B、AB=CD,AD=BC判定四边形ABCD为平行四边形,故此选项正确;C、∵A=∵B,∵C=∵D不能判定四边形ABCD为平行四边形,故此选项错误;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形,故此选项错误;故选:B.4.平行四边形的一个内角为40︒,与它相邻的另一个内角等于()A.40︒B.50︒C.90︒D.140︒【答案】D【分析】利用平行四边形的邻角互补进而得出答案.【详解】解:∵平行四边形的一个内角为40°,∵与它相邻的另一个内角为:140°.故选:D.5.六边形的内角和为()A.360°B.540°C.720°D.180°【答案】C【分析】根据多边形内角和=(n-2) ×180 °计算即可.【详解】解:根据多边形的内角和可得:六边形的内角和为(6﹣2)×180°=720°.故选C.6.若一个正多边形的一个内角是144°,则它的边数是()A.6B.10C.12D.13【答案】B【分析】设这个正多边形的边数为n ,根据n 边形的内角和为(2)180n -⨯得(2)180144n n -⨯=⨯,然后解方程即可.【详解】解:设这个正多边形的边数为n ,则(2)180144n n -⨯=⨯,解得10n =.故选:B .7.四边形的内角和等于( )A .180°B .270°C .360°D .150° 【答案】C【分析】n 边形的内角和是(n -2)•180°,代入公式就可以求出内角和.【详解】解:(4-2)•180°=360°.故选:C .8.正五边形的每一个内角是( )A .30B .72︒C .108︒D .120︒【答案】C【分析】求出正五边形的每个外角即可解决问题.【详解】 解:正五边形的每个外角360725︒==︒,正五边形的每个内角,故选:C .9.十二边形的内角和为( )A .1620°B .1800°C .1980°D .2160°【答案】B【分析】根据多边形内角和公式解答即可;【详解】解:十二边形的内角和为:(12﹣2)•180°=1800°.故选B.10.从五边形的一个顶点出发,最多可以引出该五边形的对角线的条数是()A.2B.3C.4D.5【答案】A【分析】n n>边形从一个顶点出发可引出条对角线即可得.根据(3)【详解】-=(条),从五边形的一个顶点出发,最多可以引出的对角线的条数为532故选:A.。
九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(一)1.综合与实践问题情境在数学活动课上,老师提出了这样一个问题:如图①,已知正方形ABCD,点E是边上一点,连接AE,以AE为边在BC的上方作正方形AEFG.数学思考(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,求∠FCD的度数;实践探究(3)如图②,当点E在BC的延长线上时,连接AE,以AE为边在BC的上方作正方形AEFG,连接FC,若正方形ABCD的边长为4,CE=2,则CF的长是.2.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,最终到达点D,若点Q运动时间为x秒.(1)当x=1时,S△AQE=平方厘米;当x=时,S△AQE=平方厘米.(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求x的取值范围.(3)若△AQE的面积为平方厘米,直接写出x值.3.如图,在平行四边形ABCD中,∠BAD的平分线交C于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.4.如图1,正方形ABCD沿GF折叠,使B落在CD边上点E处,连接BE,BH.(1)求∠HBE的度數;(2)若BH与GF交于点O,连接OE,判断△BOE的形状,说明理由;(3)在(2)的条件下,作EQ⊥AB于点Q,连接OQ,若AG=2,CE=3,求△OQR 的面积.5.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.6.如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD交BD于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.7.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,B点的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC,BC于点E、D,且D点坐标是(,6).(1)求F点的坐标;(2)如图2,P点在第二象限,且△PDE≌△CED,求P点的坐标;(3)若M点为x轴上一动点,N点为直线DE上一动点,△FMN为以FN为底边的等腰直角三角形,求N点的坐标.8.已知,在平行四边形ABCD中,点F是AB上一点,连接DF交对角线AC于E,连接BE.(1)如图1,若∠EBC=∠EFA,EC平分∠DEB,求证:平行四边形ABCD是菱形;(2)如图2,对角线AC与BD相交于点O,当点F是AB的中点时,直接写出与△ADF 面积相等的三角形(不包括以AD为边的三角形).9.如图,四边形ABCD是平行四边形,∠BAC=90°,AB=AC,点H为边AB的中点,点E在CH的延长线上,且AE⊥BE.点F在线段AE上,且BF⊥CE,垂足为G.(1)若BF=AF,且EF=3,BE=4,求AD的长;(2)求证:BF+2EH=CE.10.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,则线段AE与DF的关系是;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(3)如图2,连接AC,当△ACE为等腰三角形时,请你求出CE:CD的值.参考答案1.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠ABE=∠ADG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS);(2)解:如图①,过点F作FH⊥BC,交BC的延长线于点H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠ABE=90°,∴△EHF≌△ABE(SAS),∴FH=EB,EH=AB=BC,∴CH=BE,∴CH=FH,∴∠FCH=45°,∴∠FCD=45°;(3)解:过点F作FH⊥BC,交BC的延长线于点H,如图②,由(2)知△EHF≌△ABE,∴EH=AB,FH=BE,∵AB=BC=4,CE=2,∴BE=FH=6,CH=CE+EH=6,∴CF==6.故答案为:6.2.解:(1)①∵E为CD的中点,∴DE=1,∵动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,∴当x=1时,AQ=1,∴S△AQE=×AQ×AD=×1×2=1,②∵AQ=,∴点Q在AB上,∴S△AQE=×AQ×AD=;故答案为:①1;②.(2)根据题意,得,解得:.∴x的取值范围是.(3)①当点Q在AB上,∵S△AQE=×x×2=,∴x=,②当点Q在BC上时,∵S△AQE=S梯形ABCE﹣S△ABQ﹣S△CQE=×2×(x﹣2)﹣×1×(4﹣x)=.∴x=,③当点Q在CD上时,∵S△AQE=,∴x=.综合以上可得x=或或.3.证明:(1)∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)△BDG是等边三角形,理由如下:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°,由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD===26,∴DM=BD=13.4.解:(1)如图1中,过点E作EN⊥AB于N,过点B作BM⊥EA′于M.由翻折可知,∠ABF=∠FEA′=90°,FB=FE,∴∠FBE=∠FEB,∴∠EBN=∠BEM,∵∠ENB=∠BME=90°,BE=EB,∴△ENB≌△BME(AAS),∴EN=BM,∵四边形ABCD是正方形,∴∠NBC=∠C=∠A=∠ENB=90°,AB=BC,∴AB=BM=BC,∵BH=BH,BE=BE,∴Rt△BAH≌Rt△BMH(HL),Rt△BME≌Rt△BCE,∴∠ABH=∠MBH,∠EBM=∠EBC,∴∠HBE=∠MBH+∠EBM=∠ABC=45°.(2)结论:△BOE是等腰直角三角形.理由:如图2中,由翻折的旋转可知,FG垂直平分线段BE,∴∠OBE=∠OEB=45°,∴OB=OE,∠BOE=90°,∴△BOE是等腰直角三角形.(3)如图3中,过点O作OM⊥EQ于M,ON⊥AB于N,过点G作GJ⊥BC于J.∵∠A=∠ABJ=∠BJG=90°,∴四边形ABJG是矩形,∴AG=BJ=2,AB=GJ=BC,∵FG⊥BE,∴∠EBC+∠BFG=90°,∠BFG+∠JGF=90°,∴∠CBE=∠JGF,∵∠C=∠GJF=90°,BC=GJ,∴△GJF≌△BCE(AAS),∴FJ=CE=3,∴BF=EF=5,CF==4,∴BC=BF+CF=9,∴BE===3,∴OB=OE=3,∵EQ⊥AB,∴∠ONB=∠OME=∠OMQ=∠MQN=90°,∴四边形MQNO是矩形,∴∠MON=∠BOE=90°,∴∠BON=∠EOM,∴△ONB≌△OME(AAS),∴ON=OM,∴四边形MQNO是正方形,设OM=OM=NQ=MQ=x,∵∠C=∠CBQ=∠BQE=90°,∴四边形BCEQ是矩形,∴BQ=EC=3,EQ=BC=9,在Rt△BON中,则有x2+(x+3)2=(3)2,解得x=3或﹣6(舍弃),∴OM=QM=3,EM=BN=6,∵∠BQR=∠OMR=90°,∠BRQ=∠ORM,BQ=OM=3,∴△BQR≌△OMR(AAS),∴QR=MR=∴S△OQR=•QR•OM=××3=.5.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=AD cos∠A=4×=2,∴BD===2.6.解:(1)∵正方形ABCD的面积是8,∴BC=CD==2,∴BD=×2=4.∵四边形ABCD为正方形,∴∠DCO=∠BCO=∠CDO=∠MBN=45°,∵CM平分∠ACD,∴∠DCM=∠MCO=22.5°,∴∠BMC=∠CDO+∠DCM=45°+22.5°=67.5°.∵MN⊥CM,∴∠CMN=90°,∴∠BMN=90°﹣67.5°=22.5°,∴∠BMN的度数为22..5°.(2)∵∠MCO=22.5°,∠BCO=45°,∴∠BCM=∠BCO+∠MCO=67.5°,又∵∠BMC=67.5°,∴∠BCM=∠BMC,∴BM=BC=CD=2,∴DM=BD﹣BM=4﹣2.∵∠DCM=22.5°,∠BMN=22.5°,∴∠DCM=∠BMN.∴在△DCM和△BMN中,,∴△DCM≌△BMN(ASA),∴BN=DM=4﹣2,∴BN的长为4﹣2.7.解:(1)∵点D坐标是(,6),B点的坐标是(4,6),四边形OABC为矩形,∴BC=AO=4,OC=AB=6,CD=,BD=BC﹣CD=,∵将矩形沿直线DE折叠,∴DF=CD=,∴BF===2,∴AF=6﹣2=4,∴点F(4,4).(2)如图2中,连接PF交DE于J.当四边形EFDP是矩形时,△PDE≌△FED≌△CED,∵C(0,6),F(4,4),∴直线CF的解析式为y=﹣x+6,∵DE垂直平分线段CF,∴直线DE的解析式为y=2x+1,∴E(0,1),D(,6),∵DJ=JE,∴J(,),∵PJ=JF,∴P(﹣,3).(3)如图3中,连接FN,以FN为对角线构造正方形NMFM′,连接MM′交FN于K.设N(m,2m+1),则K(,),M(,),M′(,),当点M落在x轴上时,=0,解得m=﹣,当点M′落在X轴上时,=0,解得m=﹣9,∴满足条件的点N的坐标为(﹣,)或(﹣9,﹣17).8.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠EFA,∵∠EBC=∠EFA,∴∠EBC=∠EDC,∵EC平分∠DEB,∴∠DCE=∠BCE,在△CED和△CEB中,,∴△CED≌△CEB(AAS),∴CD=CB,∵四边形ABCD为平行四边形,∴平行四边形ABCD为菱形;(2)解:与△ADF面积相等的三角形(不包括以AD为边的三角形)为△AOB、△BOC、△COD、△DFB;理由如下:∵四边形ABCD是平行四边形,∴OA=OB,OC=OD,∴△AOB的面积=△BOC的面积=△COD的面积=△ABD的面积,∵点F是AB的中点,∴△ADF的面积=△DFB的面积=△ABD的面积,∴△AOB的面积=△BOC的面积=△COD的面积=△DFB的面积=△ADF的面积.9.解:(1)∵AE⊥BE.EF=3,BE=4,∴BF=,∵BF=AF,∴AF=5,∴AE=3+5=8,∴AB,∵∠BAC=90°,AB=AC,∴BC=,∵四边形ABCD是平行四边形,∴AD=BC=4;(2)在CH上截取HM=HE,连接BM和AM,如图,∵BE⊥AE,∴∠AEB=90°,∵点H为边AB的中点,∴EH=AH=BH=MH,∴四边形AEBM是矩形,∴∠EAM=90°,∵∠BAC=90°,∴∠BAF=∠CAM,∵BF⊥CE,∴∠EGB=90°,∴∠EBG+∠BEG=90°,∵∠EBG+∠BFE=90°,∴∠BEG=∠BFE,∵矩形AEBM中,BE∥AM,∴∠BEG=∠AMH,∴∠BFE=∠AMH,∴∠AFB=∠AMC,∵AB=AC,∴△ABF≌△ACM(AAS),∴BF=CM,∵CM+EM=CE,EM=EH+MH=2EH,∴BF+2EH=CE.10.解:(1)结论:AE=DF,AE⊥DF,理由:如图1中,∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;故答案为:AE=DF,AE⊥DF.(2)成立.理由如下:如图2中,∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°,∴AE⊥DF.(3)有两种情况:①如图3﹣1中,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE==a,则CE:CD=a:a=.②如图3﹣2中,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE==a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2,即CE:CD=或2.。
九年级数学四边形的几个性质在你身边首先或大多数见到的几何图形不是点、线、角或三角形,而是像桌面、窗子、屏风、书本、镜框等那样的四边形和车轮、碗口、皮球、太阳等那样的圆。
因此,四边形也可以作为人们首先要研究的几何图形。
四边形有许多性质,其中有一些可能尚未引起你的注意。
请你准备几X 卡片纸和一把剪刀,然后再阅读下文。
性质一:用任何一种四边形都可以既不重叠又无空隙地覆盖整个平面。
将4X 卡片纸叠在一起,用剪刀剪得4X 一样的四边形,顶点标上A ,B ,C ,D 字母,然后按图1方式放置,由四边形4个内角之和等于360°就可以发现这个性质是成立的。
图1研究:用正五边形或正六边形能覆盖平面吗?用任意三角形呢?性质二:四边形对角线的交点到4个顶点的距离之和小于其他任一点到4个顶点的距离之和。
如图2所示,O 是四边形对角线的交点,它到4个顶点的距离之和正好等于两对角线之和,而其他任一点O’到A ,C 距离之和不小于AC ;到B ,D 距离之和不小于BD 。
图2研究:如图2所示,A ,B ,C ,D 是农村的4个居民点,商业点选在何处,使它到4个居民点的距离之和最短?性质三:设ABCD 为任意四边形,AB ,BC ,CD ,DA 的中点分别为E ,F ,G ,H ,则四边形ABCD 的面积≤EG HF ·。
如图3所示,将(1)绕E 点旋转180°得[1];再将(2)绕H 点旋转180°得[2];将(3)平移至[3],则OO O O 231是平行四边形。
因为线段EG 与FH 互相平分(为什么?),所以OO O O EG OO O O FH 123213====,,四边形OO O O 231的面积≤=OO OO EG FH 12··(当EG FH ⊥时取等号)。
图31963年秋天华罗庚教授南下对中学生讲课时,曾提及:“昔日民间丈量四边形田亩的面积时,曾用四边形对边中点连线EG与FH的乘积代替任意四边形ABCD的面积,这是不妥的,现在发现ABCD的面积≤EG FH·,并且ABCD的面积=∠EG FH EOH··sin。
九年级四边形基础讲解一.解答题(共30小题)1.如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.(1)求证:四边形EFCD是菱形;(2)如果AB=8,求D、F两点间的距离.2.在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.3.如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:AG=FG;(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.4.如图,四边形ABCD是正方形,点E,F分别在BC,AB上,点M在BA的延长线上,且CE=BF=AM,过点M,E分别作NM⊥DM,NE⊥DE交于N,连接NF.(1)求证:DE⊥DM;(2)猜想并写出四边形CENF是怎样的特殊四边形,并证明你的猜想.5.如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.6.已知:如图,AE∥BF,AC平分∠BAD,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.求证:四边形ABCD是菱形.7.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.8.如图,将▱ABCD的边BA延长到点E,使AE=AB,连接EC,交AD于点F,连接AC、ED.(1)求证:四边形ACDE是平行四边形;(2)若∠AFC=2∠B,求证:四边形ACDE是矩形.9.已知:矩形ABCD中,对角线AC与BD交于点O,CE平分∠BCD,交AB于点E,∠OCE=15°,求∠BEO的度数.10.如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,BC=5,CF=3,BF=4.求证:DE∥FC.11.已知:如图,△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC交AD于点F,求证:四边形CDEF是菱形.12.如图,已知▱ABCD的对角线AC、BD交于O,且∠1=∠2.(1)求证:▱ABCD是菱形;(2)F为AD上一点,连结BF交AC于E,且AE=AF,求证:AO=(AF+AB).13.如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.14.如图,在△ABC中,AB=AC,将△ABC绕点A逆时针旋转得到△ADE,连接BD、CE、BD、CE相交于点F,且∠ADB=∠BAC.求证:四边形ABFE为菱形.15.如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥A C,MF⊥AD,垂足分别为E、F.(1)求证:∠CAB=∠DAB;(2)若∠CAD=90°,求证:四边形AEMF是正方形.16.如图,在▱ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC交BC于点F.(1)求证:△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.17.如图,在△ABC中,∠ACB=90°,CD⊥AB,AE平分∠BAC交CD于F,EG⊥AB于G,求证:四边形CEGF是菱形.18.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)填空:∠B=度;(2)求证:四边形AECF是矩形.19.如图,在▱ABCD中,EF垂直平分AC交BC于E,交AD于F.(1)求证:四边形AECF为菱形;(2)若AC⊥CD,AB=6,BC=10,求四边形AECF的面积.20.如图,BD为矩形ABCD的对角线,∠ADB,∠DBC的平分线分别交于AB,CD于E,F点.(1)求证:四边形DEBF为平行四边形;(2)连接EF,若EF⊥BD,且AD=6,求菱形DEBF的面积.21.如图,矩形ABCD,过对角线BD的中点O作BD的垂线交AD于E,交BC于F,连结EB、DF.(1)求证:四边形DEBF是菱形;(2)若AD=3,AB=,求AE的长.22.如图,点O是菱形ABCD的对角线交点,作DE∥AC,CE∥BD,DE、CE相交于E,求证:四边形OCED是矩形.23.在矩形ABCD中,AB=4cm,BC=8cm,E、F分别是AD、BC上两点,并且AC垂直平分EF,垂足为O.(1)连接AF、CE.说明四边形AFCE为菱形;(2)求AF的长.24.如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD 交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.25.如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.26.在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.27.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)求△AEF的面积.28.探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=.29.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.问四边形AFCE是菱形吗?请说明理由.30.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.九年级四边形基础讲解参考答案与试题解析一.解答题(共30小题)1.(2016•费县一模)如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.(1)求证:四边形EFCD是菱形;(2)如果AB=8,求D、F两点间的距离.【解答】(1)证明:∵△ABC与△CDE都是等边三角形∴AB=AC=BC,ED=DC=EC∵点E、F分别为AC、BC的中点∴EF=AB,EC=AC,FC=BC∴EF=EC=FC∴EF=FC=ED=DC,∴四边形EFCD是菱形.(2)解:连接DF,与EC相交于点G,∵四边形EFCD是菱形∴DF⊥EC,垂足为G∵EF=AB=4,EF∥AB∴∠FEG=∠A=60°在Rt△EFG中,∠EGF=90°∴DF=2FG=2×4sin∠FEC=8sin60°=4.2.(2016•黄冈二模)在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.【解答】(1)证明:∵CE∥BF,∴∠CED=∠BFD,∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,∴△BDF≌△CDE(AAS);(2)四边形BFCE是矩形,证明:∵△BDF≌△CDE,∴DE=DF,∵BD=DC,∴四边形BFCE是平行四边形,∵BD=CD,DE=BC,∴BD=DC=DE,∴∠BEC=90°,∴平行四边形BFCE是矩形.3.(2016•重庆模拟)如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:AG=FG;(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.【解答】(1)证明:过C点作CH⊥BF于H点,∵∠CFB=45°∴CH=HF,∵∠ABG+∠BAG=90°,∠FBE+∠ABG=90°∴∠BAG=∠FBE,∵AG⊥BF,CH⊥BF,∴∠AGB=∠BHC=90°,在△AGB和△BHC中,∵∠AGB=∠BHC,∠BAG=∠HBC,AB=BC,∴△AGB≌△BHC,∴AG=BH,BG=CH,∵BH=BG+GH,∴BH=HF+GH=FG,∴AG=FG;(2)解:∵CH⊥GF,∴CH∥GM,∵C为FM的中点,∴CH=GM,∴BG=GM,∵BM=10,∴BG=2,GM=4,∴AG=4,AB=10,∴HF=2,∴CF=2×=2,∴CM=2,过B点作BK⊥CM于K,∵CK=CM=CF=,∴BK=3,过D作DQ⊥MF交MF延长线于Q,∴△BKC≌△CQD∴CQ=BK=3,DQ=CK=,∴QF=3﹣2=,∴DF==2.4.(2016•云南模拟)如图,四边形ABCD是正方形,点E,F分别在BC,AB上,点M在BA的延长线上,且CE=BF=AM,过点M,E分别作NM⊥DM,NE⊥DE交于N,连接NF.(1)求证:DE⊥DM;(2)猜想并写出四边形CENF是怎样的特殊四边形,并证明你的猜想.【解答】(1)证明:∵四边形ABCD是正方形,∴DC=DA,∠DCE=∠DAM=90°,在△DCE和△MDA中,,∴△DCE≌△MDA(SAS),∴DE=DM,∠EDC=∠MDA.又∵∠ADE+∠EDC=∠ADC=90°,∴∠ADE+∠MDA=90°,∴DE⊥DM;(2)解:四边形CENF是平行四边形,理由如下:∵四边形ABCD是正方形,∴AB∥CD,AB=CD.∵BF=AM,∴MF=AF+AM=AF+BF=AB,即MF=CD,又∵F在AB上,点M在BA的延长线上,∴MF∥CD,∴四边形CFMD是平行四边形,∴DM=CF,DM∥CF,∵NM⊥DM,NE⊥DE,DE⊥DM,∴四边形DENM都是矩形,∴EN=DM,EN∥DM,∴CF=EN,CF∥EN,∴四边形CENF为平行四边形.5.(2016春•澄城县期末)如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.【解答】(1)解:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)证明:∵AE=BE,∴∠B=∠BAE,又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,∴∠BCA=∠CAE,∴AE=CE,又∵四边形AECF为平行四边形,∴四边形AECF是菱形.6.(2016春•夏津县期末)已知:如图,AE∥BF,AC平分∠BAD,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠CAD.又∵AE∥BF,∴∠BCA=∠CAD,∴∠BAC=∠BCA.∴AB=BC,同理可证AB=AD.∴AD=BC,又AD∥BC,∴四边形ABCD是平行四边形,又AB=BC,∴平行四边形ABCD是菱形.7.(2016春•历下区期末)如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形.8.(2016春•德惠市期末)如图,将▱ABCD的边BA延长到点E,使AE=AB,连接EC,交AD于点F,连接AC、ED.(1)求证:四边形ACDE是平行四边形;(2)若∠AFC=2∠B,求证:四边形ACDE是矩形.【解答】证明:(1)∵▱ABCD中,AB=CD且AB∥CD,又∵AE=CD,∴AE=CD,AE∥CD,∴四边形ACDE是平行四边形;(2)∵▱ABCD中,AD∥BC,∴∠EAF=∠B,又∵∠AFC=∠EAF+∠AEF,∠AFC=2∠B∴∠EAF=∠AEF,∴AF=EF,又∵平行四边形ACDE中AD=2AF,EC=2EF∴AD=EC,∴平行四边形ACDE是矩形.9.(2016春•郴州校级期中)已知:矩形ABCD中,对角线AC与BD交于点O,CE平分∠BCD,交AB于点E,∠OCE=15°,求∠BEO的度数.【解答】解:∵四边形ABCD是矩形,∴∠ACB=90°DC∥AB,∴∠DCE=∠CEB,∵CE平分∠DCB,∴∠BCE=∠DCE=45°,∴∠BCE=∠CEB,∴BE=BC,∵∠DCE=45°,∠OCE=15°,∴∠DCO=30°,∴∠BCO﹣90°﹣30°=60°,∵四边形ABCD是矩形,∴AC=2AO=2OC,BD=2BO=2DO,AC=BD,∴AO=OC=CO=BO,∴△BOC是等边三角形,∴BC=OB=BE,∵DC∥AB,∴∠CAB=∠DBA=30°,∴∠BEO=∠BOE=(180°﹣∠DBA)=×(180°﹣30°)=75°.10.(2016春•江汉区期中)如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,BC=5,CF=3,BF=4.求证:DE∥FC.【解答】证明:延长BF交DE于H,∵四边形ABCD是正方形,∴∠BCD=90°,BC=CD,∴∠BCF+∠FCD=90°,∵△ECF是等腰直角三角形,CF=CE,∴∠ECD+∠FCD=90°,∴∠BCF=∠ECD.在△BCF和△DCE中,,∴△BCF≌△DCE(SAS),延长BF交DE于H,∴BF=DE,∠CBF=∠CDE,∵∠CBF+∠1=90°,∠1=∠2,∴∠2+∠CDE=90°,∴∠DHF=90°,∴BF⊥DE,在△BFC中,BC=5,CF=3,∠BFC=90°,∴BF==4.∵△BCF≌△DCE,∴DE=BF=4,∠BFC=∠DEC=∠FCE=90°.∴DE∥FC.11.(2016春•沭阳县校级月考)已知:如图,△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC交AD于点F,求证:四边形CDEF是菱形.【解答】证明:∵AD平分∠CAB,∴∠CAD=∠EAD,在△ADE和△ADC中,,∴△ADE≌△ADC(SAS);∴DE=DC,∠ADE=∠ADC,同理△AFE≌△AFC,∴EF=CF,∵EF∥BC∴∠EFD=∠ADC,∴∠EFD=∠ADE,∴DE=EF,∴DE=EF=CF=DC,∴四边形CDEF是菱形.12.(2016秋•江阴市校级月考)如图,已知▱ABCD的对角线AC、BD交于O,且∠1=∠2.(1)求证:▱ABCD是菱形;(2)F为AD上一点,连结BF交AC于E,且AE=AF,求证:AO=(AF+AB).【解答】解:(1)证明:∵▱ABCD中,AD∥BC,∴∠2=∠ACB,又∵∠1=∠2,∴∠1=∠ACB∴AB=BC,∴▱ABCD是菱形;(2)∵▱ABCD中,AD∥BC,∴∠AFE=∠EBC,又∵AF=AE,∴∠AFE=∠AEF=∠BEC,∴∠EBC=∠BEC,∴BC=CE,∴AC=AE+CE=AF+BC=2OA,∴OA=(AF+BC),又∵AB=BC,∴OA=(AF+AB).13.(2015•南平)如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.【解答】证明:∵四边形ABCD为矩形,∴AC=BD,则BO=CO.∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.又∵∠BOE=∠COF,∴△BOE≌△COF.∴BE=CF.14.(2015•常州二模)如图,在△ABC中,AB=AC,将△ABC绕点A逆时针旋转得到△ADE,连接BD、CE、BD、CE相交于点F,且∠ADB=∠BAC.求证:四边形ABFE为菱形.【解答】证明:由旋转的性质得:△ADE≌△ABC,∴AD=AB,AE=AC,∠DAE=∠BAC,∴∠ABD=∠ADB,∠ACE=∠AEC,∠BAD=∠CAE,∵∠ADB=∠BAC,∴∠DAE=∠ADB,∴AE∥BD,∵∠BAD+∠ABD+∠ADB=180°,∠CAE+∠ACE+∠AEC=180°,∴∠ABD=∠ACE,∴∠BAC=∠ACE,∴AB∥CE,∴四边形ABFE是平行四边形,又∵AB=AE,∴四边形ABFE为菱形.15.(2015•兰州一模)如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥A C,MF⊥AD,垂足分别为E、F.(1)求证:∠CAB=∠DAB;(2)若∠CAD=90°,求证:四边形AEMF是正方形.【解答】(1)证明:∵AB是CD的垂直平分线,∴AC=AD,又∵AB⊥CD∴∠CAB=∠DAB(等腰三角形的三线合一);(2)证明:∵ME⊥A C,MF⊥AD,∠CAD=90°,即∠CAD=∠AEM=∠AFM=90°,∴四边形AEMF是矩形,又∵∠CAB=∠DAB,ME⊥A C,MF⊥AD,∴ME=MF,∴矩形AEMF是正方形.16.(2015秋•李沧区期末)如图,在▱ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC交BC于点F.(1)求证:△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=CB,AD∥CB,∠A=∠C,∠ABC=∠ADC,∵BE平分∠ABC,DF平分∠ADC,∴∠ABE=∠ABC,∠CDF=∠ADC,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:四边形EBFD是菱形;理由如下:由(1)得:△ABE≌△CDF,∴AE=CF,∴DE=BF,又∵DE∥BF,∴四边形EBFD是平行四边形,∵BD⊥EF,∴四边形EBFD是菱形.17.(2015秋•大竹县校级期中)如图,在△ABC中,∠ACB=90°,CD⊥AB,AE平分∠BAC 交CD于F,EG⊥AB于G,求证:四边形CEGF是菱形.【解答】证明:∵AE平分∠BAC交CD于F,∴CE=EG,∠AEG=∠AEC,在△CEF和△GEF中,,∴△CEF≌△GEF(SAS),∴FG=FC,∠CFE=∠GFE,∵CD⊥AB,EG⊥AB,∴CD∥EG,∴∠CFE=∠GEF,又∵∠CFE=∠GFE,∴∠CFE=∠CEF,∴CF=CE,又∵FG=FC,CE=EG,∴CF=CE=EG=FG,∴四边形CEGF是菱形.18.(2014•沙坡头区校级模拟)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD 的中点,连接AE、CF.(1)填空:∠B=60度;(2)求证:四边形AECF是矩形.【解答】解:(1)因为四边形ABCD为菱形,∴AB=BC,∵AC=AB,∴△ABC为等边三角形,∴∠B=60°,故答案为:60;(2)证明:由(1)得三角形ABC为等边三角形,同理可得,△ACD为等边三角形,∵E、F分别是BC、AD的中点,∴AE⊥BC,CF⊥AD,AE∥CF,∵AF∥CE,∴四边形AECF为矩形.19.(2013秋•姜堰市期末)如图,在▱ABCD中,EF垂直平分AC交BC于E,交AD于F.(1)求证:四边形AECF为菱形;(2)若AC⊥CD,AB=6,BC=10,求四边形AECF的面积.【解答】解:(1)∵EF垂直平分AC,∴AO=OC,∴∠1=∠2,∠3=∠4,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠1=∠4=∠3,∴AF=AE,∴AE=EC=CF=FA,∴四边形AECF是菱形.(2)∵AC⊥CD,AC⊥EF∴EF∥CD∴EF=AB=6∵BC=10,∴由勾股定理得:AC=8,∴四边形AECF的面积为:AC•EF=×6×8=24;20.(2013秋•西陵区校级期末)如图,BD为矩形ABCD的对角线,∠ADB,∠DBC的平分线分别交于AB,CD于E,F点.(1)求证:四边形DEBF为平行四边形;(2)连接EF,若EF⊥BD,且AD=6,求菱形DEBF的面积.【解答】(1)证明:在矩形ABCD中,DC∥AB,AD∥BC,∴∠ADB=∠CBD,∴∠ADB=∠CBD即∠EDB=∠FBD,∴DE∥BF,∴四边形DEBF是平行四边形;(2)解:由∠EDB=∠FDB=∠ADE,且∠ADC=90°,∴∠ADE=30°,又∠A=90° AD=6,∴BE=2,∴DE=4,∴S菱形DEBF=BE×AD=24.21.(2014春•高安市期中)如图,矩形ABCD,过对角线BD的中点O作BD的垂线交AD 于E,交BC于F,连结EB、DF.(1)求证:四边形DEBF是菱形;(2)若AD=3,AB=,求AE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EDB=∠DBF,∠DEF=∠BFE,在△EDO和△FBO中,∴△EDO≌△FBO(AAS),∴EO=FO,∴四边形DEBF是平行四边形,又∵DE⊥EF,∴平行四边形DEBF是菱形;(2)解:设AE=x,则BE=DE=3﹣x,而AB=,在Rt△AEB中,根据勾股定理BE2=AE2+AB2,∴(3﹣x)2=x2+()2,解得:x=1,∴AE=1.22.(2014春•富宁县校级期中)如图,点O是菱形ABCD的对角线交点,作DE∥AC,CE ∥BD,DE、CE相交于E,求证:四边形OCED是矩形.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.23.(2014春•东台市校级月考)在矩形ABCD中,AB=4cm,BC=8cm,E、F分别是AD、BC上两点,并且AC垂直平分EF,垂足为O.(1)连接AF、CE.说明四边形AFCE为菱形;(2)求AF的长.【解答】证明:(1)∵四边形ABCD矩形,∴AD∥BC,∴∠EAC=∠ACF,∵EF平分AC,∴AO=OC,在△AOE和△COE中,,∴△AOE≌△COE,∴EO=OF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.(2)设AF=FC=x,则BF=8﹣x;在Rt△ABF中,AB2+BF2=AF2,即:42+(8﹣x)2=x2,解得:x=5,∴AC的长为5cm.24.(2013•乌鲁木齐)如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.【解答】证明:∵∠ACB=90°,AE平分∠BAC,EH⊥AB,∴CE=EH,在Rt△ACE和Rt△AHE中,AE=AE,CE=EH,由勾股定理得:AC=AH,∵AE平分∠CAB,∴∠CAF=∠HAF,在△CAF和△HAF中∴△CAF≌△HAF(SAS),∴∠ACD=∠AHF,∵CD⊥AB,∠ACB=90°,∴∠CDA=∠ACB=90°,∴∠B+∠CAB=90°,∠CAB+∠ACD=90°,∴∠ACD=∠B=∠AHF,∴FH∥CE,∵CD⊥AB,EH⊥AB,∴CF∥EH,∴四边形CFHE是平行四边形,∵CE=EH,∴四边形CFHE是菱形.25.(2013•东营模拟)如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.【解答】证明:(1)∵BE=BP,∴∠E=∠BPE,∵BC∥AF,∴∠BPE=∠F,∴∠E=∠F.(2)∵EF∥BD,∴∠E=∠ABD,∠F=∠ADB,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是平行四边形,∴□ABCD是菱形.26.(2013•云龙区校级三模)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.【解答】解:四边形AECF是矩形,理由:∵在▱ABCD中,E、F分别是AB、CD的中点,∴AB∥CD,AE=BE=CF=DF,∴AE FC,∴四边形AECF是平行四边形,∵AC=BC,E为AB的中点,∴∠AEC=90°,∴平行四边形AECF是矩形.27.(2013•枣阳市模拟)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)求△AEF的面积.【解答】证明:如右图,(1)∵四边形ABCD是正方形,∴∠B=90°,AB=BC,∵G、E是AB、BC中点,∴BG=AB,BE=BC,∴BG=BE,∴∠BGE=∠BEG=45°,∴∠BGE=∠1+∠2=45°,∵∠AEF=90°,∴∠1+∠4=180°﹣45°﹣90°=45°,∴∠2=∠4,即∠BAE=∠FEC;(2)由(1)知∠BGE=45°,∴∠AGE=135°,∵CF是∠DCH的角平分线,∴∠FCH=×90°=45°,∴∠ECF=135°,∵四边形ABCD是正方形,∴AB=BC,∵G、E是AB、BC中点,∴AG=AB,EC=BC,∴AG=EC,在△AGE和△ECF中,,∴△AGE≌△ECF,∴AE=EF,在Rt△ABE中,∵AE2=AB2+BE2,∴AE2=a2,∴S△AEF=×AE×EF=AE2=×a2=a2.28.(2013•长春模拟)探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB 和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=3.【解答】证明:∵四边形ANMB和ACDE是正方形,∴AN=AB,AC=AE,∠NAB=∠CAE=90°,∵∠NAC=∠NAB+∠BAC,∠BAE=∠BAC+∠CAE,∴∠NAC=∠BAE,在△ANC和△ABE中∴△ANC≌△ABE(SAS),∴∠ANC=∠ABE.解:∵四边形NABM是正方形,∴∠NAB=90°,∴∠ANC+∠AON=90°,∵∠BOP=∠AON,∠ANC=∠ABE,∴∠ABP+∠BOP=90°,∴∠BPC=∠ABP+∠BOP=90°,∵Q为BC中点,BC=6,∴PQ=BC=3,故答案为:3.29.(2013秋•海原县校级期末)如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.问四边形AFCE是菱形吗?请说明理由.【解答】解:四边形AFCE是菱形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴=,∵AO=OC,∴OE=OF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴平行四边形AFCE是菱形.30.(2013春•沧浪区校级期末)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.【解答】解:(1)BG=DE,BG⊥DE;∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,BC=DC∠BCG=∠DCE CG=CE,∴△BCG≌△DCE(SAS),∴BG=DE;延长BG交DE于点H,∵△BCG≌△DCE,∴∠CBG=∠CDE,又∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE,即BG⊥DE;(2)BG=DE,BG⊥DE仍然成立,在图(2)中证明如下∵四边形ABCD、四边形CEFG都是正方形∴BC=CD,CG=CE,∠BCD=∠ECG=90°∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,又∵∠BHC=∠DHO,∠CBG+∠BHC=90°∴∠CDE+∠DHO=90°∴∠DOH=90°∴BG⊥DE.。