(完整)初中数学平行四边形经典例题讲解(3套)
- 格式:doc
- 大小:736.74 KB
- 文档页数:21
一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒A解析:A【分析】 由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.2.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .24C解析:C【分析】 根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,BC=AD=6,AB=CD ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD 是解题的关键.3.如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,已知6AD =(正方形的四条边都相等,四个内角都是直角),2DF =.则AEF 的面积AEF S =( )A .6B .12C .15D .30C解析:C【分析】 延长CD 到G ,使DG=BE ,连接AG ,易证ADG ABE △≌△所以AE=AG ,BAE=DAG ∠∠ , 证AFG AEG △≌△,所以 GF=EF ,设BE=DG=x ,则EF=FG=x+2,在ECF Rt △中,利用勾股定理得222462x x 解得求出x ,最后求AGF S △问题即可求解.【详解】解:延长CD 到G ,使DG=BE ,连接AG ,在正方形ABCD 中,AB=AD ,90ADB B C ADC ∠=∠=∠=∠=︒ 90ADG B ∴∠=∠=︒,ADG ABE(SAS)∴△≌△,,AG AE BAE DAG ∴=∠=∠,45EAF ∠=︒ ,45DAF BAE ∴∠+∠=︒ ,GAF=45DAG DAF ∴∠∠+∠=︒,GAF=EAF ∴∠∠,又AF=AF ,AFG AEG ∴△≌△(SAS),EF=FG ∴,设BE=DG=x ,则EC=6-x ,FC=4,EF=FG=x+2,在ECF Rt △中,222=FC CE EF +,()()22246=2x x ∴+-+,解得,x=3, GF=DG DF=2+3=5∴+,AEF AGF 11S =S =GF AD=56=1522∴⨯⨯△△, 故选:C .【点睛】 本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确构造辅助线,证三角形全等是解决本题的关键.4.如图,在平行四边形ABCD 中,100B D ︒∠+∠=,则B 等于( )A .50°B .65°C .100°D .130°A解析:A【分析】 根据平行四边形的对角相等求出∠B 即可得解.【详解】 解:□ABCD 中,∠B =∠D ,∵∠B +∠D =100°,∴∠B =12×100°=50°, 故选:A .【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题.5.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .20205B解析:B【分析】 结合题意分析每个正方形的边长,从而发现数字的规律求解【详解】解:由题意可得:第1个正方形1234A A A A 的边长为012=1=(5)A A∵1212B A A A =∴112A B =∴第2个正方形1234B B B B 221+2=5由题意,以此类推,215C B =2225C B =∴第3个正方形1234C C C C 222(5)(25)5(5)+==…∴第n 个正方形的边长为15)n -∴第2020个正方形的边长为2019(5)故选:B .【点睛】本题考查勾股定理及图形类规律探索,题目难度不大,正确理解题意求解每个正方形边长的规律是解题关键.6.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .43D解析:D【分析】 根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==,∴224223BO =-=,∴243BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.7.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合题意;B 、AB=BE 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;C 、DF=EF 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;D 、当DE 平分ADB ∠时,四边形AEBD 是菱形,故该选项符合题意;故选:D .【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.8.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .4C解析:C【分析】 根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE =12(∠ADF+∠CDF ) =45°, ∵△BGE 的周长=BG+BE+GE ,GE=GF+EF=EC+AG ,∴△BGE 的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.9.如图,正方形ABCD 的对角线相交于点O ,正方形OMNQ 与ABCD 的边长均为a ,OM 与CD 相交于点E ,OQ 与BC 相交于点F ,且满足DE CF ,则两个正方形重合部分的面积为( )A .212aB .214aC .218a D .2116a B 解析:B【分析】由正方形OMNQ 与ABCD 得∠DOC=∠MOQ=90°可推出∠DOE=∠COF 由AC ,BD 是正方形ABCD 的对角线求得∠ODE=∠OCF=45°,可证△DOE ≌△COF (AAS ),利用面积和差S 四边形FOEC = S △EOC +S △DOE =S △DOC =214a 即可. 【详解】∵正方形OMNQ 与ABCD ,∴∠DOC=∠MOQ=90°,∴∠DOE+∠EOC =90º,∠EOC+∠COF=90º,∴∠DOE=∠COF ,又AC ,BD 是正方形ABCD 的对角线,∴∠ODE=∠OCF=45°,∵DE CF =,∴△DOE ≌△COF (AAS ),∴S 四边形FOEC =S △EOC +S △COF = S △EOC +S △DOE =S △DOC ,∵S △DOC =2ABCD 11=44S a 正方形, ∴S 四边形FOEC =214a . 故选择:B .【点睛】 本题考查正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题关键.10.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα=A 解析:A【分析】根据题意可得,CAB DBA ABC BAD ∠=∠∠=∠,再由直角三角形斜边的中线等于斜边的一半,可证CM DM AM BM ===,继而证明()AMC BMD SSS △≌△,解得1802AMC BMD CAM ∠=∠=︒-∠,最后根据三角形内角和180°定理,分别解得αβ、与CAM ∠的关系,整理即可解题.【详解】Rt Rt ABC BAD △≌△,CAB DBA ABC BAD ∴∠=∠∠=∠M 是AB 的中点,11,22CM AB DM AB ∴== CM DM AM BM ∴===∴∠CAM=∠MCA ,Rt Rt ABC BAD △≌△AC BD ∴=()AMC BMD SSS △≌△1802AMC BMD CAM ∴∠=∠=︒-∠CMD α∴=∠180AMC BMD =︒-∠-∠1802(1802)CAM =︒-⨯︒-∠4180CAM =∠-︒90ABC BAD CAM ∠=∠=︒-∠,AEB β=∠=180BAD ABC ︒-∠-∠180(90)(90)CAM CAM =︒-︒-∠-︒-∠2CAM =∠2180βα∴-=︒故选:A .【点睛】本题考查全等三角形的判定与性质、直角三角形斜边中线的性质、等腰三角形的性质、三角形内角和180°等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题11.如图,在ABC 中,10AB AC ==,D 为CA 延长线上一点,DE BC ⊥交AB 于点F .若F 为AB 中点,且12BC =,则DF =__________.8【分析】过点A 作AM ⊥BC 过点A 作AN ⊥BC 交DE 于N 证明△AFN ≌△BFE 得出AN=BE=3再利用勾股定理解答即可【详解】解:∵AB=AC ∴∠B=∠C ∵∴∠C+∠BFE=90∠B+∠BFE=90解析:8【分析】过点A 作AM ⊥BC ,过点A 作AN ⊥BC 交DE 于N ,证明△AFN ≌△BFE ,得出AN=BE=3,再利用勾股定理解答即可.【详解】解:∵AB=AC ,∴∠B=∠C ,∵DE BC ⊥,∴∠C+∠BFE=90,∠B+∠BFE=90°,∵∠BFE=∠AFD ,∠B=∠C ,∴∠BFE=∠AED=∠CDE ,∴AD=AF ,过点A 作AM ⊥BC ,在△ABC 中,∵AB=AC ,∴M 为BC 的中点,∴BM=12BC =6, 在Rt △ABM 中,AM=2222106AB BM -=-=8∵F 为AB 中点,FE ⊥BC , ∴FE 为△ABM 的中位线,BF=AF=12AB =5, ∴AD=AF=5,BE=132BM =, 过点A 作AN ⊥BC 交DE 于N ,∵AF=BF ,∠AFN=∠BFE ,∠ANF=∠BEF=90°,∴△AFN ≌△BFE ,∴AN=BE=3,在Rt △AND 中,DN=2222534AD AN -=-=,∵AD=AF ,AN ⊥DF ,∴DF=2DN=8.故答案为:8.【点睛】本题考查了勾股定理,等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,正确作出辅助线是解题的关键.12.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.12【分析】连接BD根据菱形对角线的性质利用勾股定理计算BD的长根据两平行线的距离相等所以△EAB和△ECD的面积和等于菱形ABCD面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12【分析】连接BD,根据菱形对角线的性质,利用勾股定理计算BD的长,根据两平行线的距离相等,所以△EAB和△ECD的面积和等于菱形ABCD面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD交AC于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=12×6=3,∵AB=5,由勾股定理得:224AB OA-=,∴BD=2OB=8,∵AB∥CD,∴△EAB和△ECD的高的和等于点C到直线AB的距离,∴△EAB 和△ECD 的面积和=12×ABCD S 菱形=12×12×AC×BD=168=124⨯⨯. 故答案为:12. 【点睛】 本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD 的高的和等于点C 到直线AB 的距离是解题的关键.13.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.【分析】首先利用勾股定理计算出BD 的长再根据折叠可得AD=A′D=5进而得到A′B 的长再设AE=x 则A′E=xBE=12-x 再在Rt △A′EB 中利用勾股定理得出关于x 的方程解出x 的值可得答案【详解】解析:103【分析】首先利用勾股定理计算出BD 的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x ,则A′E=x ,BE=12-x ,再在Rt △A′EB 中利用勾股定理得出关于x 的方程,解出x 的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴22125+=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x ,则A′E=x ,BE=12-x ,在Rt △A′EB 中:(12-x )2=x 2+82,解得:x=103. 故答案为:103. 【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x 的方程是解此题的关键.14.如图,EF 过ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若ABCD 的周长为19, 2.5OE =,则四边形EFCD 的周长为_____.145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=192.5 2×2=14.5.故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.15.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P 不与写B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF的最小值等于__________.48【分析】连接由菱形的性质解得再根据勾股定理解得继而证明四边形为矩形得到根据垂线段最短解得当时有最小值最后根据三角形面积公式解题即可【详解】连接四边形是菱形四边形为矩形当时有最小值此时的最小值为故解析:4.8【分析】连接OP ,由菱形的性质解得118,622BO BD OC AC ====,再根据勾股定理解得10BC =,继而证明四边形OEPF 为矩形,得到FE OP =,根据垂线段最短解得当OP BC ⊥时,OP 有最小值,最后根据三角形面积公式解题即可.【详解】连接OP ,四边形ABCD 是菱形,12,16AC BD ==,AC BD ∴⊥118,622BO BD OC AC ==== 22643610BC OB OC ∴=+=+=,,PE AC PF BD AC BD ⊥⊥⊥∴四边形OEPF 为矩形,FE OP ∴=当OP BC ⊥时,OP 有最小值,此时1122OBC S OB OC BC OP =⋅=⋅ 68 4.810OP ⨯∴== EF ∴的最小值为4.8,故答案为:4.8.【点睛】本题考查菱形的性质、矩形的判定与性质、勾股定理、垂线段最短等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).18-【分析】过A作AE⊥y轴于EAD⊥x轴于D构造正方形AEOD再证△AEB≌△ADC(SAS)得BE=CD由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a.【分析】过A作AE⊥y轴于E,AD⊥x轴于D,构造正方形AEOD,再证△AEB≌△ADC(SAS),得BE=CD,由EB=EO-BO=9-a,可求CD=9-a,求出OC=OD+CD=9+9-a=18-a即可.【详解】过A作AE⊥y轴于E,AD⊥x轴于D,A,∵点()9,9AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD为正方形,⊥,∠EAD=90°,∵AB AC∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD,=,AE=AD,∵AB AC∴△AEB≌△ADC(SAS),∴BE=CD,∵EB=EO-BO=9-a,∴CD=9-a,OC=OD+CD=9+9-a=18-a,故答案为:18-a.【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.17.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若38CDF∠=︒,则EFD∠的度数是_________.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.18.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若1DE=,则BF的长为__________.【分析】连接FE根据题意得CD=2AE=设BF=x则FG=xCF=2-x 在Rt△GEF中利用勾股定理可得EF2=(-2)2+x2在Rt△FCE中利用勾股定理可得EF2=(2-x )2+12从而得到关于 解析:51-【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.如图,点E 是平行四边形ABCD 的边BC 上一点,连结AE ,并延长AE 与DC 的延长线交于点F ,若AB AE =,50F ∠=︒,则D ∠=______︒.65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°利用平行四边形对角相等得出即可【详解】解:如图所示∵四边形解析:65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°,利用平行四边形对角相等得出即可.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠F=∠BAE=50°,.∵AB=AE,∴∠B=∠AEB=65°,∴∠D=∠B=65°.故答案是:65.【点睛】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.20.如图,在平行四边形ABCD中,∠ABC=135°,AD=42,AB=8,作对角线AC的垂直平分线EF,分别交对边AB、CD于点E和点F,则AE的长为_____.【分析】连接CE过点C作交AB的延长线于点H设AE=x则BE=8-xCE=AE=x在根据勾股定理即可得到x的值【详解】如图:连接CE过点C作交AB的延长线于点H平行四边形ABCD中设AE=x则BE=解析:20 3【分析】连接CE,过点C作CH AB,交AB的延长线于点H,设AE=x,则BE=8-x,CE=AE=x,在根据勾股定理,即可得到x的值.【详解】如图:连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,平行四边形ABCD 中,135,2ABC AD ∠=︒=45,2CBH BC ∴∠=︒=90,H ∠=︒45,BCH ∴∠=︒4CH BH ∴==设AE=x ,则BE=8-x ,EF 垂直平分AC ,CE AE x ∴==, 在Rt CEH 中,222CH EH EC +=,()222484x x ∴+-+=, 解得:203x =, AE ∴的长为203, 故答案为:203. 【点睛】 本题考查了平行四边形的性质,勾股定理以及线段垂直平分线的性质,解决问题的关键是作辅助线构造直角三角形,利用勾股定理求解.三、解答题21.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE BF =,连接AE ,CF .(1)求证:E F ∠=∠;(2)连接AF ,CE ,当BD 平分ABC ∠时,四边形AFCE 是什么特殊四边形?请说明理由.解析:(1)见解析;(2)四边形AFCE 是菱形,理由见解析【分析】(1)根据四边形ABCD 是平行四边形,可以得到AD=CB ,AD ∥BC ,从而可以得到∠ADE=∠CBF ,然后根据SAS 证明△ADE ≌△CBF ,从而得出结论;(2)根据BD 平分∠ABC 和平行四边形的性质,可以证明▱ABCD 是菱形,从而可以得到AC ⊥BD ,然后即可得到AC ⊥EF ,再根据题目中的条件,可以证明四边形AFCE 是平行四边形,然后根据AC ⊥EF ,即可得到四边形AFCE 是菱形.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD=CB ,AD ∥BC ,∴∠ADB=∠CBD ,∴∠ADE=∠CBF ,在△ADE 和△CBF 中,AD CB ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF (SAS ),∴∠E=∠F ;(2)当BD 平分∠ABC 时,四边形AFCE 是菱形,理由:∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,AD ∥BC ,∴∠ADB=∠CBD ,∴∠ABD=∠ADB ,∴AB=AD ,∴平行四边形ABCD 是菱形,∴AC ⊥BD ,∴AC ⊥EF ,∵DE=BF ,∴OE=OF ,又∵OA=OC ,∴四边形AFCE 是平行四边形,∵AC ⊥EF ,∴四边形AFCE 是菱形.【点睛】本题考查平行四边形的判定与性质、菱形的判定、全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒). (1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.解析:(1)5秒或373秒;(2)存在,163秒或72秒或685秒 【分析】 (1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t秒.∵四边形MNCB是平行四边形,∴MB=NC,当N从D运动到C时,∵BC=13cm,CD=21cm,∴BM=AB-AM=16-t,CN=21-2t,∴16-t=21-2t,解得t=5,当N从C运动到D时,∵BM=AB-AM=16-t,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t =72(秒);Ⅲ.当BM=BN ,当N 从C 运动到D 时,则BH=AB-AH=AB-DN=16-2t ,∵BM 2=BN 2=NH 2+BH 2=122+(16-2t )2,∴(16-t )2=122+(16-2t )2,即3t 2-32t+144=0,∵△<0,∴方程无实根,综上可知,当t=163秒或72秒或685秒时,△BMN 是等腰三角形. 【点睛】 本题主要考查了直角梯形的性质、平行四边形的性质、梯形的面积、等腰三角形的性质,特别应该注意要全面考虑各种情况,不要遗漏.23.如图,平行四边形ABCD 中,,AP BP 分别平分DAB ∠和CBA ∠,交于DC 边上点P , 2.5AD =.(1)求线段AB 的长.(2)若3BP =,求ABP △的面积.解析:(1)5;(2)6【分析】(1)证出AD=DP=2.5,BC=PC=2.5,得出DC=5=AB ,即可求出答案;(2)根据平行四边形性质得出AD ∥CB ,AB ∥CD ,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB 中求出∠APB=90°,由勾股定理求出AP ,从而求得△ABP 的面积.【详解】解:(1)∵AP 平分∠DAB ,∴∠DAP=∠PAB ,∵四边形ABCD 是平行四边形,∵AB ∥CD ,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP 是等腰三角形,∴AD=DP=2.5,同理:PC=CB=2.5,即AB=DC=DP+PC=5;(2)∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB+∠PBA=12(∠DAB+∠CBA )=90°, 在△APB 中,∠APB=180°-(∠PAB+∠PBA )=90°;在Rt △APB 中,AB=5,BP=3,∴AP=2253-=4,∴△APB 的面积=4×3÷2=6.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.24.如图,菱形ABCD 中,60B ∠=︒,点E ,F 分别在BC 和CD 上,BE CF =,求证:AE AF =.解析:证明见解析.【分析】连接AC ,证ABE ACF ≌即可【详解】证明:连接AC ,∵四边形ABCD 是菱形,∴AB BC CD AD ===,AC 平分BCD ∠.∵60B ∠=︒,∴ABC 是等边三角形,∴AB AC =,60∠=∠=∠︒=B BCA ACF . ∴在ABE △与ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩.∴ABE ACF ≌.∴AE AF =.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,证明三角形全等是解此题的关键. 25.已知:平行四边形ABCD 中,点M 为边CD 的中点,点N 为边AB 的中点,联结AM 、CN .(1)求证:AM ∥CN ;(2)过点B 作BH AM ⊥,垂足为H ,联结CH .求证:△BCH 是等腰三角形.解析:(1)见解析;(2)见解析【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的性质,可得AB ∥CD ,AB=CD ,又由点M 为边CD 的中点,点N 为边AB 的中点,即可得CM=AN ,继而可判定四边形ANCM 是平行四边形,则可证得AM ∥CN .(2)由AM ∥CN ,BH ⊥AM ,点N 为边AB 的中点,可证得BH ⊥CN ,ME 是△BAH 的中位线,则可得CN 是BH 的垂直平分线,继而证得△BCH 是等腰三角形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB CD =.∵点M 、N 分别是边CD 、AB 的中点,∴12CM CD =,1AN AB 2=. ∴CM AN =.又∵AB ∥CD , ∴四边形ANCM 是平行四边形∴AM ∥CN .(2)设BH 与CN 交于点E ,∵AM ∥CN ,BH ⊥AM ,∴BH ⊥CN ,∵N 是AB 的中点,∴EN 是△BAH 的中位线,∴BE=EH ,∴CN 是BH 的垂直平分线,∴CH=CB ,∴△BCH 是等腰三角形.【点睛】此题考查了平行四边形的判定与性质、线段垂直平分线的性质以及等腰三角形的判定.此题难度适中,注意掌握数形结合思想的应用. 26.综合与实践——探究正方形旋转中的数学问题问程情境:已知正方形ABCD 中,点O 是线段BC 的中点,将将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,在正方形绕点O 旋转过程中,顺次连接点B ,B ',C ,C '得到四边形''BB CC ,求证:四边形''BB CC 是矩形;(2)“善学”小组提出问题:如图2.在旋转过程中,当点B '落在对角线BD 上时,设A B ''与CD 交于点M .求证:四边形OB MC '是正方形.深入探究:(3)“好问”小组提出问题:如图3.若点O 是线段BC 的三等分点且2OB OC =,在正方形ABCD 旋转的过程中当线段A D ''经过点D 时,请直接写出''DD OC 的值. 解析:(1)证明见解析;(2)证明见解析;(3)2'='DD OC. 【分析】(1)由旋转性质可得 OB=OB′ ,OC=OC′ ,得到四边形BB′CC′是平行四边形,又 BC=B′ C′ ,得到平行四边形BB′CC′是矩形.(2)先由∠C=∠OB′M=∠B′OC=90°,证明四边形 OB′MC 是矩形 ,再由OC=OB′ 得到四边形 OB′MC 是正方形.(3)过D 作DN ⊥B′C′,证Rt △DNO ≌Rt △DCO(HL),设OC=a ,得到OC′=a ,DD′=2a ,即可求解.【详解】解:(1)由旋转性质可得OB OB '=,OC OC '=.点O 是线段BC 的中点 OB OC ∴=,''∴=OB OC ,OB OC =.∴四边形''BB CC 是平行四边形.又BC B C ''=,∴平行四边形''BB CC 是矩形. (2)证明:四边形ABCD 是正方形,BC CD ∴=,90C ∠=︒.180180904522-∠︒-∴︒∠=∠===︒︒C CBD CDB 由旋转可知,OB OB '=,45''∴∠=∠=︒OB B OBB454590'''∴∠=∠+∠=︒+︒=︒B OC OB B OBB .四边形A B C D ''''是正方形,90'∴∠=︒OB M∴四边形OB MC '是矩形OB OC =,OC=OC′ ,OB′=OB ,∴OC=OB′∴矩形OB MC '是正方形,(3)2'='DD OC .如图,过D 作DN ⊥B′C′可知,∠A′=∠B′=∠B′ND=90°,∠D′=∠C′=∠C′ND=90°,∴四边形DNC′D′为矩形,四边形DNB′A′为矩形,在Rt △DNO 与Rt △DCO 中,∵OD=OD ,DN=DC ,∴Rt △DNO ≌Rt △DCO(HL)设OC=a ,则OB=2OC=2a ,∴ON=OC=OC′=a∴BC=OB+OC=3a ,DD′=NC′=ON+OC′=2a , ∴2DD a OC a'='=2. 【点睛】 本题考查了特殊的四边形,平行四边形,矩形,正方形的性质和判定,解题的关键是熟练掌握特殊的四边形的性质和判定.27.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .(1)试判断BDE 的形状,并说明理由.(2)若4AB =,8AD =,求AE 的长.参考答案解析:(1)BDE 是等腰三角形,证明见解析;(2)3AE =.【分析】(1)根据折叠的性质可知EBD DBC ∠=∠,又因为//AD BC ,可知ADB DBC ∠=∠,即推出ADB EBD ∠=∠,所以BE DE =,BDE 为等腰三角形.(2)设AE x =,则8BE DE x ==-,在Rt ABE △中根据勾股定理列出等式,解出x 即可.【详解】(1)BDE 是等腰三角形,理由是:由折叠得:EBD DBC ∠=∠,∵四边形ABCD 是矩形,∴//AD BC ,∴ADB DBC ∠=∠,∴ADB EBD ∠=∠,∴BE DE =,∴BDE 是等腰三角形.(2)设AE x =,则8BE DE x ==-, ∵四边形ABCD 是矩形,∴90A ∠=︒,∴在Rt ABE △中,222AB AE BE +=,即2224(8)x x +=-,解得:3x =,∴3AE =.【点睛】本题考查翻折的性质,矩形的性质,等腰三角形的判定以及勾股定理.根据翻折的性质间接证明出BE DE =是解答本题的关键.28.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.解析:(1)见解析;(2)CE=CF ,理由见解析;(3)522【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt△ADK≌Rt BAG,则AK=BG=12,DK=AG=5,∵AF+FK=AK=BG=GF=AG+AF∴FK=AG=5在R t△DFK中,根据勾股定理可得,DF=2252+=DK FK②点F在AB左侧时,如图,过D作DK⊥AG,交其延长线于K.方法同①,可得FK=AG=12,在R t△DFK中,根据勾股定理可得,DF22122+=DK FK综上所述,DF的长为522【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,熟练掌握相关性质和定理是解本题的关键.。
八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。
平行四边形习题及答案平行四边形是初中数学中的一个重要概念,也是几何学中的基础知识之一。
它具有独特的性质和特点,是解决几何问题的关键要素之一。
在本文中,我将为大家介绍一些关于平行四边形的习题及其答案,希望能够帮助大家更好地理解和掌握这一知识点。
习题一:已知平行四边形ABCD中,AB=8cm,AD=5cm,角A的度数为60°,求平行四边形的面积。
解答:首先,我们知道平行四边形的面积可以通过底边乘以高得到。
由于ABCD是平行四边形,所以AD和BC也是平行的,且高的长度为AD。
因此,平行四边形的面积为8cm × 5cm = 40cm²。
习题二:已知平行四边形ABCD中,AB=6cm,BC=10cm,角A的度数为120°,求平行四边形的周长。
解答:平行四边形的周长可以通过将所有边长相加得到。
由于ABCD是平行四边形,所以AB和CD是平行的,BC和AD也是平行的。
因此,平行四边形的周长为6cm + 10cm + 6cm + 10cm = 32cm。
习题三:已知平行四边形ABCD中,AB=8cm,BC=12cm,角A的度数为135°,求平行四边形的对角线长度。
解答:对角线是连接平行四边形的相对顶点的线段。
在平行四边形ABCD中,对角线AC和BD是相互平分的。
由于ABCD是平行四边形,所以AC和BD是平行的。
我们可以利用三角形的余弦定理来求解对角线的长度。
设对角线的长度为x,根据余弦定理,我们可以得到方程:x² = 8² + 12² - 2 × 8 × 12 ×cos(135°)。
计算得到x² ≈ 256,因此x ≈ 16。
所以平行四边形的对角线长度为16cm。
习题四:已知平行四边形ABCD中,AB=6cm,BC=8cm,角A的度数为60°,求平行四边形的高。
解答:平行四边形的高是指与底边平行且垂直于底边的线段。
一、选择题1.如图,Rt ABC ∆中,90BAC AB AC AD BC ︒∠==⊥,,于点D ABC ∠,的平分线分别交AC AD 、于E F 、两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连DM ,下列结论:①DF DN =; ②DMN ∆为等腰三角形;③DM 平分BMN ∠;④AE NC =,其中正确结论的个数是( )A .1个B .2个C .3个D .4个D解析:D【分析】 求出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,证明()FBD NAD ASA ≅即可判断①,证明()AFB CNA ASA ≅,推出CN AF AE ==即可判断④,证明()ABM NBM ASA ≅,得AM MN =,由直角三角形斜边的中线的性质推出AM DM MN ==,ADM ABM ∠=∠,即可判断③,根据三角形外角性质求出DNM ∠,证明MDN DNM ∠=∠,即可判断②.【详解】解:∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴45ABC C ∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,∴45BAD CAD ∠=︒=∠,∵BE 平分ABC ∠, ∴122.52ABE CBE ABC ∠=∠=∠=︒, ∴9022.567.5BFD AEB ∠=∠=︒-︒=︒,∴67.5AFE BFD AEB ∠=∠=∠=︒,∴AF AE =,AM BE ⊥,∴90AMF AME ∠=∠=︒,∴9067.522.5DAN MBN ∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()FBD NAD ASA ≅,∴DF DN =,故①正确;在AFB △和CNA 中,4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩, ∴()AFB CNA ASA ≅,∴AF CN =,∵AF AE =,∴AE CN =,故④正确;在ABM 和NBM 中,90ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴()ABM NBM ASA ≅,∴AM MN =,在Rt ADN △中,AM DM MN ==,∴22.5DAN ADM ABM ∠=∠=︒=∠,∴22.522.545DMN DAN ADM ∠=∠+∠=︒+︒=︒,∴DM 平分BMN ∠,故③正确;∵4522.567.5DNA C CAN ∠=∠+∠=︒+︒=︒,∴1804567.567.5MDN DNM ∠=︒-︒-︒=︒=∠,∴DM MN =,∴DMN 是等腰三角形,故②正确.故选:D .【点睛】 本题考查了全等三角形的性质与判断,三角形外角性质,三角形内角和定理,直角三角形斜边上中线的性质,等腰三角形的性质和判定,解题的关键是熟练掌握这些性质定理进行证明求解.2.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且2CE DE =.将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①ABG AFG △≌△;②BG GC =;③//AG CF ;④3FGC S =.其中正确结论的个数是( )A .1B .2C .3D .4C解析:C【分析】 由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确; 根据三角形的特点及面积公式求出△FGC 的面积,即可求证④.【详解】∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中,AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG =GF =CG =3,∴②正确;∵CG =GF ,∴∠CFG =∠FCG ,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∴AG∥CF,∴③正确;∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴35CFGCEGS FGS GE==,∵S△GCE=12×3×4=6,∴S△CFG=35×6=185,∴④不正确;正确的结论有3个,故选:C.【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.3.平行四边形一边的长是12cm,则这个平行四边形的两条对角线长可以是()A.4cm或6cm B.6cm或10cm C.12cm或12cm D.12cm或14cm D 解析:D【分析】由四边形ABCD是平行四边形,可得OA=12AC,OB=12BD,然后利用三角形三边关系分析求解即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=12AC,OB=12BD,A、∵AC=4cm,BD=6cm,∴OA=2cm,OB=3cm,∴OA+OB=5cm<12cm,不能组成三角形,故不符合;B 、∵AC=6cm ,BD=10cm ,∴OA=3cm ,OB=5cm ,∴OA+OB=8cm <12cm ,不能组成三角形,故不符合;C 、∵AC=12cm ,BD=12cm ,∴OA=6cm ,OB=6cm ,∴OA+OB=12cm=12cm ,不能组成三角形,故不符合;D 、∵AC=12cm ,BD=14cm ,∴OA=6cm ,OB=7cm ,∴OA+OB=13cm >12cm ,能组成三角形,故符合;故选D .【点睛】此题考查了平行四边形的性质以及三角形的三边关系.注意掌握平行四边形的对角线互相平分.4.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形.A 解析:A【分析】根据正方形的判定逐项作出判断即可求解.【详解】解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意;B. 对角线相等的菱形是正方形,判断正确,不合题意;C. 对角线互相垂直的矩形是正方形,判断正确,不合题意;D. 一组邻边相等的矩形是正方形,判断正确,不合题意.故选:A【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.5.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠;D .OAB OAD ∠=∠.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠OAB=∠ACD ,∵∠OAB=∠OAD ,∴∠DAC=∠DCA ,∴AD=CD ,∴四边形ABCD 是菱形(邻边相等的平行四边形是菱形)故选:D .【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.6.在矩形ABCD 中,对角线AC 、BD 相交于点O ,AE 平分BAD ∠交BC 于点E ,15CAE ∠=︒.连接OE ,则下面的结论:①DOC 是等边三角形;②BOE △是等腰三角形;③2BC AB =;④150∠=︒AOE ;⑤AOE COE S S =,其中正确的结论有( )A .2个B .3个C .4个D .5个B解析:B【分析】 判断出△ABE 是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB =30°,再判断出△ABO ,△DOC 是等边三角形,可判断①;根据等边三角形的性质求出OB =AB ,再求出OB =BE ,可判断②,由直角三角形的性质可得BC 3AB ,可判断③,由等腰三角形性质求出∠BOE =75°,再根据∠AOE =∠AOB +∠BOE =135°,可判断④;由面积公式可得AOE COE SS =可判断⑤;即可求解.【详解】解:∵AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴∠AEB =45°,∴△ABE 是等腰直角三角形,∴AB =BE ,∵∠CAE =15°,∴∠ACE =∠AEB−∠CAE =45°−15°=30°,∴∠BAO =90°−30°=60°,∵矩形ABCD 中:OA =OB =OC =OD ,∴△ABO 是等边三角形,△COD 是等边三角形,故①正确;∴OB =AB ,又∵ AB =BE ,∴OB =BE ,∴△BOE 是等腰三角形,故②正确;在Rt △ABC 中∵∠ACB=30°∴BC =3AB ,故③错误;∵∠OBE =∠ABC−∠ABO =90°−60°=30°=∠ACB ,∴∠BOE =12(180°−30°)=75°, ∴∠AOE =∠AOB +∠BOE =60°+75°=135°,故④错误;∵AO =CO ,∴AOE COE S S ,故⑤正确;故选:B .【点睛】本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C 13D .6A解析:A【分析】 由菱形的性质得出OA =OC =6,OB =OD ,AC ⊥BD ,则AC =12,由直角三角形斜边上的中线性质得出OH =12AB ,再由菱形的面积求出BD =8,即可得出答案. 【详解】解:∵四边形ABCD 是菱形,∴OA =OC =6,OB =OD ,AC ⊥BD ,∴AC =12,∵DH ⊥AB ,∴∠BHD =90°,∴OH =12BD , ∵菱形ABCD 的面积=12×AC×BD =12×12×BD =48, ∴BD =8,∴OH =12BD =4; 故选:A .【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12BD . 8.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .20C解析:C【分析】 由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.9.如图,菱形ABCD 中,∠ABC=60°,AB=4,E 是边AD 上一动点,将△CDE 沿CE 折叠,得到△CFE ,则△BCF 面积的最大值是( )A .8B .83C .16D .163A解析:A【分析】 由三角形底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD 中,BC=CD=AB=4又∵将△CDE 沿CE 折叠,得到△CFE ,∴FC=CD=4由此,△BCF 的底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积∴△BCF 面积的最大值是1144822BC FC =⨯⨯= 故选:A .【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.10.矩形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,平行四边形ABCD中,CE AD⊥于点E,点F为边AB的中点,连接EF,CF,若12AD CD=,38CEF∠=︒,则AFE∠=_____________.24°【分析】延长CF交DA延长线于点G证△BCF≌△AGF得GF=FC由垂直得△FEC是等腰三角形可知△BFC是等腰三角形求出∠GFE和∠GFA即可【详解】解:延长CF交DA延长线于点G∵AG∥B解析:24°【分析】延长CF交DA延长线于点G,证△BCF≌△AGF,得GF=FC,由垂直得△FEC是等腰三角形,12AD CD=,可知△BFC是等腰三角形,求出∠GFE和∠GFA即可.【详解】解:延长CF交DA延长线于点G,∵AG∥BC,∴∠G=∠BCF ,∠GAF=∠B ,∵AF=FB ,∴△AGF ≌△BCF ,∴GF=CF ,AG=BC ,∵CE AD ⊥,∴EF=FG=FC ,∠GEC=90°,∵38CEF ∠=︒,∴∠FEG=∠FGE=52°,∠GFE=76°, ∵12AD CD =, ∴BC=BF=AF ,∵AG=BC ,∴AG=AF ,∠G=∠AFG=52°, AFE ∠=76°-52°=24°.【点睛】本题考查了平行四边形的性质,直角三角形的性质,等腰三角形的性质,全等三角形的性质与判定,解题关键是作出适当的辅助线,构造等腰三角形.12.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)②③④【分析】如图延长EF 交CD 的延长线于H 作EN ∥BC 交CD 于NFK ∥AB 交BC 于K 利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF 交CD 的延长线于H 作EN ∥解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB ,∵∠FCB >∠ECF ,∴∠DCF >∠ECF ,故①错误,∵FK ∥AB ,FD ∥CK ,∴四边形DFKC 是平行四边形,∵AD=2CD ,F 是AD 中点,∴DF=CD ,∴四边形DFKC 是菱形,∴∠DFC=∠KFC ,∵AE ∥FK ,∴∠AEF=∠EFK ,∵FE=FC ,FK ⊥EC ,∴∠EFK=∠KFC ,∴∠DFE=3∠AEF ,故③正确,∵四边形EBCN 是平行四边形,∴S △BEC =S △ENC ,∵S △EHC =2S △EFC ,S △EHC >S △ENC ,∴S △BEC <2S △CEF ,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.13.一个三角形的三边长分别为 6,8,10,则这个三角形最长边上的中线为_____.5【分析】根据勾股定理逆定理判断出三角形是直角三角形然后根据直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:∵62+82=100=102∴该三角形是直角三角形∴×10=5故答案为:5【点睛】解析:5【分析】根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:∵62+82=100=102,∴该三角形是直角三角形,∴1×10=5.2故答案为:5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.cm,两条对角线之比为3∶4,则菱形的周长为14.已知菱形的面积为962__________.40【分析】依题意已知菱形的面积以及对角线之比首先根据面积公式求出菱形的对角线长然后利用勾股定理求出菱形的边长【详解】解:设两条对角线长分别为3x和4x由题意可得:解得:x=±4(负值舍去)∴对角线解析:40cm【分析】依题意,已知菱形的面积以及对角线之比,首先根据面积公式求出菱形的对角线长,然后利用勾股定理求出菱形的边长.【详解】解:设两条对角线长分别为3x和4x,由题意可得:134962x x =,解得:x=±4(负值舍去) ∴对角线长分别为12cm 、16cm ,又∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=226+8=10cm ,则菱形的周长为40cm .故答案为:40cm .【点睛】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.15.如图,在菱形纸片ABCD 中,4AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 边的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上,则GE =_______.28【分析】过点作于根据菱形的性质得到继而可证再利用含30°角的直角三角形性质解得结合勾股定理解得的长根据折叠的性质得到最后在中利用勾股定理得据此整理解题即可【详解】过点作于是菱形是中点在中折叠在中解析:2.8【分析】过点E 作EH AD ⊥于H , 根据菱形的性质,得到//AB CD ,4AD BC CD AB ====,继而可证60A HDE ∠=∠=︒,再利用含30°角的直角三角形性质,解得12DH DE =,结合勾股定理解得HE 的长,根据折叠的性质,得到,AG GE AF EF ==,最后在Rt HGE 中利用勾股定理得222GE GH HE =+,据此整理解题即可.【详解】过点E 作EH AD ⊥于H ,ABCD 是菱形//AB CD ∴,4AD BC CD AB ====60A HDE ∴∠=∠=︒E 是CD 中点2DE ∴=在Rt DHE △中,2DE =HE DH ⊥60HDE ∠=︒30HED ∴∠=︒ 221,213DH HE ∴==-=折叠,AG GE AF EF ∴==在Rt HGE 中222GE GH HE =+22(41)3GE GE ∴=-++2.8GE ∴=故答案为:2.8.【点睛】本题考查翻折变换、菱形的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F .若∠ECB =20°,则∠ACD 的度数是______________.30°【分析】根据矩形的性质得到AD ∥BC ∠DCB =90°根据平行线的性质得到∠F =∠ECB =20°根据三角形的外角的性质得到∠ACG =∠AGC =∠GAF+∠F =2∠F =40°于是得到结论【详解】解 解析:30°【分析】根据矩形的性质得到AD ∥BC ,∠DCB =90°,根据平行线的性质得到∠F =∠ECB =20°,根据三角形的外角的性质得到∠ACG =∠AGC =∠GAF +∠F =2∠F =40°,于是得到结论.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠DCB =90°,∴∠F =∠ECB∵∠ECB =20°,∴∠F =∠ECB =20°,∵∠GAF =∠F ,∴∠GAF =∠F =20°,∴∠ACG =∠AGC =∠GAF +∠F =2∠F =40°,∴∠ACB =∠ACG +∠ECB =60°,∴∠ACD =90°﹣∠ACB =90°﹣60°=30°,故答案为:30°.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.17.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG 解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF 是等边三角形,∵EF=8,∴△GEF 的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.18.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC 的值是______.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB ,∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB ,∴43MA AE MC BC ==. ∴MA MC的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.19.如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若1DE =,则BF 的长为__________.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于 解析:51-【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.20.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =8,EF =1,则BC 长为__________.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB 得出AF=AB=8同理可得DE=DC=8再由EF 的长即可求出BC 的长【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB ,得出AF=AB=8,同理可得DE=DC=8,再由EF 的长,即可求出BC 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,DC=AB=8,AD=BC ,∴∠AFB=∠FBC ,∵BF 平分∠ABC ,∴∠ABF=∠FBC ,则∠ABF=∠AFB ,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB 是解决问题的关键.三、解答题21.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P 在何位置,四边形PCQD 始终是平行四边形.(2)当点P 在点B ,C 之间运动到什么位置时,四边形ABPQ 是平行四边形?并说明理由.解析:(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM ≌△QDM ,可得DQ=PC ,即可得结论;(2)得出P 在B 、C 之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【详解】解:(1)∵AD ∥BC ,∴∠QDM=∠PCM ,∵M 是CD 的中点,∴DM=CM ,∵∠DMQ=∠CMP ,DM=CM ,∠QDM=∠PCM ,∴△PCM ≌△QDM (ASA ).∴DQ=PC ,∵AD ∥BC ,∴四边形PCQD 是平行四边形,∴不管点P 在何位置,四边形PCQD 始终是平行四边形;(2)当四边形ABPQ 是平行四边形时,PB=AQ ,∵BC-CP=AD+QD ,∴9-CP=5+CP ,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.22.如图,四边形ABCD ,//BC AD ,P 为CD 上一点,PA 平分BAD ∠且BP AP ⊥. (1)若80BAD ︒∠=,求ABP ∠的度数;(2)求证:=+BA BC AD ;(3)设3BP a =,4AP a =,过点P 作一条直线,分别与AD ,BC 所在直线交于点E 点F .若AB EF =,求AE 的长(用含a 的代数式表示).解析:(1)50︒;(2)证明见解析;(3)52a 或3910a 【分析】(1)根据已知条件PA 平分BAD ∠且BP AP ⊥以及三角形内角和,即可求得ABP ∠的度数;(2)延长BP 交AD 的延长线于点G ,由已知条件即可证明ABP AGP ≌,即可得到BA GA =,BP GP =,进而即可证明BCP GDP △≌△,即可得到=BC GD ,通过相等关系,即可证明=+BA BC AD ;(3)根据题意可知,可以分两种情况进行讨论,分别为:①当//AB EF 时,延长BP 交AD 的延长线于点G ,可知此时四边形ABFE 是平行四边形,可以求得AB 的长度,由(2)中证明的ABP AGP ≌,BCP GDP △≌△,可得BA GA =,BP GP =,=CP DP ,=BC GD ,进而可以证明CFP ≌DEP ,可得CF DE =,进而通过线段的等量关系求得AE 的长;②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I ,同①可得PFC PED △≌△,则CF DE =,则可得5BF AE BC AD AB a +=+==,由ABP △和梯形ABCD 的面积关系可得BH 的长度,通过勾股定理即可得到AH 的长度,通过证明Rt BHA △≌Rt FIE △,可得75AH EI a ==,进而通过等量关系即可得到AE 的长. 【详解】(1)∵PA 平分BAD ∠,BP AP ⊥,∴11804022BAP DAP BAD ∠=∠=∠=⨯︒=︒,90APB ∠=︒, ∴在Rt ABP 中,180180409050ABP BAP APB ∠=︒-∠-∠=-︒-︒=︒;(2)如图1,延长BP 交AD 的延长线于点G , ∵BP AP ⊥,PA 平分BAD ∠,∴90APB APG ∠=∠=︒,BAP GAP ∠=∠, 在ABP △和AGP 中,BAP GAP ∠=∠,AP AP =,APB APG ∠=∠,∴ABP AGP ≌,∴BA GA =,BP GP =, ∵//BC AD , ∴CBP DGP ∠=∠, 在BCP 和GDP △中,CBP DGP ∠=∠,BP GP =,CPB DPG ∠=∠,∴BCP GDP △≌△, ∴=BC GD ,∴BA GA AD GD AD BC ==+=+;(3)分两种情况讨论,①当//AB EF 时,如图2,延长BP 交AD 的延长线于点G , ∴由已知条件可知,此时四边形ABFE 是平行四边形, ∴AE BF =,∵3BP a =,4AP a =,BP AP ⊥,∴在Rt ABP 中,222AB BP AP =+,解得,5AB a =, 由(2)可知,ABP AGP ≌, ∴5BA GA a ==,3BP GP a ==, 由(2)可知,BCP GDP △≌△, ∴=CP DP ,=BC GD , ∵//BC AD , ∴BFP GEP ∠=∠, 在CFP 和DEP 中,CFP DEP ∠=∠,=CP DP ,CPF DPE ∠=∠, ∴CFP ≌DEP , ∴CF DE =, ∵=BC GD ,∴BC CF GD DE +=+, ∴BF EG =,又∵四边形ABFE 是平行四边形, ∴BF AE =,∴BF AE EG ==, ∴25AG AE a ==,∴52AE a =;图2②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I , 同①可得PFC PED △≌△, ∴CF DE =,∴BF AE BF AD DE BF AD CF BC AD +=++=++=+, ∴5BF AE BC AD AB a +=+==, 在Rt ABP 中,2162ABP S BP AP a =⋅=△, 由(2)可知,梯形ABCD 的面积2212ABP S a ==△, 梯形ABCD 的面积2122BC ADBH a +=⨯=, 解得,245BH a =, 在Rt ABH 中,2275AH AB BH a =-=,∵//BC AD ,∴BH FI =,BF HI =, ∵在Rt BHA △和Rt FIE △中,BH FI =,AB EF =, ∴Rt BHA △≌Rt FIE △,∴75AH EI a ==,∴2()BF AE BF AH EI HI BF AH +=+++=+,∴2()BF AE BF AH +=+, ∴1110BF a =, ∴3910AE AB BF a =-=.图3 【点睛】本题考查了平行线的性质、角平分线的性质、勾股定理、全等三角形的证明和性质、三角形面积、梯形面积、线段的和差、三角形内角和等知识,解答本题的关键是正确的作出辅助线,证明三角形全等.23.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF .解析:见解析 【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论. 【详解】解:证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠, DE AB ∵⊥,DF BC ⊥, 90AED CFD ∴∠=∠=︒, 在ADE ∆和CDF ∆中, AED CFD A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.24.如图,CD 是线段AB 的垂直平分线,M 是AC 延长线上一点.(1)在图中补充完整以下作图,保留作图痕迹:作∠BCM的角平分线CN,过点B作CN 的垂线,垂足为E;(2)求证:四边形BECD是矩形;(3)AB与AC满足怎样的数量关系时,四边形BECD是正方形?证明你的结论.解析:(1)如图所示,见解析;(2)见解析;(3)当AB=2AC时,矩形BECD是正方形,证明见解析.【分析】(1)根据角平分线及垂线的作图方法依次作图;(2)根据CD是AB的垂直平分线,推出∠CDB=90°,AC=BC,利用CN平分∠BCM求出∠DCN=∠DCB+∠BCN=90°,由BE⊥CN求得∠BEC=90°,即可得到结论;(3)当AB=2AC时,矩形BECD是正方形,由AD=BD,AB=2AC,求得BD=22AC,根据AD⊥CD,∠CDB=90°,推出BD=CD,由此得到矩形BECD是正方形.【详解】(1)解:如图所示,(2)证明:∵CD是AB的垂直平分线,∴CD⊥BD,AD=BD,∴∠CDB=90°,AC=BC,∴∠DCB=12∠ACB,∵CN平分∠BCM,∴∠BCN=12∠BCM,∵∠ACB+∠BCM=180°,∴∠DCN=∠DCB+∠BCN=12(∠ACB+∠BCM)=90°,∵BE⊥CN,∴∠BEC=90°,∴四边形BECD是矩形;(3)当AB=2AC时,矩形BECD是正方形∵AD=BD,AB=2AC,∴BD=22AC,∵AD⊥CD,∠CDB=90°,∴BD=CD,∴矩形BECD是正方形.【点睛】此题考查作图—角平分线、垂线,矩形的判定定理,正方形的判定定理,正确作图及熟练掌握矩形和正方形的判定定理是解题的关键.25.如图,在▱ABCD中,AB=12cm,BC=6cm,∠A=60°,点P沿AB边从点A开始以2cm/秒的速度向点B移动,同时点Q沿DA边从点D开始以1cm/秒的速度向点A移动,用t表示移动的时间(0≤t≤6).(1)当t为何值时,△PAQ是等边三角形?(2)当t为何值时,△PAQ为直角三角形?解析:(1)t=2;(2)t=3或65t .【分析】(1)根据等边三角形的性质,列出关于t的方程,进而即可求解.(2)根据△PAQ是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP=2t(米),AQ=6-t(米).∵∠A=60°,∴当△PAQ是等边三角形时,AQ=AP,即2t=6-t,解得:t=2,∴当t=2时,△PAQ是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒), 当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒), ∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.26.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长. 解析:(1)见解析;(2)3AC =【分析】(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可. 【详解】(1)证明:2AD BC =,E 为AD 的中点, DE BC ∴=. //AD BC ,∴四边形BCDE 是平行四边形. 90ABD ∠=︒,AE DE =, BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC , //AD BC ,AC 平分BAD ∠, BAC DAC BCA ∴∠=∠=∠. 1AB BC ∴==.22AD BC ∴==, 2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒. 在Rt ACD ∆中 2AD =, 1CD ∴=,∴223AC AD CD =-=..【点睛】此题考查菱形的判定定理及性质定理,勾股定理,直角三角形30度角的性质,平行线的性质,直角三角形斜边中线等于斜边一半的性质,熟记菱形的判定及性质是解题的关键. 27.在Rt ABC 中,90ACB ︒∠=,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连接DE .(1)证明://DE CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形,并说明理由.解析:(1)见解析;(2)AC =12AB 【分析】(1)首先连接CE ,根据直角三角形的性质可得CE =12AB =AE ,再根据等边三角形的性质可得AD =CD ,然后证明△ADE ≌△CDE ,进而得到∠ADE =∠CDE =30°,再有∠DCB =150°可证明DE ∥CB ; (2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形.根据(1)中所求得出DC ∥BE ,进而得到四边形DCBE 是平行四边形.【详解】解:(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点, ∴CE =12AB =AE . ∵△ACD 是等边三角形, ∴AD =CD . 在△ADE 与△CDE 中,AD DC DE DE AE CE =⎧⎪=⎨⎪=⎩, ∴△ADE ≌△CDE (SSS ), ∴∠ADE =∠CDE =30°. ∵∠DCB =150°, ∴∠EDC +∠DCB =180°. ∴DE ∥CB . (2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形, 理由:∵AC =12AB ,∠ACB =90°, ∴∠B =30°, ∵∠DCB =150°, ∴∠DCB +∠B =180°, ∴DC ∥BE , 又∵DE ∥BC ,∴四边形DCBE 是平行四边形.【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.28.如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长; (2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+;(3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数. 解析:(1)3;(2)见解析;(3)60︒或15︒或37.5︒ 【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD 的长;(2)在BD 上截取DF=EN ,可证出AEN ADF △≌△,由全等三角形的性质得AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,可得出,MAN BAF ANM AFB ∠=∠∠=∠,则AMN ABF △≌△,可得12BF MN BC ==,即F 是BC 的中点,可得出AN=AF=FC=DF+CD=EN+CD ;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解. 【详解】解:(1)∵90BAC ∠=︒,2,30AB C =∠=︒, ∴BC=2AB=4,60B ∠=︒, ∵AD BC ⊥∴90,30ADB BAD ∠=︒∠=︒, ∴BD=12AB=1, ∴CD =BC-BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,。
平行四边形判定经典题型摘要:一、平行四边形的定义和性质二、平行四边形的判定方法1.两组对边分别平行2.两组对边分别相等3.一组对边平行且相等4.两组对角分别相等5.对角线互相平分三、经典题型解析1.题目一2.题目二3.题目三4.题目四5.题目五正文:平行四边形是初中数学中一个重要的基本图形,它具有许多独特的性质,其中最重要的性质之一就是可以通过一些特定的条件来判定一个四边形是否为平行四边形。
这些判定方法包括两组对边分别平行、两组对边分别相等、一组对边平行且相等、两组对角分别相等以及对角线互相平分。
首先,如果一个四边形的两组对边分别平行,那么这个四边形就是平行四边形。
这是最直接的判定方法。
其次,如果两组对边分别相等,那么这个四边形也是平行四边形。
这种情况下,四边形的一组对边可能相等,也可能不等。
再者,如果一组对边平行且相等,那么这个四边形也是平行四边形。
这种情况下,另一组对边可能平行,也可能相等。
此外,如果两组对角分别相等,那么这个四边形也是平行四边形。
最后,如果对角线互相平分,那么这个四边形也是平行四边形。
在实际做题过程中,我们需要根据题目给出的条件,灵活运用这些判定方法。
下面,我们通过五个经典题型来具体解析这些判定方法的应用。
题目一:如果一个四边形的两组对边分别平行,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。
题目二:如果一个四边形的两组对边分别相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。
题目三:如果一个四边形的一组对边平行且相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。
题目四:如果一个四边形的两组对角分别相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。
题目五:如果一个四边形的对角线互相平分,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。
八年级初二数学 平行四边形知识点及练习题及解析一、解答题1.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别为OB 、OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:AOE COF ∆≅∆;(2)四边形EGCF 是平行四边形吗?请说明理由;(3)若四边形EGCF 是矩形,则线段AB 、AC 的数量关系是______.2.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数;(2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .3.综合与探究(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE BE CD =+.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=︒,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.4.已知:在ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C 重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BD与CF的位置关系为__________;CF、BC、CD三条线段之间的数量关系____________________.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请你写出CF、BC、CD三条线段之间的数量关系并加以证明;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.△的形状,并说明理②若连接正方形对角线AE、DF,交点为O,连接OC,探究AOC由.5.如图①,已知正方形ABCD中,E,F分别是边AD,CD上的点(点E,F不与端点重合),且AE=DF,BE,AF交于点P,过点C作CH⊥BE交BE于点H.(1)求证:AF∥CH;(2)若3,AE=2,试求线段PH的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP PQ的值. 6.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.7.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的面积(用含t 的代数式表示).(2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线).8.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).9.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P .(1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).10.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒,2246B BP PD +=时,求PD 之长.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)见解析;(2)四边形EGCF 为平行四边形,理由见解析;(3)AC=2AB .【分析】(1)根据平行四边形的性质得到OE=OF 即可证得结论;(2)利用AOE COF ∆≅∆得到∠EAO=∠FCO ,AE=CF ,由此推出AE ∥CF ,EG=CF 即可证得四边形EGCF 是平行四边形;(3)AC=2AB ,根据平行四边形的性质推出AB=AO ,利用点E 是OB 的中点,得到AG ⊥OB ,即可得到四边形EGCF 是矩形.【详解】(1)四边形ABCD 为平行四边形,OA OC ∴=,OB OD =,点E 、F 分别为OB 、OD 的中点,12OE OB ∴=,12OF OD =, 则OE OF =,在AOE ∆与COF ∆中OA OC AOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩AOE COF ∴∆≅∆;(2)AOE COF ∆≅∆,EAO FCO ∴∠=∠,AE CF =,//AE CF ∴,又GE AE =,GE CF ∴=,∴四边形EGCF 为平行四边形;(3)当AC=2AB 时,四边形EGCF 是矩形.∵AC=2AB ,AC=2AO ,∴AB=AO ,∵点E 是OB 的中点,∴AG ⊥OB ,∴∠GEF=90°,∴四边形EGCF 是矩形.故答案为:AC=2AB .【点睛】此题考查了平行四边形的判定及性质,三角形全等的判定及性质,矩形的判定定理,等腰三角形的三线合一的性质,熟练掌握各知识点并运用解题是关键.2.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD =BC ,AD ∥BC ;证明BC 是△EFG 的中位线,得出BC ∥FG ,BC =12FG ,证出AD ∥FH ,AD ∥FH ,由平行四边形的判定方法即可得出结论; (3)连接EH ,CH ,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD 是平行四边形,∴∠BAE =∠BCD =70°,AD ∥BC ,∵∠DCE =20°,∵AB ∥CD ,∴∠CDE =180°﹣∠BAE =110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=12 FG,∵H为FG的中点,∴FH=12 FG,∴BC∥FH,BC=FH,∴AD∥FH,AD∥FH,∴四边形AFHD是平行四边形;(3)连接EH,CH,∵CE=CG,FH=HG,∴CH=12EF,CH∥EF,∵EB=BF=12 EF,∴BE=CH,∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,∵OC=OH,∴OE=OB=OC=12 BC,∴△BCE是直角三角形,∴∠FEG=90°,∴EF⊥EG.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.3.(1)CE=CF且CE⊥CF,理由见解析;(2)见解析;(3)10【分析】(1)根据正方形的性质,可证明△CBE≌△CDF(SAS),从而得出CE=CF,∠BCE=∠DCF,再利用余角的性质得到CE⊥CF;(2)延长AD至M,使DM=BE,连接CM,由△BEC≌△DFC,可得∠BCE=∠DCF,即可求∠GCF=∠GCE=45°,且GC=GC,EC=CF可证△ECG≌△GCF(SAS),则结论可求.(3)过点C作CF⊥AD于F,可证四边形ABCF是正方形,根据(2)的结论可得DE=DF+BE=4+DF,根据勾股定理列方程可求DF的长,即可得出DE.【详解】解:(1)CE=CF且CE⊥CF,证明:如图1,∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,又∵BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF,∠BCE=∠DCF,∵∠BCD=∠BCE+∠ECD=90°,∴∠ECD+∠DCF=90°,即CE⊥CF;(2)延长AD至M,使DM=BE,连接CM,∵∠GCE=45°,∴∠BCE+∠GCD=45°,∵△BEC≌△DFC,∴∠BCE=∠DCF,∴∠DCF+∠GCD=45°,即∠GCF=45°,∴∠GCE=∠GCF,且GC=GC,CE=CF,∴△GCE≌△GCF(SAS),∴GE=GF,∴GE=GD+DF=BE+GD;(3)如图:过点C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠A=∠B=90°,FC⊥AD,∴四边形ABCF是矩形,且AB=BC=12,∴四边形ABCF是正方形,∴AF=12,由(2)可得DE=DF+BE,∴DE=4+DF,在△ADE中,AE2+DA2=DE2.∴(12-4)2+(12-DF)2=(4+DF)2.∴DF=6,∴DE=4+6=10.【点睛】本题是四边形综合题,考查了正方形的性质,勾股定理,全等三角形的判定与性质,四边形的面积,熟练掌握正方形的性质是解题的关键.4.(1)BD⊥CF,CF=BC-CD;(2)CF=BC+CD,见解析;(3)①CF=CD−BC,②等腰三角形,见解析【分析】(1)先说明△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF⊥BD、CF=BD,又 BD+CD=BC, CF=BC-CD;(2)先利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF-CD=BC;(3)①与(2)同理可得BD=CF,然后结合图形可得CF=CD-BC;②先根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,再根据邻补角的定义求出∠ABD=135°,再根据同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△BAD≌△CAF,得∠ACF=∠ABD,求出∠FCD=90°,然后根据直角三角形斜边上的中线等于斜边的一半求出OC=12DF,再根据正方形的对角线相等求出OC=OA,从而得到△AOC是等腰三角形.【详解】(1)解:∵∠B4C=90°,AB=AC∴∠ABC=∠ACB=45°∵四边形ADEF是正方形∴AD=AF,∠DAF=90°∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°∴∠BAD=∠CAF在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°∴∠FCB=∠ACF+ ∠ACB=90°,即CF⊥BC ∵BD+CD=BC∴CF+CD=BC;故答案为:BD⊥CF,CF=BC-CD;(2)证明:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=∠BAC+∠DAC,∠CAF=∠DAF+∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD=BC+CD,∴CF=BC+CD;(3)①与(2)同理可得,BD=CF,所以,CF=CD−BC;②∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,则∠ABD=180∘−45°=135°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠CAF=90°,∠DAF=∠BAD+∠BAF=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=180°−45°=135°,∴∠FCD=∠ACF−∠ACB=90°,则△FCD为直角三角形,∵正方形ADEF中,O为DF中点,∴OC=1DF,2∵在正方形ADEF 中,OA=12AE ,AE=DF , ∴OC=OA ,∴△AOC 是等腰三角形.【点睛】 本题考查了四边形的综合题,正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、等腰三角形的判定以及同角的余角相等的性质,在(1)证明三角形全等得到思路并推广到(2)(3)是解答本题的关键.5.(1)见解析;(2)3)CP PQ =4. 【分析】(1)先证△ABE ≌△DAF ,然后通过角度转化,可得AF ⊥BE ,从而证平行;(2)先在Rt △ABE 中利用勾股定理求得BE 的长,在利用△ABE 的面积,求得AP 的长,最后利用PH=BP -BH 求得PH 的长;(3)设QP=a ,CP=b ,可推导出在Rt △APE 中,QE=QA=QP ,然后分别用a 、b 表示CP 和PQ 代入可求得.【详解】(1)证明:在正方形ABCD 中,AB=DA ,∠EAB=∠D=90°又∵AE=DF∴△ABE ≌△DAF(SAS)∴∠ABE=∠DAF又∵∠DAF+∠FAB=∠EAB=90°∴∠ABE+∠FAB=90°∴∠APB=90°∴AF ⊥BE又∵CH ⊥BE∴AF ∥CH(2)解:在正方形ABCD 中,∠EAB=90°,, AE= 2∴=从而由S △ABE = 12 AB·AE= 12 BE·AP 得:∴在Rt △ABP 中,= =3又容易得:△ABP ≌△BCH ∴∴(3)解:在正方形ABCD 中,AB=BC ,AD ∥BC∵CH ⊥BP ,PH=BH∴CP=BC∴∠CBP-=∠CPB而∠CPB=∠QPE ∠CBP=∠QEP∴∠QPE=∠QEP∴在Rt △APE 中 ∠QAP=∠QPA∴QE=QP=QA在四边形QABC 中,设QP=a CP=b则AB=BC=b , AQ=a ,QC=a+b∴b²+(b-a)2=(a+b)2∴b²=4ab 即b=4a 即 a CP b PQ =4. 【点睛】本题考查正方形的性质、全等的证明、勾股定理的应用和直角三角形斜边中线的性质,第(3)问的解题关键是推导得出QE=QA=QP .6.(1)见解析;(2)FH+FE=2DF ,理由见解析;(3)22【分析】(1)如图1中,证明△AFB ≌△DGA (AAS )可得结论.(2)结论:FH+FE=2DF .如图2中,过点D 作DK ⊥AE 于K ,DJ ⊥BF 交BF 的延长线于J ,证明四边形DKFJ 是正方形,可得结论.(3)如图3中,取AD 的中点J ,连接PJ ,延长JP 交CD 于R ,过点P 作PT ⊥CD 于T ,PK ⊥AD 于K .设PT=b .证明△KPJ 是等腰直角三角形,推出点P 在线段JR 上运动,求出JR 即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90°,∵DG ⊥AE ,AE ⊥BH ,∴∠AFB=∠DGH=90°,∴∠FAB+∠DAG=90°,∠DAG+∠ADG=90°,∴∠BAF=∠ADG ,∴△AFB≌△DGA(AAS),∴AF=DG,BF=AG,∴BF-DG=AG-AF=FG.(2)结论:FH+FE=2DF.理由:如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,∵四边形ABCD是正方形,∴∠BAD=∠ADE=90°,AB=AD,∵AE⊥BH,∴∠AFB=90°,∴∠DAE+∠EAB=90°,∠EAB+∠ABH=90°,∴∠DAE=∠ABH,∴△ABH≌△DAE(ASA),∴AH=AE,∵DE=EC=12CD,CD=AD,∴AH=DH,∴DE=DH,∵DJ⊥BJ,DK⊥AE,∴∠J=∠DKE=∠KFJ=90°,∴四边形DKFJ是矩形,∴∠JDK=∠ADC=90°,∴∠JDH=∠KDE,∵∠J=∠DKE=90°,∴△DJH≌△DKE(AAS),∴DJ=DK,JH=EK,∴四边形DKFJ是正方形,∴FK=FJ=DK=DJ,∴2FJ,∴2DF;(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.∵△ABH ≌△DAE ,∴AH=DE ,∵∠EDH=90°,HP=PE ,∴PD=PH=PE ,∵PK ⊥DH ,PT ⊥DE ,∴∠PKD=∠KDT=∠PTD=90°,∴四边形PTDK 是矩形,∴PT=DK=b ,PK=DT ,∵PH=PD=PE ,PK ⊥DH ,PT ⊥DE ,∴DH=2DK=2b ,DE=2DT ,∴AH=DE=1-2b ,∴PK=12DE=12-b , JK=DJ-DK=12-b , ∴PK=KJ ,∵∠PKJ=90°,∴∠KJP=45°,∴点P 在线段JR 上运动,∵2DJ=22, ∴点P 的运动轨迹的长为22. 【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轨迹等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.7.(1)214t ;(2)22t =;(3)存在,如图2(见解析),当AHQ HBM ≅时,22t =3(见解析),当ADE AHE ≅时,32t =4(见解析),当EGQ HBF ≅时,722t =【分析】(1)先根据线段中点的定义可得12AQ AP =,再根据矩形的性质、角平分线的定义可得45HAQ ∠=︒,从而可得AQH 是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得;(2)先根据平行四边形的性质可得//HQ MP ,从而可得//HQ BP ,再根据三角形中位线定理可得HQ 是ABP △的中位线,从而可得122AH AB ==,然后与(1)所求的2AH =建立等式求解即可得; (3)分①当点H 是AB 的中点时,AHQ HBM ≅;②当点Q 与点E 重合时,ADE AHE ≅;③当EG HB =时,EGQ HBF ≅三种情况,分别求解即可得.【详解】(1)由题意得:2AP t =,点Q 为AP 的中点,12AQ AP t ∴==, 四边形ABCD 是矩形,90B D BAD ∴∠=∠=∠=︒,AE ∵是BAD ∠的角平分线,1452HAQ DAE BAD ∴∠=∠=∠=︒, QH AB ⊥,AQH ∴是等腰直角三角形,22AH HQ AQ t ∴===, 则AQH 的面积为21124AH HQ t ⋅=; (2)如图1,四边形PQHM 是平行四边形,//HQ MP ∴,点M 在BC 边上,//HQ BP ∴,点Q 为AP 的中点,HQ ∴是ABP △的中位线,122AH BH AB ∴===,由(1)知,2AH =,则222t=,解得22t =;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则AH HB=,四边形PQHM是平行四边形,//HM PQ∴,HAQ BHM∴∠=∠,在AHQ和HBM△中,90HAQ BHMAH HBAHQ HBM∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()AHQ HBM ASA∴≅,由(2)可知,此时22t=;②如图3,当点Q与点E重合时,在ADE和AHE中,9045D AHEDAE HAEAE AE∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,()ADE AHE AAS∴≅,3AD AH ∴==, 则232t =, 解得32t =;③如图4,当EG HB =时,四边形ABCD 是矩形,四边形PQHM 是平行四边形,//,//CD AB HM PQ ∴,,90GEQ HAQ BHF EGQ AHQ B ∴∠=∠=∠∠=∠=︒=∠,在EGQ 和HBF 中,GEQ BHF EG HB EGQ B ∠=∠⎧⎪=⎨⎪∠=∠⎩,()EGQ HBF ASA ∴≅,2,42AH AB ==, 24HB AB AH ∴=-=, 在Rt ADE △中,45,3DAE AD ∠=︒=,Rt ADE ∴是等腰直角三角形,232AE ==32EQ AQ AE t ∴=-=-,在Rt GEQ 中,45GEQ HAQ ∠=∠=︒,Rt GEQ ∴是等腰直角三角形,22622t EG EQ -==, 则由EG HB =得:262422t t -=-, 解得722t =综上,如图2,当AHQ HBM ≅时,22t =;如图3,当ADE AHE ≅时,32t =4,当EGQ HBF ≅时,722t =【点睛】 本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.8.(1)见解析;(2)7PA =4217BH 3)①(423,23)M +2635 【分析】(1)利用直角三角形斜边中线的性质可得DO=DA ,推出∠AEO=60°,进一步得出BC ∥AE ,CO ∥AB ,可得结论;(2)先计算出OA=43PB=23AP=7,再利用面积法计算BH 即可;(3)①求出直线PM 的解析式为3,再利用两点间的距离公式计算即可; ②易得直线BC 的解析式为y=3,联立直线BC 和直线PM 的解析式成方程组,求得点G 的坐标,再利用三角形面积公式计算.【详解】(1)证明:∵Rt △OAB 中,D 为OB 的中点,∴AD=12OB ,OD=BD=12OB , ∴DO=DA , ∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC 为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:在Rt△AOB中,∠AOB=30°,OB=8,∴AB=4,∴OA=∵四边形ABCE是平行四边形,∴PB=PE,PC=PA,∴PB=∴PC PA===∴1122ABCS AC BH AB BE∆=⋅⋅=⋅⋅,即114 22BH⨯=⨯⨯∴BH(3)①∵C(0,4),设直线AC的解析式为y=kx+4,∵P(0),∴0=,解得,k=3-,∴y=3-x+4,∵∠APM=90°,∴直线PM的解析式为,∵P(0),∴,解得,m=-3,∴直线PM的解析式为,设M(x),∵AP=∴(x-2+(2x-3)2=(2, 化简得,x 2x-4=0,解得,x 1=4,x 2=4(不合题意舍去),当x=4时,y=2×(4)-3= ∴M(4,故答案为:(4,②∵(0,4),C B∴直线BC的解析式为:43y x =-+,联立3243y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩,解得65x y ⎧=⎪⎪⎨⎪=⎪⎩,∴6)5G ,161=4252PBG PBA S S S ∆∆∴+=⨯+⨯=阴 【点睛】本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.9.(1)见解析;(2)120;(3)90;(4)72;(5)360n . 【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM. (2)利用全等三角形的性质得到∠CAN=∠BCM ,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.(3)利用正方形(或正五边形)的性质得到BC=DC ,∠ABC=∠BCD ,从而判断出△DCN ≌△CBM ,再利用全等三角形的性质得到∠CDN=∠BCM ,再利用内角和定理即可得到答案.(4)由(3)的方法即可得到答案.(5)利用正三边形,正四边形,正五边形,分别求出∠CPN 的度数与边数的关系式,即可得到答案.【详解】(1)∵△ABC 是等边三角形,∴BC=AC ,∠ACB=∠BAC=∠ABC=60︒,∴∠ACN=∠CBM=120︒,在△CAN 和△CBM 中,CN BM ACN CBM AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACN ≌△CBM.(2)∵△ACN ≌△CBM.∴∠CAN=∠BCM ,∵∠ABC=∠BMC+∠BCM ,∠BAN=∠BAC+∠CAN ,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60︒+60︒,=120︒,故答案为:120.(3)将等边三角形换成正方形,∵四边形ABCD 是正方形,∴BC=DC ,∠ABC=∠BCD=90︒,∴∠MBC=∠DCN=90︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠CDN=∠BCM ,∵∠BCM=∠PCN ,∴∠CDN=∠PCN ,在Rt △DCN 中,∠CDN+∠CND=90︒,∴∠PCN+∠CND=90︒,∴∠CPN=90︒,故答案为:90.(4)将等边三角形换成正五边形,∴∠ABC=∠DCB=108︒,∴∠MBC=∠DCN=72︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠BMC=∠CND ,∠BCM=∠CDN ,∵∠BCM=∠PCN ,∴∠CND=∠PCN ,在△CDN 中,∠CDN+∠CND=∠BCD=108︒,∴∠CPN=180︒-(∠CND+∠PCN)=180︒-(∠CND+∠CDN)=180︒-108︒,=72︒,故答案为:72.(5)正三边形时,∠CPN=120︒=3603, 正四边形时,∠CPN=90︒=3604, 正五边形时,∠CPN=72︒=3605, 正n 边形时,∠CPN=360n , 故答案为:360n. 【点睛】此题考查正多边形的性质,三角形全等的判定及性质,图形在发生变化但是解题的思路是不变的,依据此特点进行解题是解此题的关键.10.(1)①详见解析;②详见解析;(2)当BE ≠DF 时,(BE +DF )2+EF 2=2AB 2仍然成立,理由详见解析;(3)PD =-【分析】(1)①连接ED 、BF ,证明四边形BEDF 是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;(2)过D 作DM ⊥BE 交BE 的延长线于M ,连接BD ,证明四边形EFDM 是矩形,得到EM=DF ,DM=EF ,∠BMD=90°,根据勾股定理计算;(3)过P 作PE ⊥PD ,过B 作BELPE 于E ,根据(2)的结论求出PE ,结合图形解答.【详解】(1)证明:①连接ED、BF,∵BE∥DF,BE=DF,∴四边形BEDF是平行四边形,∴BD、EF互相平分;②设BD交EF于点O,则OB=OD=12BD,OE=OF=12EF.∵EF⊥BE,∴∠BEF=90°.在Rt△BEO中,BE2+OE2=OB2.∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.∴(BE+DF)2+EF2=2AB2;(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.∵BE∥DF,EF⊥BE,∴EF⊥DF,∴四边形EFDM是矩形,∴EM=DF,DM=EF,∠BMD=90°,在Rt△BDM中,BM2+DM2=BD2,∴(BE+EM)2+DM2=BD2.即(BE+DF)2+EF2=2AB2;(3)解:过P作PE⊥PD,过B作BE⊥PE于E,则由上述结论知,(BE+PD)2+PE2=2AB2.∵∠DPB=135°,∴∠BPE=45°,∴∠PBE=45°,∴BE=PE.∴△PBE是等腰直角三角形,∴BP BE,+2PD=,∴2BE+2PD=,即BE+PD=,∵AB=4,∴()2+PE2=2×42,解得,PE=∴BE=∴PD=﹣.【点睛】本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.。
中考数学平行四边形知识点-+典型题含答案一、解答题1.已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ;(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时;情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: .2.综合与实践.问题情境:如图①,在纸片ABCD □中,5AD =,15ABCD S =,过点A 作AE BC ⊥,垂足为点E ,沿AE 剪下ABE △,将它平移至DCE '的位置,拼成四边形AEE D '. 独立思考:(1)试探究四边形AEE D '的形状.深入探究:(2)如图②,在(1)中的四边形纸片AEE D '中,在EE '.上取一点F ,使4EF =,剪下AEF ,将它平移至DE F ''的位置,拼成四边形AFF D ',试探究四边形AFF D'的形状;拓展延伸:(3)在(2)的条件下,求出四边形AFF D'的两条对角线长;(4)若四边形ABCD为正方形,请仿照上述操作,进行一次平移,在图③中画出图形,标明字母,你能发现什么结论,直接写出你的结论.3.已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C 重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是,BC、CF、CD三条线段之间的数量关系为;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=132,DB=5,则△ABC的面积为.(直接写出答案)4.在矩形ABCD中,将矩形折叠,使点B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于点F(如图1和图2),然后展开铺平,连接BE,EF.(1)操作发现:①在矩形ABCD中,任意折叠所得的△BEF是一个三角形;②当折痕经过点A时,BE与AE的数量关系为.(2)深入探究:在矩形ABCD中,AB3BC=3①当△BEF是等边三角形时,求出BF的长;②△BEF的面积是否存在最大值,若存在,求出此时EF的长;若不存在,请说明理由.5.如图,在平面直角坐标系中,已知▱OABC的顶点A(10,0)、C(2,4),点D是OA 的中点,点P在BC上由点B向点C运动.(1)求点B的坐标;(2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值;(3)当△ODP是等腰三角形时,直接写出点P的坐标.6.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E 处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当E在AD边上移动时,折痕的端点P、Q也随着移动.①当点Q与点C重合时,(如图2),求菱形BFEP的边长;②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围.7.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.图① 图② 图③证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l1:y=443x-+与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.8.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE=DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E ,F 分别在CB 的延长线和DC 的延长线上,且CE=DF ,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE 和BF ,若点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,请判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种,并证明你的结论.9.如图,已知正方形ABCD 与正方形CEFG 如图放置,连接AG ,AE .(1)求证:AG AE =(2)过点F 作FP AE ⊥于P ,交AB 、AD 于M 、N ,交AE 、AG 于P 、Q ,交BC 于H ,.求证:NH =FM10.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。
平行四边形经典习题(必看)平行四边形是我们初中数学中经常遇到的一个概念。
了解和掌握平行四边形的性质和题解法是非常重要的。
本文将为大家介绍几道经典的平行四边形题,希望能帮助大家更好地理解和应用平行四边形的知识。
题一:平行四边形的定义问题:什么是平行四边形?它有哪些性质?什么是平行四边形?它有哪些性质?解答:平行四边形是一种具有特殊性质的四边形。
它的定义是:如果一个四边形的对边是平行的,则这个四边形就是平行四边形。
平行四边形是一种具有特殊性质的四边形。
它的定义是:如果一个四边形的对边是平行的,则这个四边形就是平行四边形。
平行四边形的主要性质有:- 对边平行性质:平行四边形的对边是平行的。
- 对角线性质:平行四边形的对角线相等。
- 对边长度性质:平行四边形的对边长度相等。
- 内角性质:平行四边形的内角之和为180度。
题二:判断平行四边形问题:给定四边形ABCD,如何判断它是一个平行四边形?给定四边形ABCD,如何判断它是一个平行四边形?解答:判断一个四边形是否是平行四边形,需要满足以下条件:判断一个四边形是否是平行四边形,需要满足以下条件:- 对边平行性质:判断AB与CD是否平行,以及AD与BC是否平行。
- 对角线性质:判断AC与BD是否相等。
只有当以上三个条件都满足时,才能判断四边形ABCD是一个平行四边形。
题三:计算平行四边形的面积问题:如何计算平行四边形的面积?如何计算平行四边形的面积?解答:计算平行四边形的面积需要知道两个参数:底边的长度和高的长度。
计算公式如下:计算平行四边形的面积需要知道两个参数:底边的长度和高的长度。
计算公式如下:面积 = 底边长度 ×高的长度其中,底边长度可以通过两个顶点的坐标计算得出,高的长度可以通过垂直距离来计算得出。
题四:平行四边形的应用问题:平行四边形有哪些实际应用?平行四边形有哪些实际应用?解答:平行四边形在实际生活中有很多应用。
一些常见的应用包括:平行四边形在实际生活中有很多应用。
中考数学平行四边形(讲义及答案)及解析一、选择题1.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有( )A .2个B .3个C .4个D .5个2.如图,在平行四边形ABCD 中,30, 6, 63,BCD BC CD E ︒∠===是AD 边上的中点,F 是AB 边上的一动点,将AEF ∆沿EF 所在直线翻折得到A EF '∆,连接A C ',则A C '的最小值为( )A .319B .313C .3193-D .633.将个边长都为1cm 的正方形按如图所示的方法摆放,点分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为( )A .B .C .D .4.如图,菱形ABCD 的边,8AB =,60B ∠=,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为( )A .5B .7C .8D .1325.如图所示,在Rt ABC ∆中,90ABC ︒∠=,30BAC ︒∠=,分别以直角边AB 、斜边AC 为边,向外作等边ABD ∆和等边ACE ∆,F 为AC 的中点,DE 与AC 交于点O ,DF 与AB 交于点G .给出如下结论:①四边形ADFE 为菱形;②DF AB ⊥;③14AO AE =;④4CE FG =;其中正确的是( )A .①②③B .①②④C .①③④D .②③④6.如图所示,在周长是10cm 的ABCD 中,AB AD ≠,AC 、BD 相交于点O ,点E 在AD 边上,且OE BD ⊥,是ABE △的周长是( )A .2cmB .3cmC .4cmD .5cm7.如图,四边形ABCD 为平行四边形,D ∠为锐角,BAD ∠的平分线AE 交CD 于点F ,交BC 的延长线于点E ,且AF FE =.若25AB =,ABCD 面积为300,则AF 的长度为( )A .30B .15C .40D .208.如图,点,,A B E 在同一条直线上,正方形ABCD 、正方形BEFC 的边长分别为23,、H 为线段DF 的中点,则BH 的长为( )A .212B .262C .332D .2929.如图,在边长为2的等边三角形ABC 中,D 为边BC 上一点,且12BD CD =.点E ,F 分别在边,AB AC 上,且90,EDF M ︒∠=为边EF 的中点,连接CM 交DF 于点N .若//DF AB ,则CM 的长为( )A .233B .334C .536D .310.如图,在正方形ABCD 中,E 是BC 边上的一点,BE=4,EC=8,将正方形边AB 延AE 折叠刀AF ,延长EF 交DC 于G ,连接AG ,现在有如下结论:①∠EAG=45°;②GC=CF ;③FC ∥AG ;④S △GFC =14.4;其中结论正确的个数是( )A .1B .2C .3D .4二、填空题11.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.12.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.13.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.14.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.15.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.16.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .17.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.18.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,19.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当E 在AD 边上移动时,折痕的端点P 、Q 也随着移动.①当点Q 与点C 重合时, (如图2),求菱形BFEP 的边长;②如果限定P 、Q 分别在线段BA 、BC 上移动,直接写出菱形BFEP 面积的变化范围.22.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE =52.(1)如图1,求证:DG =BE ;(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF .①连结BH ,BG ,求BH BG的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.23.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:2DE AF =.24.已知:如下图,ABC 和BCD 中,90BAC BDC ∠=∠=,E 为BC 的中点,连接DE AE 、.若DC AE ,在DC 上取一点F ,使得DF DE =,连接EF 交AD 于O . (1)求证:EF DA ⊥.(2)若4,23BC AD ==,求EF 的长.25.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围.(3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)26.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.图① 图② 图③证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l1:y=443x-+与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.27.如图,ABCD 中,60ABC ∠=︒,连结BD ,E 是BC 边上一点,连结AE 交BD 于点F .(1)如图1,连结AC ,若6AB AE ==,:5:2BC CE =,求ACE △的面积; (2)如图2,延长AE 至点G ,连结AG 、DG ,点H 在BD 上,且BF DH =,AF AH =,过A 作AM DG ⊥于点M .若180ABG ADG ∠+∠=︒,求证:3BG GD +=.28.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上.(1)若n =1,AF ⊥DE .①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF .则CF BF的值是_____________(结果用含n 的式子表示).29.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。
平行四边形经典例题
平行四边形的经典例题包括但不限于以下几种:
1. 计算平行四边形的周长:
例题:已知平行四边形的一组邻边分别是3厘米和4厘米,这组对角线长分别为5厘米和6厘米,求这个平行四边形的周长。
答案:根据平行四边形的性质,对角线互相平分,所以可以计算出平行四边形的周长为22厘米。
2. 判断平行四边形:
例题:给出四个四边形,其中一个是平行四边形,另外三个是梯形,请判断哪个是平行四边形。
答案:根据平行四边形的性质,如果一个四边形的两组对边都分别平行,则该四边形是平行四边形。
所以只有一个是平行四边形。
3. 求平行四边形的面积:
例题:已知平行四边形的底为6厘米,高为4厘米,求这个平行四边形的面积。
答案:根据平行四边形的面积公式,面积 = 底× 高,所以这个平行四边形的面积是24平方厘米。
4. 利用平移性质证明平行四边形:
例题:已知一个三角形ABC,D、E分别是AB、AC上的点,且DE 平行于BC,证明三角形ADE是平行四边形。
答案:由于DE平行于BC,根据平移性质,有AE平行于DC,从而得出结论:三角形ADE是平行四边形。
一般平行四边形习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.9.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C 向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。
自学资料一、平行四边形及其性质【知识探索】1.平行四边形的性质:(1)平行四边形的两组对边分别平行;(2)平行四边形的对边相等;(3)平行四边形的对角相等;(4)平行四边形的两条对角线互相平分;(5)平行四边形是中心对称图形,对称中心是两条对角线的交点.【说明】在探索平行四边形的性质时,应从边、角、对角线等要素进行分类,有序地展开.二、平行四边形综合复习【错题精练】例1.已知:如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F,求证:DE=DF.例2.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=3√2,在DB的延长线上取一点P,满足∠MAP+∠PAB,则AP=.第1页共8页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训例3.如图,已知▱OABC的顶A,C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为()A. 3B. 4C. 5D. 6【举一反三】1.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=3√3,AE=3,求AF的长2.如图,平行四边形ABCD中,AE平分∠BAD,交CD于点F,交BC的延长线于点E,连结BF.(1)求证:BE=CD;(2)若点F是CD的中点.①求证BF⊥AE;②若∠BEA=60∘,AB=4,求平行四边形ABCD的面积.第2页共8页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训3.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. y=x−1;B. y=45x−45;C. y=x−1;D. y=3x−3.4.如图,在平行四边形ABCD中,AC是对角线.BE⊥AC,DF⊥AC,垂足分别是点E,F.(1)求证:AE=CF;(2)连接BF,若∠ACB=45∘,AE=1,BE=3,求BF的长.5.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN。
.平行四边形一、基础知识平行四边形平行四边形矩形菱形正方形等腰梯形定有两组对边分别平行的四边有一个角是直角有一组邻边相等的平有一组邻边相等且两腰相等的梯形是等义形是平行四边形。
的平行四边形是行四边形是菱形。
有一个角是直角的腰梯形。
矩形。
平行四边形。
1、对边平行且相等。
1 、四个角都是直1、四条边都相等。
拥有平行四边形、矩1、两腰相等两底平行性2、对角相等,邻角互补。
角。
2、两条对角线相互垂形、菱形的全部特2、同一底上的两角相3、对角线相互均分2、对角线相等。
直,而且每一条对角线征。
等质均分一组对角。
3、两条对角线相等1、定义:1、定义:1、定义:1、先证明是矩形再1、定义:先判断是梯2、判断定理:2、判断定理:2、判断定理:证明一组邻边相等。
形在证明两腰相等。
(1)两组对边分别相等的四( 1)对角线相等( 1)一组邻边相等的2、先证明是菱形再2、同一底上的两个角边形是平行四边形。
的平行四边形是平行四边形是菱形。
证一个角是直角。
相等的梯形是等腰梯(2)两组对角分别相等的四矩形。
( 2)对角线相互垂直形。
判边形是平行四边形。
( 2)有三个角是的四边形是菱形。
3、对角线相等的梯形(3)一组对边平行且相等的直角的四边形是是等腰梯形。
定四边形是平行四边形。
矩形。
(4)对角线相互均分的四边形是平行四边形。
对称性轴对称图形轴对称图形轴对称图形轴对称图形二、 1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。
2、由矩形的性质获得直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。
三、例题例 1、如图 1,平行四边形 ABCD 中,AE⊥ BD ,CF⊥ BD ,垂足分别为E、F. 求证:∠ BAE = ∠ DCF.ADFBEC (图 1)例 2、如图 2,矩形 ABCD中, AC 与 BD 交于 O 点, BE⊥ AC 于 E, CF⊥ BD 于 F.求证: BE = CF.A DE FOB C(图 2)例 3、已知:如图 3,在梯形 ABCD中,AD∥ BC,AB = DC,点 E、F分别在 AB、CD 上,且 BE = 2EA,CF = 2FD. 求证:∠ BEC =∠ CFB.A DE FB C例 4、如图 6, E、 F 分别是平行四边形 ABCD的 AD、 BC边上的点,且 AE = CF.图 3(1)求证:△ ABE≌△ CDF;A E D(2)若M、N 分别是 BE、DF的中点,连结 MF、EN,试判断四边形MFNE是如何的四N边形,并证明你的结论 .MB F C(图 6)..例 5、如图 7YABCD 的对角线AC的垂直均分线与边AD, BC 分别订交于点E,F.,求证:四边形AFCE是菱形 .EA DBOC F图 7例 6、如图 8,四边形ABCD是平行四边形, O 是它的中心, E、F 是对角线 AC 上的点 .(1)假如,则△DEC≌ △BFA(请你填上一个能使结论建立的一个条件);(2)证明你的结论 .D CE FA B图 8A DO FGB CE图 9例 7、如图 9,已知在梯形 ABCD中, AD∥BC,AB = DC,对角线 AC和 BD 订交于点 O,E 是 BC边上一个动点(点E不与 B、C两点重合),EF∥ BD 交 AC 于点 F, EG∥ AC 交 BD 于点 C.(1)求证:四边形EFOG的周长等于 2OB;(2)请你将上述题目的条件“梯形 ABCD中, AD∥BC,AB = DC”改为另一种四边形,其余条件不变,使得结论,“四边形 EFOG 的周长等于 2OB”仍建立,并将改编后的题目画出图形,写出已知、求证、不用证明.例 8、有一块梯形形状的土地,现要均匀分给两个田户栽种(马上梯形的面积两均分),试设计两种方案(均分方案画在备用图 13(1)、(2)上),并赐予合理的解说 .备用图( 1)备用图(2)图 13..四、练习一、选择题1. 以下命题正确的选项是()(A) 、一组对边相等,另一组对边平行的四边形必定是平行四边形 (B) 、对角线相等的四边形必定是矩形(C) 、两条对角线相互垂直的四边形必定是菱形(D)、在两条对角线相等且相互垂直均分的四边形必定是正方形2. 已知平行四边形 ABCD 的周长 32, 5AB=3BC, 则AC 的取值范围为 ( )A. 6<AC<10 ;B. 6<AC<16; C. 10<AC<16 ; D. 4<AC<163. 两个全等的三角形(不等边)可拼成不一样的平形四边形的个数是()(A )1(B )2 (C )3 (D )44.延伸平形四边形 ABCD 的一边 AB 到 E ,使 BE =BD ,连结 DE 交 BC 于 F ,若∠ DAB = 120°, ∠ CFE =135°, AB = 1,则 AC 的长为3 ( )(A ) 1 (B )1.2 (C ) 2(D ) 1.55.若菱形 ABCD 中, AE 垂直均分 BC 于E ,AE =1cm ,则 BD 的长是( )(A )1cm(B )2cm ( C )3cm (D ) 4cm6. 若按序连结一个四边形各边中点所得的图形是矩形,那么这个四边形的对角线 () (A )相互垂直 ( B )相等 ( C )相互均分 (D )相互垂直且相等7. 如图,等腰△ ABC 中,D 是 BC 边上的一点, DE ∥AC ,DF ∥AB , AB=5那么四边形 AFDE 的周长是()(A )5( B )10(C )15(D )20AEDOBC( 第7题) (第 8题) (第 9题) (第 10题)8. 如图,将边长为 8cm 的正方形纸片 ABCD 折叠,使点 D 落在 BC 边中点 E 处,点 A 落在点 F 处,折痕为 MN ,则线段 CN 的长是().(A )3cm (B ) 4cm ( C ) 5cm (D )6cm9. 如图,在直角梯形 ABCD 中,AD ∥BC ,∠B=90°, AC 将梯形分红两个三角形,此中△ ACD 是周长为 18 cm 的等边三角形,则该 梯形的中位线的长是 () .(A)9 cm (B)12cm(c)9cm (D)18 cm210. 如图,在周长为 20cm 的□ABCD 中,AB ≠AD , AC 、 BD 订交于点 O ,OE ⊥BD 交AD 于E ,则△ ABE 的周长为( )(A)4cm(B)6cm(C)8cm(D)10cm11. 如图 2,四边形为矩形纸片.把纸片折叠,使点 B 恰巧落在边的中点 E 处,折痕为.若=6,则等于()ABCDABCDCDAFCDAF(A )4 3 (B )3 3(C )4 2D(D )8 A D12. 如图,已知四边形 ABCD 中, R 、P 分别是 BC 、 CD 上的点, E 、F 分别是AEEAP 、 RP 的中点,当点 P 在CD 上从 C 向D 挪动而点 R 不动时,那么以下结论P建立的是( )A 、线段 EF 的长渐渐增大B 、线段 EF 的长渐渐减小 BF C BRFCC 、线段 EF 的长不变 D、线段 EF 的长与点 P图2第 12题图13. 在梯形 ABCD 中, AD//BC ,对角线 AC ⊥BD ,且 AC5cm , BD=12c m ,则梯形中位线的长等于()A. 7.5cmB. 7cmC. 6.5cmD. 6cmE14. 国家级历史文假名城——金华,风光艳丽,花木葱郁.某广场上一个形状是AD紫绿平行四边形的花坛(如图) ,分别种有红、黄、蓝、绿、橙、紫6 种颜色的花.G红H假如有 AB ∥ EF ∥ DC , BC ∥ GH ∥ AD ,那么以下说法中错误的选项是(黄橙)蓝A .红花、绿花栽种面积必定相等B.紫花、橙花栽种面积必定相等BFCC.红花、蓝花栽种面积必定相等D.蓝花、黄花栽种面积必定相等第14题..二、填空题1. 假如四边形四个内角之比1:2:3:4,则这四边形为____形。
一、选择题1.如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连接BE ,分别交AC 、AD 于点F 、G ,连接OG ,则下列结论:①OG =12AB ;②图中与△EGD 全等的三角形共有5个;③以点A 、B 、D 、E 为项点的四边形是菱形;④ S 四边形ODGF = S △ABF .其中正确的结论是( )A .①③B .①③④C .①②③D .②②④2.如图,正方形ABCD 中,点E F 、分别在边BC CD 、上,且AE EF FA ==,有下列结论:①ABE ADF ∆≅∆;②CE CF =;③75AEB ∠=︒;④BE DF EF +=;⑤A ABE DF CEF S S S ∆∆∆+=;其中正确的有( )个.A .2B .3C .4D .53.如图,△ABC 中,∠BAC =60°,∠B =45°,AB =2,点D 是BC 上的一个动点,点D 关于AB ,AC 的对称点分别是点E ,F ,四边形AEGF 是平行四边形,则四边形AEGF 面积的最小值是 ( )A .1B .62C 2D 34.正方形ABCD ,正方形CEFG 如图放置,点B 、C 、E 在同一条直线上,点P 在BC 边上,PA =PF ,且∠APF =90°,连接AF 交CD 于点M .有下列结论:①EC =BP ;②AP =AM :③∠BAP =∠GFP ;④AB 2+CE 2=12AF 2;⑤S 正方形ABCD +S 正方形CGFE =2S △APF ,其中正确的是( )A .①②③B .①③④C .①②④⑤D .①③④⑤5.如图,把正方形ABCD 沿对边中点所在的直线对折后展开,折痕为,MN 再过点B 折叠纸片,使点A 格在MN 上的点F 处,折痕为,BE 若AB 长为2,则EN 的长为(( )A .233-B .322-C .22D .236.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC .其中正确结论的个数为( )A .1B .2C .3D .47.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分DCB ∠交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE ,下列结论:①30ACD ∠=︒;②·ABCD S AC BC =;③:1:4OE AC =.其中正确的有( )A .0个B .1个C .2个D .3个8.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形; ②四边形CDFE 不可能为正方形,③DE 长度的最小值为4; ④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤9.如图,在△ABC 中,AB =3,AC =4,BC =5,△ABD ,△ACE ,△BCF 都是等边三角形,下列结论中:①AB ⊥AC ;②四边形AEFD 是平行四边形;③∠DFE =150°;④S 四边形AEFD =5.正确的个数是( )A .1个B .2个C .3个D .4个10.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 3二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.13.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .14.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).15.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______16.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.17.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上运动,点M 为线段AB 的中点.点D 、E 分别在x 轴、y 轴的负半轴上运动,且DE =AB =10.以DE 为边在第三象限内作正方形DGFE ,则线段MG 长度的最大值为_____.18.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .19.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =,则DF =_________.20.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+23,则BD 的长为___________.三、解答题21.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处) ①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______; ②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由; ()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______;22.综合与实践.问题情境: 如图①,在纸片ABCD □中,5AD =,15ABCD S =,过点A 作AE BC ⊥,垂足为点E ,沿AE 剪下ABE △,将它平移至DCE '的位置,拼成四边形AEE D '. 独立思考:(1)试探究四边形AEE D '的形状.深入探究:(2)如图②,在(1)中的四边形纸片AEE D '中,在EE '.上取一点F ,使4EF =,剪下AEF ,将它平移至DE F ''的位置,拼成四边形AFF D ',试探究四边形AFF D '的形状;拓展延伸:(3)在(2)的条件下,求出四边形AFF D '的两条对角线长;(4)若四边形ABCD 为正方形,请仿照上述操作,进行一次平移,在图③中画出图形,标明字母,你能发现什么结论,直接写出你的结论.23.如图,四边形OABC 中,BC ∥AO ,A (4,0),B (3,4),C (0,4).点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)当t 为何值时,四边形BNMP 为平行四边形?(2)设四边形BNPA 的面积为y ,求y 与t 之间的函数关系式.(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.24.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH DE⊥交DG的延长线于点H,连接BH.=;(1)求证:GF GC(2)用等式表示线段BH与AE的数量关系,并证明.25.如图,在平行四边形ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC5BF=DF,求旋转角度α的大小.26.如图①,已知正方形ABCD中,E,F分别是边AD,CD上的点(点E,F不与端点重合),且AE=DF,BE,AF交于点P,过点C作CH⊥BE交BE于点H.(1)求证:AF ∥CH ;(2)若AB=23 ,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP PQ的值. 27.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的面积(用含t 的代数式表示).(2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线).28.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒,2246B BP PD +=时,求PD 之长.29.已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 相交于点G ,当E ,F 分别为边BC ,CD 的中点时,有:①AF=DE ;②AF ⊥DE 成立.试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE=DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E ,F 分别在CB 的延长线和DC 的延长线上,且CE=DF ,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE 和BF ,若点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,请判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种,并证明你的结论.30.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC 的外部作等腰Rt CED ,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD,连接AF.()1请直接写出线段AF,AE的数量关系;()2①将CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;②若25AB=,2CE=,在图②的基础上将CED绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=1 2CD=12AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,③正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;④不正确;即可得出结果.【详解】解:四边形ABCD 是菱形,,//,,,,AB BC CD DA AB CD OA OC OB OD AC BDBAG EDG ABO BCO CDO AOD CD DEAB DE∴=====⊥∴∠=∠∆≅∆≅∆=∴= 在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△DEG (AAS ),∴.AG=DG ,∴OG 是△ACD 的中位线,∴OG=12CD=12AB ,①正确; ∵AB//CE ,AB=DE ,∴四边形ABDE 是平行四边形,∴∠BCD=∠BAD=60°, ∴△ABD 、△BCD 是等边三角形,∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,③正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,60OD AG ODC BAG AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△DCO∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,则②不正确。
经纬教育 平行四边形证明题 经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠. 又BE DF ∥,BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长. 【答案】20、解法一: ∵∴ 又∵∴∴∥即得是平行四边形∴ ∴四边形的周长解法二:连接∵∴又∵ ∴≌∴ ∴四边形的周长解法三:连接∵∴又∵ ∴∴∥即是平行四边形∴ ∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC AB CD ∥DCA BAC ∠=∠B DAC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=DCABE FADCBAD CBAD CB解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定 【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由; (3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=° 12∠=∠90DAM ABE DA AB ∠=∠==°,DAM ABE ∴△≌△ DM AE ∴= AE EP = DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,° Rt Rt DAM ABE ∴△≌△ 14DM AE ∴=∠=∠, 1590∠+∠=° 4590∴∠+∠=° AE DM ∴⊥ AE EP ⊥ DM EP ∴⊥ABDEFCA DCBEBCEDA F PF∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
平行四边形经典例题讲解(3套)
例一
如图,在等边三角形ABC中,BC=6cm,射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC 以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=______s时,以A、C、E、F为顶点四边形是平行四边形.
【分析】分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.此题考查了平行四边形的判定.此题难度适中,注意掌握分类讨论思想、数形结合思想与方程思想的应用.
例二
如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD//BC,AC=8,BD=6.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.
【解析】
(1)由已知条件易证△AOD≌△COB,由此可得OD=OB,进而可证明四边形ABCD是平行四边形;
(2)由(1)和已知条件可证明四边形ABCD是菱形,由菱形的面积公式即可得解.此题主要考查平行四边形的判定和菱形的判断和性质.熟练掌握各种特殊四边形的性质定理和判定定理是解题的关键.。
平行四边形经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE .A B EFC【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠,BEC DFA ∴△≌△,∴CE AF =2.如图,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长.【答案】解法一: ∵∴又∵∴∴∥即得是平行四边形∴∴四边形的周长解法二: 3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=A DCBA D BC连接∵∴又∵∴≌∴∴四边形的周长解法三:AC AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=A D BC连接∵∴又∵∴∴∥即是平行四边形∴∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△.(2)四边形ABCD 是平行四边形.BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=DEF CA B【关键词】平行四边形的性质,判定【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS). (2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.如图,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点,试判断AE EP 与的大小关系,并说明理由;(3)在图的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.A D C BE B C E DA F P F【关键词】平行四边形的判定【答案】解:(1)AE EF⊥∴∠+∠=°2390四边形ABCD为正方形∴∠=∠=°90B C∴∠+∠=°1390∠=∠12°,∠=∠==DAM ABE DA AB90∴△≌△DAM ABE∴=DM AE=AE EP∴=DM PE∴四边形DMEP是平行四边形.解法②:在AB边上存在一点M,使四边形DMEP是平行四边形证明:在AB边上取一点M,使AM BE=,连接ME、MD、DP.,°=∠=∠=AD BA DAM ABE90∴△≌△Rt RtDAM ABE,∴=∠=∠DM AE14∠+∠=°15904590∴∠+∠=°∴⊥AE DMAE EP⊥∴⊥DM EP∴四边形DMEP为平行四边形B CE D AF P5 41 M6.已知二次函数2y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m =(2m >)与x 轴交于点D .(1)求二次函数的解析式;(2)在直线x m =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由.yx O【关键词】二次函数、相似三角形、运动变化、抛物线解:(1)根据题意,得0 4202.a b ca b cc++=⎧⎪++=⎨⎪=-⎩,,yx OB AD C(x =m ) (F 2)F 1E 1 (E 2)解得132a b c =-==-,,.232y x x ∴=-+-.(2)当EDB AOC △∽△时, 得AO CO ED BD =或AO CO BD ED=, ∵122AO CO BD m ===-,,, 当AO CO ED BD =时,得122ED m =-, ∴22m ED -=, ∵点E 在第四象限,∴122m E m -⎛⎫ ⎪⎝⎭,. 当AO CO BD ED =时,得122m ED=-,∴24ED m =-, ∵点E 在第四象限,∴2(42)E m m -,. (3)假设抛物线上存在一点F ,使得四边形ABEF 为平行四边形,则 1EF AB ==,点F 的横坐标为1m -,当点1E 的坐标为22m m -⎛⎫ ⎪⎝⎭,时,点1F 的坐标为212m m -⎛⎫- ⎪⎝⎭,, ∵点1F 在抛物线的图象上, ∴22(1)3(1)22m m m -=--+--, ∴2211140m m -+=,∴(27)(2)0m m --=, ∴722m m ==,(舍去),∴15324F ⎛⎫- ⎪⎝⎭,, ∴33144ABEF S =⨯=. 当点2E 的坐标为(42)m m -,时,点2F 的坐标为(142)m m --,, ∵点2F 在抛物线的图象上,∴242(1)3(1)2m m m -=--+--,∴27100m m -+=,∴(2)(5)0m m --=,∴2m =(舍去),5m =,∴2(46)F -,, ∴166ABEF S =⨯=.注:各题的其它解法或证法可参照该评分标准给分.7.已知:如图在ABCD 中,过对角线BD 的中点O 作直线EF 分别交DA 的延长线、AB 、DC 、BC 的延长线于点E 、M 、N 、F 。
平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。
八年级初二数学 平行四边形知识点及练习题及解析一、选择题1.如图,菱形ABCD 的边长为4,60,A E ∠=是边AD 的中点,F 是边AB 上的一个动点,将线段EF 绕着E 逆时针旋转60,得到EG ,连接EG CG 、,则BG CG +的最小值为( )A .33B .27C .43D .223+2.如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连接BE ,分别交AC 、AD 于点F 、G ,连接OG ,则下列结论:①OG =12AB ;②图中与△EGD 全等的三角形共有5个;③以点A 、B 、D 、E 为项点的四边形是菱形;④ S 四边形ODGF = S △ABF .其中正确的结论是( )A .①③B .①③④C .①②③D .②②④3.七巧板是一种古老的中国传统智力玩具.如图,在正方形纸板ABCD 中,BD 为对角线,E 、F 分别为BC 、CD 的中点,AP ⊥EF 分别交BD 、EF 于O 、P 两点,M 、N 分别为BO 、DO 的中点,连接MP 、NF ,沿图中实线剪开即可得到一副七巧板.若AB =1,则四边形BMPE 的面积是( )A .17B .18C .19D .1104.将个边长都为1cm 的正方形按如图所示的方法摆放,点分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为( )A .B .C .D .5.如图,矩形ABCD 中,AB =23,BC =6,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值是( )A .43+3B .221C .23+6D .45 6.如图,正方形ABCD 的边长为5,4AG CH ==,3BG DH ==,连接GH ,则线段GH 的长为( )A .435B .75 C .2 D .52-7.已知,在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点1B 在y 轴上,点1C 、1E 、2E 、2C 、3E 、4E 、3C 均在x 轴正半轴上,若已知正方形1111D C B A 的边长为1,1160B C O ︒∠=,且112233////B C B C B C ,则点3A 的坐标是( )A .331(3++B .33332+C .33132++D .333(3++ 8.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )A .1个B .2个C .3个D .4个9.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE 、BO .若60COB ∠=︒,2FO FC ==,则下列结论:①FB OC ⊥;②EOB CMB △≌△;③四边形EBFD 是菱形;④23MB =.其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题11.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.12.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是_____.13.如图,正方形ABCD的对角线相交于点O,对角线长为1cm,过点O任作一条直线分别交AD,BC于E,F,则阴影部分的面积是_____.14.如图,以Rt ABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,连接CO,如果AC=4,CO=62,那么BC=______.15.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(23,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),则EP十BP的最小值为__________.16.如图,在平行四边形ABCD,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论:①∠BCD=2∠DCF;②EF=CF;③S△CDF=S△CEF;④∠DFE=3∠AEF,-定成立的是_________.(把所有正确结论的序号都填在横线上)17.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.18.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.19.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).22.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG .(1)如图,当ABCD 为正方形且点H 在ABC ∆的内部,连结,AH CH ,求证:AH CH =;(2)经过点E 且把矩形ABCD 面积平分的直线有______条;(3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.23.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F .(1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想;(3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.24.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围. (3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)25.如图,等腰直角三角形OAB 的三个定点分别为(0,0)O 、(0,3)A 、(3,0)B -,过A 作y 轴的垂线1l .点C 在x 轴上以每秒32的速度从原点出发向右运动,点D 在1l 上以每秒3322+的速度同时从点A 出发向右运动,当四边形ABCD 为平行四边形时C 、D 同时停止运动,设运动时间为t .当C 、D 停止运动时,将△OAB 沿y 轴向右翻折得到△1OAB ,1AB 与CD 相交于点E ,P 为x 轴上另一动点.(1)求直线AB 的解析式,并求出t 的值.(2)当PE+PD 取得最小值时,求222PD PE PD PE ++⋅的值.(3)设P 的运动速度为1,若P 从B 点出发向右运动,运动时间为x ,请用含x 的代数式表示△PAE 的面积.26.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ⊥,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒,2246B BP PD +=时,求PD 之长.27.如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D(0,0),B(3,4),矩形ABCD 沿直线EF 折叠,点B 落在AD 边上的G 处,E 、F 分别在BC 、AB 边上且F(1,4).(1)求G 点坐标(2)求直线EF 解析式(3)点N 在坐标轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,直接写出M 点坐标;若不存在,请说明理由28.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上.(1)若n =1,AF ⊥DE .①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF .则CF BF的值是_____________(结果用含n 的式子表示).29.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.30.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12CBE ABF ∠=∠.(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;(2)如图2,当32b a =时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________; ②当点E 是AD 中点时,求证:2CF BF a +=;③在②的条件下,请直接写出:BCF ABCD S S ∆矩形的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;先证明E点与E'点重合,再在Rt△EBC中,EB=23,BC=4,求EC的长.【详解】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;∵MN∥AD,∴HM=12 AE,∵HB⊥HM,AB=4,∠A=60°,∴MB=2,∠HMB=60°,∴HM=1,∴AE'=2,∴E点与E'点重合,∵∠AEB=∠MHB=90°,∴∠CBE=90°,在Rt△EBC中,3BC=4,∴7,故选A.【点睛】本题考查菱形的性质,直角三角形的性质;确定G点的运动轨迹,是找到对称轴的关键.2.A解析:A【解析】【分析】由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=1 2CD=12AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,③正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;④不正确;即可得出结果.【详解】解:四边形ABCD 是菱形,,//,,,,AB BC CD DA AB CD OA OC OB OD AC BDBAG EDG ABO BCO CDO AOD CD DEAB DE∴=====⊥∴∠=∠∆≅∆≅∆=∴= 在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△DEG (AAS ),∴.AG=DG ,∴OG 是△ACD 的中位线,∴OG=12CD=12AB ,①正确; ∵AB//CE ,AB=DE ,∴四边形ABDE 是平行四边形,∴∠BCD=∠BAD=60°, ∴△ABD 、△BCD 是等边三角形,∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,③正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,60OD AG ODC BAG AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△DCO∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,则②不正确。
平行四边形经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠,BEC DFA ∴△≌△,∴CE AF =2.如图,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长.【答案】解法一: ∵∴又∵∴∴∥即得是平行四边形∴∴四边形的周长解法二: 3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=A DCB DC AB E F连接∵∴又∵∴≌∴∴四边形的周长解法三:连接∵∴又∵∴∴∥即是平行四边形∴∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .解得,70=x . AC AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=A DCB A DCB∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DF BE ==,,∥.求证:(1)AFD CEB △≌△.(2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定【答案】证明:(1)DF BE Q ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=Q °,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==Q ,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.如图,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点,试判断AE EP 与的大小关系,并说明理由;(3)在图的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.AB DE F C【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥Q2390∴∠+∠=°Q 四边形ABCD 为正方形90B C ∴∠=∠=°1390∴∠+∠=°12∠=∠90DAM ABE DA AB ∠=∠==Q °,DAM ABE ∴△≌△DM AE ∴=AE EP =QDM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,°Rt Rt DAM ABE ∴△≌△14DM AE ∴=∠=∠,1590∠+∠=Q °4590∴∠+∠=°AE DM ∴⊥AE EP ⊥QDM EP ∴⊥ A D C B E B C E DA F P F∴四边形DMEP 为平行四边形6.已知二次函数2y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m =(2m >)与x 轴交于点D .(1)求二次函数的解析式;(2)在直线x m =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由.【关键词】二次函数、相似三角形、运动变化、抛物线解:(1)根据题意,得04202.a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,B C E D AF P5 41 M解得132a b c =-==-,,.232y x x ∴=-+-.(2)当EDB AOC △∽△时, 得AO CO ED BD =或AO CO BD ED=, ∵122AO CO BD m ===-,,, 当AO CO ED BD =时,得122ED m =-, ∴22m ED -=, ∵点E 在第四象限,∴122m E m -⎛⎫ ⎪⎝⎭,. 当AO CO BD ED =时,得122m ED=-,∴24ED m =-, ∵点E 在第四象限,∴2(42)E m m -,. (3)假设抛物线上存在一点F ,使得四边形ABEF 为平行四边形,则 1EF AB ==,点F 的横坐标为1m -,当点1E 的坐标为22m m -⎛⎫ ⎪⎝⎭,时,点1F 的坐标为212m m -⎛⎫- ⎪⎝⎭,, ∵点1F 在抛物线的图象上, ∴22(1)3(1)22m m m -=--+--, ∴2211140m m -+=,∴(27)(2)0m m --=, ∴722m m ==,(舍去),∴15324F ⎛⎫- ⎪⎝⎭,, ∴33144ABEF S =⨯=Y . 当点2E 的坐标为(42)m m -,时,点2F 的坐标为(142)m m --,,∵点2F 在抛物线的图象上,∴242(1)3(1)2m m m -=--+--,∴27100m m -+=,∴(2)(5)0m m --=,∴2m =(舍去),5m =,∴2(46)F -,, ∴166ABEF S =⨯=Y .注:各题的其它解法或证法可参照该评分标准给分.7.已知:如图在ABCD Y 中,过对角线BD 的中点O 作直线EF 分别交DA 的延长线、AB 、DC 、BC 的延长线于点E 、M 、N 、F 。
(1)观察图形并找出一对全等三角形:△________≌△____________,请加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?【关键词】四边形、全等三角形、变换(1)DOE BOF ①△≌△;证明:∵四边形ABCD 是平行四边形∴AD BC ∥∴EDO FBO E F ∠=∠∠=∠,E B M O D NF C A EBMO D N F C A又∵OD OB =∴()DOE BOF AAS △≌△BOM DON ②△≌△证明:∵四边形ABCD 是平行四边形∴AB CD ∥∴MBO NDO BMO DNO ∠=∠∠=∠,又∵BO DO =∴()BOM DON AAS △≌△ABD CDB ③△≌△;证明:∵四边形ABCD 是平行四边形∴AD CB AB CD ==,又∵BD DB =∴()ABD CDB SSS △≌△(2)绕点O 旋转180°后得到或以点O 为中心作对称变换得到. 8分8.在所给的9×9方格中,每个小正方形的边长都是1.按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上.(1)在图甲中画一个平行四边形,使它的周长是整数;(2)在图乙中画一个平行四边形,使它的周长不是整数.(注:图甲、图乙在答题纸上)【关键词】平行四边形的性质,判定【答案】解:(1)(2)10.(2009年中山)在ABCD Y 中,10AB =,AD m =,60D ∠=°, 以AB 为直径作O ⊙,(1)求圆心O 到CD 的距离(用含m 的代数式来表示);(2)当m 取何值时,CD 与O ⊙相切.【关键词】利用平行四边形证明线段相等【答案】(1)分别过A O ,两点作AE CD OF CD ⊥⊥,,垂足分别为点E ,点F ,AE OF OF ∴∥,就是圆心O 到CD 的距离.Q 四边形ABCD 是平行四边形,AB CD AE OF ∴∴=∥,.在Rt ADE △中,60sin sin 60AE AE D D AD AD∠=∠==°,,°, 222AE AE m OF AE m m ====,,, 圆心到CD 的距离PF .(2)OF =Q , AB 为O ⊙的直径,且10AB =,∴当5OF =时,CD 与O ⊙相切于F 点,即523m m ==, ∴当m =时,CD 与O ⊙相切. 11.如图:点A.D.B.E 在同一直线上,AD =BE ,AC =DF ,AC ∥DF ,请从图中找出一个与∠E 相等的角,并加以证明.(不再添加其他的字母与线段)【关键词】平行四边形的判定【答案】解法1:图中∠CBA =∠E证明:∵AD =BE∴AD +DB =BE +DB 即AB =DE∵AC ∥DF ∴∠A =∠FDE又∵AC =DF∴△ABC ≌△DEF∴∠CBA =∠E解法2:图中∠FCB =∠E A FE D C B A FE D C B证明:∵AC =DF ,AC ∥DF∴四边形ADFC 是平行四边形 ∴CF ∥AD ,CF =AD∵AD =BE ∴CF =BE ,CF ∥BE ∴四边形BEFC 是平行四边形 ∴∠FCB =∠E12.如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题: (1)当t 为何值时,PE AB ∥?(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.【关键词】全等三角形的性质与判定、相似三角形判定和性质、平行四边形有关的计算 【答案】FF解:(1)∵PE AB ∥ ∴DE DPDA DB=. 而10DE t DP t ==-,,∴10610t t-=, ∴154t =.∴当15(s)4t PE AB =,∥.(2)∵EF 平行且等于CD , ∴四边形CDEF 是平行四边形. ∴DEQ C DQE BDC ∠=∠∠=∠,. ∵10BC BD ==,∴DEQ C DQE BDC ∠=∠=∠=∠. ∴DEQ BCD △∽△.∴DE EQBC CD =. 104t EQ=. ∴25EQ t =.过B 作BM CD ⊥,交CD 于M ,过P 作PN EF ⊥,交EF 于N .BM === ∵ED DQ BP t ===, ∴102PQ t =-. 又PNQ BMD △∽△,PQ PNBD BM=, 10210t -=,15t PN ⎫=-⎪⎭211212255PEQtS EQ PN t⎫==⨯⨯-=⎪⎭g△.(3)11422BCDS CD BM==⨯⨯=g g△若225PEQ BCDS S=△△,则有2225=⨯,解得1214t t==,.(4)在PDE△和FBP△中,10DE BP tPD BF t PDE FBPPDE FBP==⎫⎪==-⇒⎬⎪∠=∠⎭,,△≌△,∴PDEPFCDE PFCDS S S=+△五边形四边形FBP PFCDS S=+△四边形BCDS==△∴在运动过程中,五边形PFCDE的面积不变.经典例题(附带答案2)例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?分析根据平行四边形的对角相等,邻角互补可以求出四个内角的度数.解设平行四边形的一个内角的度数为x,则它的邻角的度数为3x,根据题意,得,解得,∴∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°.例2 已知:如图,的周长为60cm,对角线AC、BD相交于点O,的周长比的周长多8cm,求这个平行四边形各边的长.分析由平行四边形对边相等,可知平行四边形周长的一半=30cm,又由的周长比的周长多8cm,可知cm,由此两式,可求得各边的长.解∵四边形为平行四边形,∴,∴,∴∴答:这个平行四边形各边长分别为19cm,11cm,19cm,11cm.说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.例 3 已知:如图,在中,交于点O,过O点作EF交AB、CD于E、F,那么OE、OF是否相等,说明理由.分析观察图形,,从而可说明证明在中,交于O,∴,∴,∴,∴例4 已知:如图,点E在矩形ABCD的边BC上,且,垂足为F。