江苏省某知名学校九年级下学期第一次模拟测试题(全科)_4
- 格式:doc
- 大小:1.66 MB
- 文档页数:9
江苏省九年级下学期语文第一次模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共4题;共8分)1. (2分)(2017·杭州模拟) 下面语段中划线字的拼音正确的一项是()午夜的湘湖如此安详,徜徉其中,心中的喧嚣戛然而止,心无旁骛地写着属于自己的文字,赋予文字一份安静,给心灵一份慰藉,让那个快被磨掉棱角的人再次丰满起来。
A . cháng gājièlíngB . cháng jiájièléngC . táng jiájíléngD . cháng gājièléng2. (2分)下列各句中的划线词语使用恰当的一项是()。
A . 车在路上走,人在画中行,一路美景令我们心旷神怡,流连忘返。
B . 李明兴冲冲跑回教室向同学们报告:“这次物理考试,大家的成绩都很好,不及格的只是凤毛麟角。
”C . 200多年来,世界各国数以万计的探险家不畏冰山阻挡,不畏风暴严寒,前仆后继地奔赴南极,进行科学考察。
D . 站在山顶四处眺望,只见经过退耕还林的山区风景秀丽,草木葱茏,进退维谷。
3. (2分) (2017七上·罗湖期末) 请选出下列句子中没有语病的一句()。
A . 经过主任再三解释,才使他的怒气逐渐平息,最后脸上勉强露出一丝笑容。
B . 他一走进运动场就感受到热烈的气氛和一张张快乐的笑脸。
C . 同学们对自己能在期末考试中取得好成绩充满了信心。
D . 在寒假的户外活动中,同学们要注意安全,防止不要发生意外事故。
4. (2分) (2019九上·广州期末) 填入下面横线处的语句,与上下文衔接最恰当的一项是()________,你尽可流动明眸,欣赏白云蓝天,飞流急湍;________,你尽可闭目凝神,倾听莺歌燕舞,春水潺潺,________,你尽可翕动鼻翼,呼吸牡丹的浓香,黄菊的清爽;________,你尽可品评自娱,把玩深尝。
江苏省南京市溧水县孔镇中学九年级生物下学期第一次模拟测试试题苏教版注意事项:1.卷面总分50分,考试时刻50分钟。
2.单项选择题和判定题的答案必需用2B铅笔把答卷纸上对应题目的答案标号涂黑。
配伍题和简答题的答案必需用0.5毫米黑色墨水签字笔写在答卷纸的指定位置,在其他位置答题一概无效。
一、单项选择题(下列各题的四个选项中,只有一项最符合题意。
每题1分,共20分)1.下列关于蛾和蝗虫的发育进程的图解中,正确的一组是A.①③B.①④C.②③D.②④2.下列对染色体、DNA、基因关系的叙述,表达错误的是A.染色体是由DNA和蛋白质组成的 B.DNA要紧存在于染色体上C.一个DNA分子上只含有一个基因 D.基因是DNA上有遗传效应的片段3.青春期后的女性,产生的正常生殖细胞中染色体组成是A.22条+X B.23条+Y C.22条+X和Y D.22条+X或Y4.下列疾病中,属于遗传病的是A.白血病 B.白化病 C.疟疾 D.细菌性痢疾5.下列实例中,属于不可遗传的变异是A.在遮光的环境中培育出的蒜黄 B.通过宇宙射线照射培育出的太空椒C.杂交技术培育出高产抗倒伏小麦 D.玉米中的白化苗6.尺蠖休息时假装成小树枝,迷惑仇敌,爱惜自己。
对这种行为说明不合理的是A.是一种生殖行为 B.是生来就有的先本性行为C.是一种防御行为 D.与体内的遗传物质有关7.青青年要拒绝抽烟,主若是因为抽烟A.可不能降低经历力而阻碍正常学习 B.会引发多种呼吸系统疾病C.可不能阻碍躯体的生长发育 D.有利于睡眠8.分析表格内容,得出的信息错误的是序号不同人群中的艾滋病病毒感染率1996年2004年1 吸毒人群中的艾滋病病毒感染率1.95% 6.48%2 暗娼中的艾滋病病毒感染率0.02% 0.93%3 高流行地区的孕妇中的艾滋病病毒感染率0 0.26%A.艾滋病病毒感染率高的人群是暗娼 B.艾滋病病毒感染率高的是吸毒人群C.艾滋病的传播途径之一是血液传播 D.艾滋病也能够通过母婴传播9.健康是永恒的话题,是人一辈子的第一财富。
2019届江苏省九年级下学期第一次模拟考试化学试卷【含答案及解析】姓名___________ 班级____________ 分数__________题号一二三四五六七八九十十十十十总分得分一、选择填充题1. “众人皆说,成之于语”。
成语是汉文化中一颗璀璨的明珠。
下列成语中不包含化学变化的是A. 百炼成钢B. 沙里淘金C. 火树银花D. 釜底抽薪2. 下列中草药煎制步骤中,属于过滤操作的是p3. A.冷水浸泡 B.加热煎制 C.箅渣取液 D.灌装保存<p>A. AB. BC. CD. D4. Al 2 O 3 是刚玉的主要成分。
Al 2 O 3 属于A. 酸B. 盐C. 氧化物D. 单质5. 化学与生活密切相关,下列有关说法错误的是A. 用灼烧的方法可以区分蚕丝和棉纱B. 食用油反复加热会产生大量有害物质C. 加热能杀死流感病毒是因为蛋白质受热变性D. 医用消毒酒精中乙醇的体积分数为95%6. 工业焊接钢管时常用 Cs 进行“无损探伤”,这里的“55”是指该原子的A. 质子数B. 中子数C. 电子数D. 相对原子质量7. 长征二号 FY11 运载火箭将神舟十一号载人飞船送入太空。
2016年10月19日凌晨,神舟十一号飞船与天宫二号自动对接成功。
火箭工作中发生的反应为 C 2 H 8 N 2 + 2R == 3N 2 + 4H 2 O + 2CO 2 ;其中 R 的化学式是A. N 2 O 4B. NO 2C. N 2 OD. CH 48. 小美在奥运五环中填入了 5 种物质 ( 如图所示 ) ,相连环内的物质间所发生的反应中,没有涉及的基本反应类型是A. 分解反应B. 复分解反应C. 化合反应D. 置换反应二、选择题9. 酒精灯的火焰太小时,将灯芯拔得松一些,可使火焰更旺。
其原理是A.降低可燃物的着火点 B.提高可燃物的着火点C.增加空气中氧气含量 D.增大可燃物与空气的接触面积10. 化学是一门以实验为基础的科学。
一、选择题1.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章给出计算弧田面积所用公式为:弧田面积=12(弦×矢+矢2),弧田(如图)是由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长AB ,“矢”等于半径长与圆心O 到弦的距离之差.在如图所示的弧田中,“弦”为8,“矢”为3,则cos ∠OAB =( )A .35B .2425C .45D .12252.如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C .83D .23.如图,AB 是O 的直径,8AB =,点C 、D 、E 在O 上,45CAB ∠=︒,CD DE EB ==,P 是直径AB 上的一动点,则PCE 周长的最小值为( )A .243+B .43+C .83+D .124.如图,CD 是Rt ABC 斜边AB 上的高,8AC =,6BC =,点O 是CD 上的动点,以O 为圆心作半径为1的圆,若该圆与ABC 重叠部分的面积为π,则OC 的最小值为( )A .54B .43C .75D .535.已知二次函数y=ax 2+bx +c 与自变量x 的部分对应值如表所示,下列说法正确的是( ) x … 0 1 3 … y…131…A .a >0B .x >1时y 随x 的增大而减小C .y 的最大值是3D .关于x 的方程ax 2+bx +c=3的解是x 1=1,x 2=26.如图,已知ABC 中,,120,3AC BC ACB AB =∠=︒=,点D 为边AB 上一点,过点D 作//DE AC ,交BC 于点E ,过点E 作EF DE ⊥,交AB 于点F .设,AD x DEF =的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .7.已知二次函数2(2)1y mx m x =+--(m 为常数,且0m ≠),( )A .若0m >,则1x <,y 随x 的增大而增大B .若0m >,则1x >,y 随x 的增大而减小C .若0m <,则1x <,y 随x 的增大而增大D .若0m <,则1x >,y 随x 的增大而减小 8.将抛物线()2214y x =--+向右平移3个单位,再向下平移2个单位,得到抛物线的解析式为( ) A .()2241y x =-++ B .()2221y x =--+ C .()2246y x =--+D .()2242y x =--+9.在Rt ABC △中,90C ∠=︒,1cos 3B =,则tan A 的值为( ) A .311B .33 C .24D .1010310.如图,在平面直角坐标系中,点A 坐标为()3,4,那么cos α的值是( )A .34B .43C .35D .4511.如图,△ABC 中,∠ACB=90°,CA=CB ,AD 为△ABC 的角平分线,CE 是△ABC 的中线,AD 、CE 相交于点F ,则EFCD的值为( )A .22B .32C 2D .212.已知ABC 的三个顶点均在正方形网格的格点上,则tan A 的值为( )A .12B .2105C .105D .25二、填空题13.如图,有一圆形木制艺术品,记为⊙O ,其半径为12cm ,在距离圆心8cm 的点A 处发生虫蛀,现需沿过点A 的直线PQ 将圆形艺术品裁掉一部分,然后用美化材料沿PQ 进行粘贴,则美化材料(即弦PQ 的长)最少需要_____cm .14.如图,已知O 中,弦AB CD 、交于,4,2P AP PB CP ===,则CD =____.15.在平面直角坐标系中,函数21y ax bx c =++,2y ax b =+,3y ax c =+,其中a ,b ,c 为常数,且a<0,函数1y 的图象经过点A (1,0),B (1x ,0),且满足143x -<<-,函数y 2的图象经过点(x 2,0);函数y 3的图象经过点(x 3,0),若2311m x m n x n <<+<<+,,且m ,n 是整数,则m=_______;n=________. 16.用一根长为24cm 的绳子围成一个矩形,则围成矩形的最大面积是_____cm 2. 17.已知二次函数2221y x mx m =-++(m 为常数),当自变量x 的值满足31x -≤≤-时,与其对应的函数值y 的最小值为5,则m 的值为__________.18.已知α,β均为锐角,且满足cos 0.5tan 30αβ-+-=,则αβ+的度数为_______.19.如图,从A 地到B 地需经过C 地,现城市规划需修建一条从A 到B 的笔直道路,已知180AC米,30CAB ∠=︒,45CBA ∠=︒,则道路改直后比原来缩短了___________米.(结果精确到1米,可能用到的数据:2 1.4≈,3 1.7≈)20.如图1,动点P 从菱形ABCD 的顶点A 出发,沿A C D →→以1/cm s 的速度运动到点D 停止.设点P 的运动时间为(),x s PAB 的面积为()2y cm.表示y 与x 的函数关系的图象如图2所示,则a 的值为________________________.21.如图,C ,D 是两个村庄,分别位于一个湖的南,北两端A 和B 的正东方向上,且点D 位于点C 的北偏东60°方向上,CD=12km ,则AB=_______km22.如图,在菱形ABCD 中, 3AB AC ==点E 、F 分别在边AB 、AD 上,且 AE DF =,则EF 的最小值为________.三、解答题23.如图,AB 是⊙O 的直径,BC ⊥AB ,弦AD ∥OC . (1)求证:DC 是⊙O 的切线;(2)已知AB =6,CB =4,求线段AD 的长.24.已知等边三角形ABC (如图).(1)用直尺和圆规作ABC 的外接圆(不写作法,保留作图痕迹). (2)若83cm AB =,求ABC 的外接圆半径. 25.已知抛物线y =x 2﹣2(a +1)x +a 2+2a .(1)求证:不论a 取何实数,该抛物线与x 轴都有两个交点;(2)若抛物线与x 轴的两个交点分别为A 、B ,与y 轴的交点为C ,当a =1时,求△ABC 的面积.26.如图1,抛物线26y ax bx =++与x 轴交于点A (2,0)B (6,0),与y 轴交于点C ,连接AC ,BC .(1)求抛物线的表达式; (2)求ACB ∠的正切值;(3)如图2,过点C 的直线交抛物线于点D ,若45ACD ∠=︒,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】如图,作射线OH⊥AB于H.交圆弧于C,利用垂径定理以及勾股定理构建方程组求出OA,OH,利用余弦函数定义即可解决问题.【详解】解:如图,作OH⊥AB于H.交圆弧于C,由题意:AB=8,HC=3,∴OA﹣OH=3,∵OH⊥AB,OC为半径,∴AH=BH=1AB2=4,在Rt△OAH中由勾股定理得AH2+OH2=OA2,∴42=(OA+OH)(OA﹣OH),∴OA+OH=163,∴OA=256,OH=76,∴cos∠OAB=AH424==25OA256,故选:B.【点睛】本题考查垂径定理与勾股定理,三角函数的定义,掌握垂径定理与勾股定理的条件与结论,三角函数的定义是解题关键.2.B解析:B【分析】连接CD ,根据圆周角定理,可以得到30CAD ∠=︒,在Rt ACD △中,利用锐角三角函数求出AC 的长即可. 【详解】解:如图,连接CD ,∵AB BC =,30BAC ∠=︒, ∴AB 和BC 所对的圆心角都是60︒, ∵AD 是直径,∴CD 所对的圆心角也是60︒, ∴30CAD ∠=︒,在Rt ACD △中,3cos308432AC AD =⋅︒=⨯=. 故选:B . 【点睛】本题考查圆周角定理和锐角三角函数,解题的关键是掌握圆周角定理,以及利用锐角三角函数解直角三角形的方法.3.B解析:B 【分析】根据圆周角定理可知∠COB=90°,结合圆的对称性可知PCE 周长的最小值为CE C E '+,根据圆周角定理可得90CEC '∠=︒,再根据弧与圆心角的关系可知30CC E '∠=︒,解直角三角形即可. 【详解】解:如下图所示,连接CO 并延长至C ',连接CE ,OE ,EC ',∵45CAB ∠=︒,∴∠COB=90°,∴C 点与C '点关于AB 所在直线对称,故当P 为EC '与AB 的交点时,PCE 周长的最小,此时CP PE C E '+=, ∵CD DE EB ==, ∴1303BOE BOC ∠=∠=︒ ,60COE BOC BOE ∠=∠-∠=︒, ∴30CC E '∠=︒, ∵CC '为直径,∴90CEC '∠=︒,8CC AB '==, ∴2214,()432CE CC C E CC CE '''===-=, ∴PCE 周长为CE EP CP ++,最小值为443CE C E '+=+,故选:B . 【点睛】本题考查圆周角定理,弧、圆心角的关系,勾股定理,圆的对称性,含30°角的直角三角形.能结合圆的对称性正确作出辅助线是解题关键.4.D解析:D 【分析】根据勾股定理求出AB=10,由OC 取最小值时,O 与BC 相切,证明△OCP ∽△BCD ∽△BAC 得出::3:4:5OP PC CO =,从而求出OC 的最小值.【详解】 解:2S r ππ==∵圆O 的半径为1,且圆与ABC 重叠部分的面积为π, ∴此圆全部在△ABC 内,如图,在Rt ABC 中,8AC =,6BC =, ∴2210AB AC BC +=若OC 取最小值时,O 与BC 相切,设切点为P ,连接OP ,则OP ⊥BC∵CD⊥AB∴∠OPC=∠CDB∵∠OCP=∠BCD∴△OCP∽△BCD同理可证△BAC∽△BCD∴△OCP∽△BCD∽△BAC∵::6:8:103:4:5BC AC AB==∴::3:4:5OP PC CO=又∵OP=1∴OC= 15533⨯=故选:D.【点睛】此题主要考查了相似三角形的判定与性质,勾股定理以及直线与圆的位置关系,证明△OCP∽△BCD∽△BAC是解答此题的关键.5.D解析:D【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A进行判断;利用x=0和x=3时函数值相等可得到抛物线的对称轴,则可对B、C进行判断;利用抛物线的对称性可得x=1和x=2的函数值相等,则可对D进行判断.【详解】解:∵二次函数值先由小变大,再由大变小,∴抛物线的开口向下,a<0,故A错误;∵抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线x=32,∴x=32对应的y的值最大,故C错误;∵抛物线开口向下,∴x>32时y随x的增大而减小,故B错误;∵抛物线的对称轴为直线x=32,且抛物线经过点(1,3),∴点(1,3)关于对称轴的对称点为(2,3),∴关于x的方程ax2+bx+c=3的解是x1=1,x2=2,故D正确;故选:D.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,二次函数的对称性.熟练掌握二次函数的性质和抛物线的对称性是解决此题的关键.6.B解析:B【分析】过点C 作CG ⊥AB ,求出CG 、AC ,证明△ACB ∽△DEB ,求出DE ,再根据直角三角形的性质求出EF ,根据三角形面积公式得到y 关于x 的函数表达式,从而判断图像.【详解】解:∵AC=BC ,∠ACB=120°,∴∠A=∠B=30°,过点C 作CG ⊥AB ,则AG=BG=12AB=32,AC=2CG , 则CG=3=3,AC=3, ∵DE ∥AC ,∴△ACB ∽△DEB ,∴AC AB DE BD =,即333x=-, 解得:DE=()333x -, ∵∠DEF=90°,∠EDF=∠A=30°,∴EF=3=33x -, ∴y=S △DEF =12DE EF ⨯⨯=()3313233x x --⨯⨯=()23318x -, 可得:当0<x <3时,图像为抛物线,y 随x 的增大而减小,选项B 中的图像最合适,故选B .【点睛】本题考查了相似三角形的判定和性质,以及直角三角形的性质,二次函数,解题的关键是通过相似三角形的性质得到线段的长,从而得到二次函数表达式.7.D解析:D【分析】先求出二次函数图象的对称轴,然后根据m 的符号分类讨论,结合图象的特征即可得出结论.【详解】 该二次函数图象的对称轴为直线21122m x m m -=-=-+, 若0m >,对于22m x m -=-无法判断其符号,故A 、B 选项不一定正确; 若0m <,则202m x m -=-<,即22m m--<1,且抛物线的开口向下, ∴当1x >时,y 随x 的增大而减小,故选:D .【点睛】此题考查的是二次函数的图象及性质,解决此题的关键是分类讨论确定对称轴的位置,再结合开口方向进行综合分析.8.D解析:D【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-2(x-1)2+4向右平移3个单位,再向下平移2个单位长度后得到抛物线的解析式为:y=-2(x-1-3)2+4-2,即y=-2(x-4)2+2;故选:D .【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.9.C解析:C【分析】 根据1cos 3B =,设AB=3x ,BC=x ,勾股定理求出AC ,根据三角函数的定义求tan A 即可. 【详解】解:在Rt ABC △中,90C ∠=︒,1cos 3B =, 设AB=3x ,BC=x ,AC ===,tan4BC A AC ===, 故选:C .【点睛】本题考查了三角函数,解题关键是根据三角函数值确定直角三角形三边关系,再根据三角函数的意义计算.10.C解析:C【分析】作AB ⊥x 轴于B ,先利用勾股定理计算出OA =5,然后在Rt △AOB 中利用余弦的定义求解即可.【详解】解:作AB ⊥x 轴于B ,如图,∵点A 的坐标为(3,4),∴OB =3,AB =4,∴OA =2234+=5,在Rt △AOB 中,cosα=35OB OA =. 故选:C .【点睛】本题考查了解直角三角形的应用、坐标与图形性质、勾股定理等知识;熟练掌握三角函数的定义是解题的关键.11.A解析:A【分析】过D 作DM AB ⊥于,M 先证明,CD MD BM ==设,CD MD BM m ===再用含m 的代数式表示,,AE AM 再证明,AEF AMD ∽ 利用相似三角形的性质可得EF DM的值,从而可得答案.【详解】解:过D 作DM AB ⊥于,M∠ACB=90°,AD 为△ABC 的角平分线,,CD MD ∴=CE 是△ABC 的中线,,CA CB = 90ACB ∠=︒,,CE AB ∴⊥ ,CE BE AE == 45B A ∠=∠=︒,45MDB B ∴∠=∠=︒,,DM BM ∴=,CD MD BM ∴==设,CD MD BM m === 222,BD m m m ∴=+=()212,BC CD BD m m m AC ∴=+=+=+=()22222,AB AC BC BC m ∴=+==+ ()()2212,AM AB BM m m m ∴=-=+-=+ cos ,BE B BC =()2=,212m ∴+ ()21+2,2BE m AE ∴== ,,CE AB DM AB ⊥⊥//,FE DM ∴,AEF AMD ∴∽(()2122212m EF AE DM AM m +∴===+ 22EF CD ∴= 故选:.A【点睛】本题考查的是等腰直角三角形的判定与性质,角平分线的性质,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,三角形相似的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.12.A解析:A【分析】作BD ⊥AC 于D ,根据勾股定理,可得BD 、AD 的长,根据正切为对边比邻边,可得答案.【详解】解:如图:作BD ⊥AC 于D ,, BD=2,AD=22, tanA=21222BD AD ==, 故选:A .【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.二、填空题13.8【分析】如图连接OA 过点A 作弦P′Q′⊥OA 连接OQ′此时P′Q′的值最小利用勾股定理以及垂径定理求解即可【详解】解:如图连接OA 过点A 作弦P′Q′⊥OA 连接OQ′此时P′Q′的值最小在Rt △OA解析:85【分析】如图,连接OA ,过点A 作弦P ′Q ′⊥OA ,连接OQ ′,此时P ′Q ′的值最小.利用勾股定理以及垂径定理求解即可.【详解】解:如图,连接OA ,过点A 作弦P ′Q ′⊥OA ,连接OQ ′,此时P ′Q ′的值最小.在Rt △OAQ ′中,AQ ′22OQ OA '-22128-=5cm ),∵OA ⊥P ′Q ′,∴AQ ′=AP ′,∴P ′Q ′=2AQ ′=85(cm ), 故答案为:85.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.10【分析】连接ADBC 可证∆BPC~∆DPA 从而列出比例式即可求解【详解】解:连接ADBC 则∠PBC=∠PDA 又∵∠BPC=∠DPA ∴∆BPC~∆DPA ∴∴DP ===8∴CD=8+2=10故答案是解析:10【分析】连接AD ,BC ,可证∆BPC~∆DPA ,从而列出比例式,即可求解.【详解】解:连接AD ,BC ,则∠PBC=∠PDA ,又∵∠BPC=∠DPA ,∴∆BPC~∆DPA ,∴PA PD PC PB=, ∴DP =PA PB PC ⋅=442⨯=8, ∴CD=8+2=10.故答案是:10.【点睛】本题主要考查圆周角定理,相似三角形的判定和性质,添加辅助线,构造相似三角形,是解题的关键.15.-33【分析】根据二次函数对称轴的性质一次函数与坐标轴的交点坐标列式计算即可;【详解】解:由题意得∴;故答案是:;【点睛】本题主要考查了二次函数与一次函数综合准确计算是解题的关键解析:-3 3【分析】根据二次函数对称轴的性质,一次函数与坐标轴的交点坐标列式计算即可;【详解】解:由题意得,0a b c ++=,2b x a=-,3c x a =- 1131222+-<-=<-x b a ,232-<=-<-b x a, ∴3314+<==+<a b b x a a, 3m ∴=-,3n =;故答案是:3-,3;【点睛】本题主要考查了二次函数与一次函数综合,准确计算是解题的关键.16.36【分析】设围成矩形的长为xcm 则宽为=(12﹣x )cm 设围成矩形的面积为Scm2根据矩形的面积公式列出S 关于x 的二次函数将其写成顶点式根据二次函数的性质可得答案【详解】解:设围成矩形的长为xcm解析:36【分析】设围成矩形的长为xcm ,则宽为2422x -=(12﹣x ) cm ,设围成矩形的面积为Scm 2,根据矩形的面积公式列出S 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【详解】解:设围成矩形的长为xcm ,则宽为2422x - =(12﹣x ) cm , 设围成矩形的面积为Scm 2,由题意得:S =x (12﹣x )=﹣x 2+12x=﹣(x ﹣6)2+36,∵二次项系数为负,抛物线开口向下,∴当x =6cm 时,S 有最大值,最大值为36cm 2.故答案为:36.【点睛】本题考查了二次函数在几何图形问题中的应用,熟练掌握二次函数的性质是解题的关键; 17.-5或1【分析】利用配方法可得出:当x=m 时y 的最小值为1分m <-3-3≤m≤-1和m >-1三种情况考虑:当m <-3时由y 的最小值为5可得出关于m的一元二次方程解之取其较小值;当-3≤m≤-1时y的解析:-5或1【分析】利用配方法可得出:当x=m时,y的最小值为1.分m<-3,-3≤m≤-1和m>-1三种情况考虑:当m<-3时,由y的最小值为5可得出关于m的一元二次方程,解之取其较小值;当-3≤m≤-1时,y的最小值为1,舍去;当m>-1时,由y的最小值为5可得出关于m的一元二次方程,解之取其较大值.综上,此题得解.【详解】解:∵y=x2-2mx+m2+1=(x-m)2+1,∴当x=m时,y的最小值为1.当m<-3时,在-3≤x≤-1中,y随x的增大而增大,∴9+6m+m2+1=5,解得:m1=-5,m2=-1(舍去);当-3≤m≤-1时,y的最小值为1,舍去;当m>-1时,在-3≤x≤-1中,y随x的增大而减小,∴1+2m+m2+1=5,解得:m1=-3(舍去),m2=1.∴m的值为-5或1.故答案为:-5或1.【点睛】本题考查了二次函数的最值以及二次函数图象上点的坐标特征,分m<-3,-3≤m≤-1和m >-1三种情况求出m的值是解题的关键.18.【分析】根据非负数的性质列出算式根据特殊角的三角函数值计算即可【详解】解:由题意得cosα-05=0tanβ-=0∴cosα=05tanβ=解得α=60°β=60°则α+β的度数为120°故答案为:解析:120【分析】根据非负数的性质列出算式,根据特殊角的三角函数值计算即可.【详解】解:由题意得,cosα-0.5=0,tanβ,∴cosα=0.5,解得,α=60°,β=60°,则α+β的度数为120°,故答案为:120°.【点睛】本题考查的是非负数的性质和特殊角的三角函数值,掌握非负数之和等于0时,各项都等于0是解题的关键.19.【分析】过点C作CD⊥AB垂足为D计算BCAB的长度比较AC+BC与AB的大小即可【详解】如图过点C 作CD ⊥AB 垂足为D ∵米∴DC=BD=90AD=90BC=90∴AC+BC=180+90≈306A解析:【分析】过点C 作CD ⊥AB ,垂足为D ,计算BC ,AB 的长度,比较AC+BC 与AB 的大小即可.【详解】如图,过点C 作CD ⊥AB ,垂足为D ,∵180AC 米,30CAB ∠=︒,45CBA ∠=︒,∴DC=BD=90,AD=903,BC=902,∴AC+BC=180+902≈306, AB=AD+BD=903+90≈243,∴缩短了:306-243=63(米), 故答案为:63米.【点睛】本题考查了解斜三角形,学会作高化,把斜三角形化为直角三角形,并熟练运用特殊角的三角函数值是解题的关键.20.【分析】由函数图像可得:当时此时面积最大可得当时重合可得如图过作于求解再求解再利用列方程解方程可得答案【详解】解:由函数图像可得:当时重合此时面积最大当时重合如图过作于菱形经检验:符合题意故答案为: 解析:433【分析】由函数图像可得:当4x s =时,=PAB S a ,此时面积最大,可得=4AC , 当4x a =+时,,P D 重合,可得,AB CD a == 如图,过C 作CK AB ⊥于,K 求解2,CK = 再求解30CAK ∠=︒,30BCK ∠=︒, 再利用cos ,CK BCK BC ∠= 列方程,解方程可得答案. 【详解】解:由函数图像可得:当4x s =时,,P C 重合,=PAB S a ,此时面积最大,14=4AC ∴=⨯,当4x a =+时,,P D 重合,()144,AB CD a a ∴==⨯+-=如图,过C 作CK AB ⊥于,K1,2a CK a ∴= 2,CK ∴=1sin ,2CK CAK CA ∴∠== 30CAK ∴∠=︒,60ACK ∴∠=︒,菱形ABCD ,,30,AB BC a BCA BAC ∴==∠=∠=︒603030BCK ∴∠=︒-︒=︒,cos ,CK BCK BC ∠=23cos30,2a ∴=︒= 34,a =43a ∴= 经检验:33a =故答案为:433【点睛】 本题考查的是从函数图像中获取信息,菱形的性质,锐角三角函数的运用,掌握以上知识是解题的关键.21.【分析】过点C 作CE ⊥BD 于E 构造直角三角形由方位角确定∠ECD=60°在Rt △CED 中利用三角函数AB=CD•cos ∠ECD 即可【详解】过点C 作CE ⊥BD 于E 由湖的南北两端A 和B ∴∠EBA=∠BA解析:【分析】过点C 作CE ⊥BD 于E 构造直角三角形,由方位角确定∠ECD=60°,在Rt △CED 中利用三角函数AB=CD •cos ∠ECD 即可.【详解】过点C 作CE ⊥BD 于E ,由湖的南,北两端A 和B∴∠EBA=∠BAC=90º,又∠BEC=90º则四边形ABCE 为矩形,∴AB=CE∵点D 位于点C 的北偏东60°方向上,∴∠ECD=60°,∵CD=12km ,在Rt △CED 中,∴CE=CD•cos ∠ECD=12×12=6km , ∴AB=CE=6km .故答案为:6.【点睛】本题考查解直角三角形的应用,通过辅助线,将问题转化矩形和三角形中,利用三角函数与矩形性质便可解决是关键.22.【分析】根据菱形的性质可得=3从而得出都是等边三角形利用SAS 即可证出从而得出根据等边三角形的判定可得是等边三角形从而得出即CE 最小时EF 最小根据垂线段最短可得时线段最小利用锐角三角函数即可求出结论 解析:332【分析】根据菱形的性质可得AB BC CD AD AC =====3,从而得出ABC ,ACD △都是等边三角形,利用SAS 即可证出EAC FDC ≌,从而得出,EC FC ACE DCF =∠=∠,根据等边三角形的判定可得ECF △是等边三角形,从而得出CE EF CF ==,即CE 最小时,EF 最小,根据垂线段最短可得CE AB ⊥时,线段CE 最小,利用锐角三角函数即可求出结论.【详解】解:∵四边形ABCD 是菱形,且AB AC ==3,∴AB BC CD AD AC =====3,∴ABC ,ACD △都是等边三角形,∴60EAC D ∠=∠=︒,在EAC 和FDC △中EA FD EAC D AC DC =⎧⎪∠=∠⎨⎪=⎩∴EAC FDC ≌,∴,EC FC ACE DCF =∠=∠, ∴60ECF ACD ∠=∠=︒,∴ECF △是等边三角形,∴CE EF CF ==,∵CE AB ⊥时,线段CE 最小,最小值为BC·sin ∠3=, ∴EF故答案为:2. 【点睛】此题考查的是菱形的性质、等边三角形的判定及性质、全等三角形的判定及性质和解直角三角形,掌握菱形的性质、等边三角形的判定及性质、全等三角形的判定及性质和利用锐角三角函数解直角三角形是解题关键. 三、解答题23.(1)证明见详解;(2)185【分析】(1)连接OD ,证明CBO △CDO ≌△,即可得到结论.(2)连接BD ,根据勾股定理求出OC ,根据直径所对的圆周角等于90︒,平行线的性质,可证OCB △ADB ∽△,即可求出AD 的长【详解】(1)如图:连接OD ,//AD OC ,A COB ∴∠=∠,ADO COD ∠=∠,OA OD =,A ADO ∴∠=∠,COD COB ∴∠=∠,∴在COD △和CBO 中OD OB COD COB OC OC =⎧⎪∠=∠⎨⎪=⎩,∴COD △≌CBO ,CDO CBO ∴∠=∠,CB AB ⊥,90CDO CBO ∴∠=∠=︒,OD CD ∴⊥,∴DC 是⊙O 的切线;(2)如图:连接BD//AD OCA COB ∴∠=∠ AB 为直径,CB AB ⊥90ADB OBC ∴∠=∠=︒∴ADB OBC ∽OC OB AB AD∴=6,4AB BC == 132OB AB ∴== ∴在Rt OBC 中2222345OC OB BC =+=+=536AD∴= 185AD ∴= 【点睛】本题考查了圆切线的判定定理,平行线的性质,全等三角形的判定和性质,圆周角定理,相似三角形的判定和性质,熟练掌握这些定理和性质,正确作出辅助线是解题关键. 24.(1)见解析;(2)8cm .【分析】(1)按尺规作图方法,作出其中两边的垂直平分线,以此交点为圆心,圆心到三角形任意顶点的距离为半径画圆即可;(2)连接OB ,利用等边三角形的性质,垂径定理,再结合三角函数解直角三角形即可求出半径.【详解】(1)如图:圆O 即为所求(2)如图,连接OB ,设AB 的垂直平分线交AB 于点E ,AC 的垂直平分线交AC 于点F ,则点B 、O 、F 在同一条直线上,1432BE AB cm ∴==,90AFB BEO ∠=∠=︒, 60A ∠=︒,30EBO ∴∠=︒, ∴在t R BEO △中,cos BE EBO BO ∠=, 332BO=, 8()BO cm ∴=,∴ABC 的外接圆半径为8cm .【点睛】本题考查了作图—复杂作图,等边三角形的性质,垂径定理,解直角三角形等知识,灵活运用所学知识解决问题是解题关键.25.(1)证明见解析,(2)3.【分析】(1)当y=0时,判断一元二次方程是否有两个不相等的实数根即可;(2)求出解析式和A 、B 、C 三点坐标,利用面积公式即可求.【详解】解:当y=0时,0=x 2﹣2(a +1)x +a 2+2a .2224=[2(1)]4(2)b ac a a a --+-⨯+=4>0,∴不论a 取何实数,该抛物线与x 轴都有两个交点;(2)当a =1时,抛物线解析式为:y =x 2﹣4x +3当y=0时,x 2﹣4x +3=0,解得,x 1=1,x 2=3,设A 点坐标为(1,0),B 点坐标为(3,0),当x=0时,y=3,C 点坐标为(0,3)S △ABC =1(31)332⨯-⨯=. 【点睛】 本题考查了二次函数与x 轴交点个数和求与坐标轴交点坐标,解题关键是熟练运用一元二次方程知识解决问题.26.(1)21462y x x =-+;(2)12;(3)D 57,2⎛⎫ ⎪⎝⎭ 【分析】(1)直接将点A 、B 的坐标代入26y ax bx =++ 中求得a 、b 的值即可; (2)过点A 作AE AC ⊥点A ,交BC 于点E ,过点E 做EF x ⊥轴于点F ,证出EF BF =.设EF BF x ==,则4AF x =-,证出AOC EFA ∽△△.求出1x =.即可求出12AE EF AC OA ==. (3)过点A 作AM AC ⊥于点A ,交CD 于点M ,过点M 做MN x ⊥轴于点N .证出AOC MNA ≌△△,求出点M (8,2)直线MC 的解析式162y x =-+,列方程组求出点D 坐标(7,52) 【详解】 (1)∵点A(2,0)和点B(6,0)在26y ax bx =++,∴ 将点A(2,0)和点B(6,0)代入26y ax bx =++得:426036660a b a b ++=⎧⎨++=⎩, 解得:124a b ⎧=⎪⎨⎪=-⎩ , ∴21462y x x =-+; (2)解:过点A 作AE AC ⊥点A ,交BC 于点E ,过点E 做EF x ⊥轴于点F , ∵AE ⊥AC ,EF ⊥AB ,∴∠EFB=90°,∵B(6,0),C(0,6),∴△OBC 为等腰直角三角形,∴∠B=45°,∴△BEF 为等腰直角三角形,∴EF=BF ,设EF BF x ==,则4AF x =-,∵∠CAO+∠EAF=90°,∠AEF+∠EAF=90°,∴∠CAO=∠AEF ,∴AOC EFA ∽△△,∴AF EF OC AO = , 即462x x -= , 解得:1x =. ∴tan ACB ∠=12AE EF AC OA ==.(3)解:过点A 作AM AC ⊥于点A ,交CD 于点M ,过点M 做MN x ⊥轴于点N .∵∠ACD=45°,∠CAM=90°,∴△CAM 为等腰直角三角形,∴CA=AM ,又∵∠CAO+∠MAB=90°,∠AMN+∠MAB=90°,∴∠CAO=∠AMN ,在△AOC 和△MNA 中⎧⎪⎨⎪⎩∠COA=∠ANM ∠CAO=∠AMN CA=AM , ∴AOC MNA ≌△△(AAS ),∴ MN=OA=2,AN=OC=6,∴ M(8,2),∴设直线MC 的解析式为:y kx b =+ ,将C(0,6),M(8,2),代入得:682b k b =⎧⎨+=⎩, 解得:126k b⎧=-⎪⎨⎪=⎩ , ∴ 直线MC 的解析式162y x =-+, ∴21462162y x x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩ 解得:06x y =⎧⎨=⎩ (舍去)752x y =⎧⎪⎨=⎪⎩ ∴D (7,52);【点睛】本题考查了相似三角形与全等三角形的性质与判定,二次函数的解析式,二次函数与一次函数的交点问题,等腰直角三角形的性质;熟练掌握知识点是解题的关键;。
江苏省东台市2017届九年级数学下学期第一次模拟试题初三调研测试数学试卷参考答案一、选择题1. ;2.;3.; 4。
; 5。
; 6..二、填空题7.;8。
<即可,如;9。
;10。
;11。
;12.;13.;14.;15.;16.。
三、解答题17.;………………6分18.解:=………………5分当时,原式………………8分19.≤<,………………5分在数轴上表示略;………………8分20。
(1),补图略(12—17岁300人)………………各2分,共4分(2)………………6分(3)万………………8分21。
(1)画树状图得:则点M所有可能的坐标为:(0,—1),(0,-2),(0,1),(1,—1),(1,-2),(1,1),(2,-1),(2,-2),(2,1);(2)∵点在函数的图像上的有:(1,-1),∴点在函数的图像上的概率为:.22.(1)方法1:证明≌,得;方法2:证明四边形是平行四边形,得,又平移得,所以………………4分(2)时,………………6分证明:证四边形是平行四边形………………7分设,则,∵在中,∴,∴,∴,∴,∴,∴四边形是菱形。
(不设未知数,证邻边相等也可)………………10分23。
解:(1)中:,∴(米);………………3分(2)过点作,垂足为,则为等腰直角三角形,设,在中,,易得四边形是矩形,∴,,∴,∴,∵,∴,解得:,∴。
答:大楼的高度为:米。
………………10分24.(1)连接,∵,∴,又∵∴∵∴∴∴∵点在⊙上,∴直线是⊙的切线. ………………5分(2)连接∵是⊙的直径,∴∴∽∴,即,∴经检验是原方程的解,∴.………………10分25。
(1)80,120;………………2分(2)∵快车走完全程所需时间为,∴点的横坐标为,纵坐标为,即,由,设线段的函数解析式为,代入并求得,,∴,自变量的取值范围为:≤≤;………………6分(3)①相遇前:,解得:;②相遇后:,解得:∴当或时,两车之间的距离为。
一、选择题1.如图,AB 是半圆的直径,CD 为半圆的弦,且CD//AB ,∠ACD=26°,则∠B 等于( )A .26°B .36°C .64°D .74°2.以坐标原点O 为圆心,1为半径作圆,直线y x b =-+与O 相交,则b 的取值范围是( )A .11b -<<B .22b -<<C .20b -<<D .02b << 3.已知△ABC 内接于⊙O ,连接AO 并延长交BC 于点D ,若∠C =50°,则∠BAD 的度数是( )A .40°B .45°C .50°D .55° 4.如图,四边形ABCD 中,对角线AC ,BD 交于点E . 若BAC BDC ∠=∠,则下列结论中正确的是( )①AE BE DE CE = ②ABE △与DCE 的周长比为BE CE③ADE ABC =∠∠ ④ABE DCE ADE BCE SS S S ⋅=⋅ A .③④B .①②③C .①②④D .①②③④5.抛物线y =ax 2+bx +c 的顶点坐标(﹣2,3),抛物线与x 轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a ﹣b =0;②a ﹣b +c =0; ③若(﹣4,y 1),(1,y 2)是抛物线上的两点,则y 1>y 2; ④b 2+3b =4ac .其中正确的个数有( )A .4B .3C .2D .16.已知二次函数y =ax 2+bx +c 的图象开口向上(如图),它与x 轴的两个交点分别为(﹣1,0)、(3,0).对于下列结论:①c <0;②b <0;③4a ﹣2b +c >0.其中正确的有( )A .3个B .2个C .1个D .0个7.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2b a =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个8.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④9.如图,△ABC 中,AB =AC =13,BC =10,则sin B =( )A .512B .1013C .513D .121310.如图,在平面直角坐标系中,点A 坐标为()3,4,那么cos α的值是( )A .34B .43C .35D .4511.如图,要测量小河的宽度,在小河边取PA 的垂线PB 上的一点C ,测得50PC m =,35PCA ∠=︒,则小河的宽度PA 等于( )A .50tan35m ︒B .50sin55m ︒C .50sin35m ︒D .50tan55m ︒ 12.如图,等边OAB ∆的边OB 在x 轴的负半轴上,双曲线k y x=过OA 的中点,已知等边三角形的边长是4,则该双曲线的表达式为( )A .3y x =B .3y x =-C .23y x =D .23y x=- 二、填空题13.圆锥的表面展开图由一个扇形和一个圆组成,已知扇形的半径为9,圆心角为120°,则圆锥的底面圆的半径为__________.14.如图,O 是ABC 的内切圆,切点分别为D 、E 、F ,80A ∠=︒,点P 为O 上任意一点(不与E 、F 重合),则EPF ∠=______.15.如图,二次函数2y ax bx c =++的图象与x 轴交于点()3,0A ,()1,0B -.若42P a b =+,Q a b =+,则P ,Q 的大小关系是__________(填“>”或“<”或“=”).16.现从四个数1,2,1-,3-中任意选出两个不同的数,分别作为二次函数2y ax bx =+中a ,b 的值,则所得二次函数满足开口方向向下且对称轴在y 轴右侧的概率是__________.17.将抛物线2610y x x =-+先向左平移2个单位长度,再向下平移1个单位长度,得到的抛物线与x 轴的交点坐标是______.18.江堤的横断面如图,堤高BC 10=米,迎水坡AB 的坡比是1:3,则堤脚AC 的长是______.19.如图,ABC ∆的顶点都是正方形网格中的格点,则cos CAB ∠=__________.20.如图,在2×4的方格中,两条线段的夹角(锐角)为∠1,则sin ∠1=______________.21.如图,直角坐标系原点O 为Rt ABC ∆斜边AB 的中点,()90,5,0ACB A ∠=︒-,且1tan 2A =,反比例函数(0)k y k x=≠经过点C ,则k 的值是_______.22.在Rt ABC ∆中,90A ∠=︒,3AB =,4BC =则cos B =______.三、解答题23.如图,在ABC 中,AB AC =,点O 在AB 上,O 经过点B ,与BC 交于另一点D ,与AB 交于另一点E ,作DF AC ⊥,连结EF .(1)求证∶DF 与O 相切; (2)若EF 与O 相切,7AC =,4DF =. ①求证∶四边形ODCF 为平行四边形; ②求O 的半径.24.如图,已知圆锥的底面积为29cm π,高4AO cm =,求该圆锥的侧面展开图的面积(结果保留π).25.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值互为相反数;当0x <时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x -≥⎧=⎨<⎩. (1)已知点(1,3)A -在一次函数2y ax =-的相关函数的图象上,求a 的值;(2)已知二次函数2283y x x =-+-.①当点(,4)B m -在这个函数的相关函数的图象上时,求m 的值;②当23x -≤≤时,求函数2283y x x =-+-的相关函数的最大值和最小值. 26.抛物线y =2x 2+4mx +m -5的对称轴为直线x =1,求m 的值及抛物线的顶点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用平行线的性质,得∠ACD=∠CAB=26°,根据直径上的圆周角为直角,得∠ACB=90°,利用直角三角形的性质计算即可.【详解】∵CD //AB ,∠ACD=26°,∴∠ACD=∠CAB=26°,∵AB 是半圆的直径,∴∠ACB=90°,∴∠B=64°,故选C .【点睛】本题考查了平行线的性质,圆周角的原理,直角三角形的性质,熟练掌握性质,并灵活运用是解题的关键.2.B解析:B【分析】求出直线y x b =-+与圆相切时,函数经过一、二、四象限和当直线y x b =-+与圆相切时,函数经过二、三、四象限b 的值,则b 的值在相交时与相切时两个b 之间;【详解】当直线y x b =-+与圆相切时,函数经过一、二、四象限,如图所示:在y x b =-+中,令x=0,y=b ,则与y 轴的交点为B(0,b),令x=b ,y=0,则与x 轴的交点为A(b ,0),则OA=OB ,即△AOB 是等腰直角三角形,连接圆心O 与切点C ,则OC=1,∴ △BOC 也是等腰直角三角形,∴ BC=OC=1,∴ 22112BO =+= ,同理当直线y x b =-+与圆相切时且函数经过二、三、四象限,b=2- ,∴ 当直线y x b =-+与圆相交时,b 的取值范围是22b -<< ;故选:B .【点睛】本题主要考查了直线与圆的关系的综合,解题的关键是根据题意找到直线与圆相切时b 的值.3.A解析:A【分析】连接OB ,根据圆周角定理和圆的半径相等即可解决问题.【详解】解:如图,连接OB ,∵∠C =50°,∴∠AOB =2∠C =100°,∵OA =OB ,∴∠OAB =∠OBA =40°,则∠BAD 的度数是40°.故选:A .【点睛】本题主要考查了圆周角定理,准确计算是解题的关键.4.C解析:C【分析】根据相似三角形可得①②正确,由四点共圆可知③不符合题意,面积比转化成边长比可得④正确.【详解】解:∵BAC BDC ∠=∠,AEB DEC ∠=∠∴ABE DCE ∴AE BE DE CE = ∴①正确;相似三角形周长比等于相似比,②正确∵BAC BDC ∠=∠,且△BDC 和△BAC 共有底BC∴得到A ,B ,C ,D 四点共圆;若ADE ABC =∠∠,则=ADE ABC ACB =∠∠∠,则AB=AC ,但题目中并没有告诉这个条件,所以③不一定正确;∵△ABE 和△ADE 共有高,∴ABEADE SBE S DE=, ∵△CBE 和△CDE 共有高,∴BCE DCE BE S DE S = ∴ABEBCEADE DCE S BE S S DE S ==即,ABE DCE ADE BCE S S S S ⋅=⋅,故 ④正确;∴①②④正确,选C.【点睛】此题主要考查了相似三角形的判断及其性质,解决本题的关键是合理作辅助圆,熟练掌握相似三角的性质定理.5.B解析:B【分析】根据抛物线的对称轴可判断①;由抛物线与x 轴的交点及抛物线的对称性以及由x =﹣1时y >0可判断②,由抛物线对称性和增减性,即可判断③;利用抛物线的顶点的纵坐标为3得到244ac b a-=3,即可判断④. 【详解】解:∵抛物线的对称轴为直线x 2b a =-=-2, ∴4a ﹣b =0,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴x =﹣1时y >0,即a ﹣b +c >0,∴所以②错误;由抛物线的对称性知(﹣4,y 1)与(0,y 1)关于对称轴对称,∵抛物线开口向下,对称轴为直线x 2b a=-=-2 ∴当x >-2时,y 随x 的增大而减小,∵-2<0<1∴y 1>y 2∴所以③正确;∵抛物线的顶点坐标为(﹣2,3), ∴244ac b a-=3, ∴b 2+12a =4ac ,∵4a ﹣b =0,∴b =4a ,∴b 2+3b =4ac ,所以④正确;故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ):抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.A解析:A【分析】根据抛物线与y 轴的交点位置可对①进行判断;根据抛物线的对称性得到x =2b a -=1,则b =﹣2a <0,于是可对②进行判断;利用x =﹣2,y >0可对③进行判断.【详解】解:∵抛物线与y 轴的交点坐标在x 轴下方,∴c <0,所以①正确;∵抛物线开口向上,∴a >0,∵抛物线与x 轴的两个交点分别为(﹣1,0),(3,0),∴抛物线的对称轴为直线x =1,即2b a-=1, ∴b =﹣2a <0,所以②正确;∵由图象可知,当x =﹣2时,y >0,∴4a ﹣2b +c >0,所以③正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,解题关键是树立数形结合思想,准确读取图象信息,认真推理判断. 7.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =, ∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.8.A解析:A【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a=-=-<0, b ∴<0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12b x a=-=-, 2,b a ∴= 即1,2a b = 当1x =时,y a b c =++<0,12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.9.D解析:D【分析】过点A 作AD ⊥BC ,垂足为D ,求出AD 长,再根据三角函数的意义计算即可.【详解】解:过点A 作AD ⊥BC ,垂足为D ,∵AB =AC =13,BC =10,∴BD=CD=5,12=, sin B =1213AD AB =, 故选:D .【点睛】本题考查了等腰三角形的性质和三角函数,解题关键是作高构建直角三角形,利用三角函数的意义进行计算.10.C解析:C【分析】作AB⊥x轴于B,先利用勾股定理计算出OA=5,然后在Rt△AOB中利用余弦的定义求解即可.【详解】解:作AB⊥x轴于B,如图,∵点A的坐标为(3,4),∴OB=3,AB=4,∴OA=2234+=5,在Rt△AOB中,cosα=35 OBOA=.故选:C.【点睛】本题考查了解直角三角形的应用、坐标与图形性质、勾股定理等知识;熟练掌握三角函数的定义是解题的关键.11.A解析:A【分析】根据正切函数可求小河宽PA的长度.【详解】解:∵PA ⊥PB ,PC=50米,∠PCA=35°,∴小河宽PA=PCtan ∠PCA=50tan35°(米).故选:A .【点睛】考查考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.12.B解析:B【分析】如图,过点C 作CD ⊥OB 于点D .根据等边三角形的性质、中点的定义可以求得点C 的坐标,然后把点C 的坐标代入双曲线方程,列出关于系数k 的方程,通过解该方程即可求得k 的值.【详解】解:如图,过点C 作CD ⊥OB 于点D .∵△OAB 是等边三角形,该等边三角形的边长是4,∴OA=4,∠COD=60°,又∵点C 是边OA 的中点,∴OC=2,∴OD=OC•cos60°=2×12=1,33. ∴C (-13 31k -, 解得,3,∴该双曲线的表达式为3y x=-. 故选:B .【解答】本题考查了待定系数法求反比例函数解析式,等边三角形的性质.解题的关键是求得点C 的坐标.二、填空题13.3【分析】根据弧长公式求出扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长再利用圆周长的公式求解即可【详解】扇形的半径为9圆心角为120°扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆解析:3【分析】根据弧长公式求出扇形的弧长,圆锥侧面展开扇形的弧长等于圆锥底面圆的周长,再利用圆周长的公式求解即可【详解】扇形的半径为9,圆心角为120°∴扇形的弧长12096 180180n rlπππ⨯===圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆锥底面圆的半径为r26rππ∴=3r∴=故答案为:3.【点睛】本题考查了圆锥侧面展开图与底面圆之间的关系,弧长的计算,解题关键是熟知圆锥侧面展开扇形的弧长等于圆锥底面圆的周长.14.50°或130°【分析】有两种情况:①当P在优弧EF上时连接OEOF求出∠EOF根据圆周角定理求出即可;②当P在劣弧EF上时根据圆内接四边形的性质得到∠EP1F+∠EP2F=180°代入求出即可【详解析:50°或130°【分析】有两种情况:①当P在优弧EF上时,连接OE、OF,求出∠EOF,根据圆周角定理求出即可;②当P在劣弧EF上时,根据圆内接四边形的性质得到∠EP1F+∠EP2F=180°,代入求出即可.【详解】解:有两种情况:①当P在优弧EF上时,连接OE、OF,∵圆O是△ABC的内切圆,∴OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,∵∠A=80°,∴∠EOF=360°-∠AEO-∠AFO-∠A=100°,∴∠EP 1F =12∠EOF=50°, ②当P 在劣弧EF 上时,∠FP 2E =180°-50°=130°,故答案为:50°或130°..【点睛】本题考查了垂线的定义,多边形的内角和定理,三角形的内切圆与内心,圆周角定理等知识点的理解和掌握,能综合运用性质进行推理是解题的关键.15.【分析】把AB 坐标代入求出代入PQ 进行判断即可【详解】解:将代入∴∴∴∴∵二次函数的图象开口向下∴∴∴故答案为:【点睛】此题主要考查了二次函数的图象与性质求出是解答此题的关键解析:Q P >【分析】把A 、B 坐标代入2y ax bx c =++求出2b a =-,代入P ,Q 进行判断即可.【详解】解:将()3,0A ,()1,0B -代入2y ax bx c =++, ∴0930a b c a b c=++⎧⎨=-+⎩ ∴93a b a b +=-∴2b a =-∴42=440P a b a a =+-=,=2Q a b a a a =+-=-∵二次函数的图象开口向下∴0a <∴0a ->∴Q P >故答案为:Q P >【点睛】此题主要考查了二次函数的图象与性质,求出2b a =-是解答此题的关键.16.【分析】把ab 所有可能的取值及满足题目的条件通过表格列出来再根据概率的定义列式求解即可【详解】解:∵二次函数满足开口方向向下即要a<0对称轴在y 轴右侧即要求∴可以列出如下表格:其中第三和第四行数字0 解析:13【分析】把a 、b 所有可能的取值及满足题目的条件通过表格列出来,再根据概率的定义列式求解即可.【详解】解:∵二次函数满足开口方向向下即要a<0,对称轴在y 轴右侧即要求02b a->, ∴可以列出如下表格:其中第三和第四行数字0表示不满足题中某个条件 , 数字1表示满足题中某个条件, ∴由题意,只有第三和第四行两个数字都为1时才满足题目所有条件,此时a 和b 的值分别为-1和1、-1和2、-3和1、-3和2共4种情况,∴所求概率为41123=, 故答案为13. 【点睛】本题考查二次函数的性质,用列表法计算概率的方法,熟练掌握列表法的步骤及题目条件的符号表示是解题关键.17.【分析】先把抛物线解析式整理出顶点式形式再根据规律求出平移后的抛物线再求出抛物线与轴的交点坐标即可【详解】解:∵∴抛物线向左平移2个单位长度再向下平移个单位长度得:∴平移后的抛物线顶点坐标为(10) 解析:()1,0【分析】先把抛物线解析式整理出顶点式形式,再根据规律求出平移后的抛物线,再求出抛物线与x 轴的交点坐标即可.【详解】解:∵22610=(3)1y x x x =-+-+,∴抛物线2610=-+向左平移2个单位长度,再向下平移1个单位长度,得:y x x222=-+-+-=-y x x x x610=(3+2)11(1)∴平移后的抛物线顶点坐标为(1,0),即所得到的抛物线与x轴的交点坐标为(1,0).故答案为:(1,0).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式,本题巧妙之处在于抛物线顶点坐标在x轴上.18.米【分析】在Rt△ABC中已知了坡面AB的坡比是铅直高度BC和水平宽度AC的比值据此即可求解【详解】解:根据题意得:BC:AC=1:解得:AC=BC=10(米)故答案为:10米【点睛】本题考查了解直解析:103米【分析】在Rt△ABC中,已知了坡面AB的坡比是铅直高度BC和水平宽度AC的比值,据此即可求解.【详解】解:根据题意得:BC:AC=1:3,解得:AC=3BC=103(米).故答案为:103米.【点睛】本题考查了解直角三角形的应用——坡度坡角问题,理解坡度坡角定义是关键.19.【分析】根据题意和图形可以得到ACBC和AB的长然后根据等面积法可以求得CD的长再利用勾股定理求得AD的长从而可以得到cos∠CAB的值【详解】解:作CD⊥AB交AB于点D由图可得∵解得∴∴故答案为解析:25【分析】根据题意和图形,可以得到AC、BC和AB的长,然后根据等面积法可以求得CD的长,再利用勾股定理求得AD的长,从而可以得到cos∠CAB的值.【详解】解:作CD⊥AB,交AB于点D,由图可得,2,AC BC AB ===== ∵322ABC AB CD BC S ∆⋅⨯==,解得,CD =,∴AD ===∴cosCAB A A C D ∠===,. 【点睛】 本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答. 20.【分析】解:如图添加字母过A 作AB ∥ED 可得∠1=∠CAB 连结BC 在△ABC 中由勾股定理AC=AB=BC=由AB2+BC2=5+5=10=AC2证得∠ABC=90°由AB=BC 可得∠CAB=45°利解析:2【分析】解:如图添加字母,过A 作AB ∥ED ,可得∠1=∠CAB ,连结BC ,在△ABC 中由勾股定理,AB 2+BC 2=5+5=10=AC 2,证得∠ABC=90°,由AB=BC 可得∠CAB=45°,利用三角函数定义sin ∠CAB=2BC AC ===。
一、选择题1.由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是( )A .6B .5C .4D .32.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 3.如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC =3.2m",CA =0.8m , 则树的高度为( )A .4.8mB .6.4mC .8mD .10m4.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:95.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( ) A . B . C . D . 6.若菱形的边长为2cm ,其中一内角为60°,则它的面积为( )A .232cmB .23cmC .22cmD .223cm 7.在正方形网格中,小正方形的边长均为1,∠ABC 如图放置,则sin ∠ABC 的值为( )A .52B .55C .33D .18.如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC9.如图,为一幅重叠放置的三角板,其中∠ABC=∠EDF=90°,BC 与DF 共线,将△DEF 沿CB 方向平移,当EF 经过AC 的中点O 时,直线EF 交AB 于点G ,若BC=3,则此时OG 的长度为( )A 322B 332C .32D 3332210.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)A.78.6米B.78.7米C.78.8米D.78.9米11.如图,在ABC中,中线BE,CD相交于点O,连接DE,下列结论:①12DEBC=;②12SS=△DOE△COB;③AD OEAB OB=;④16ODEADCSS=△△.其中结论正确的是().A.①②B.①③C.①②③D.①③④12.将函数6yx=的图象沿x轴向右平移1个单位长度,得到的图象所相应的函数表达式是()A.61yx=+B.61yx=-C.61yx=+D.61yx=-二、填空题13.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.14.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最多需要__________个小立方块.15.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为_____.16.如图,在ABC 中,6AB BC ==,点O 为BC 中点,点P 是射线AO 上的一个动点,且 60AOC ∠=︒.要使得BCP 为直角三角形,CP 的长为 ________ .17.如图,“人字梯”放在水平的地面上,AB AC =,当梯子的一边与地面所夹的锐角α为60︒时,两梯角之间的距离BC 的长为2m .周日亮亮帮助妈妈整理换季衣服,先使α为60︒,后又调整α为45︒,则梯子顶端A 离地面的高度下降了___________m .18.在直角三角形ABC 中,∠ACB=90°,D 、E 是边AB 上两点,且CE 所在直线垂直平分线段AD ,CD 平分∠BCE ,3AB=_____.19.如图,在Rt ABC ∆中,90ACB ∠=︒,//CD AB ,ABC ∠的平分线BD 交AC 于点E ,若10AB =,6BC =,则AE =_______.20.如图,在平面直角坐标系中,菱形OABC 的面积为20,点B 在y 轴上,点C 在反比函数k y x=的图像上,则k 的值为________.三、解答题21.如图是由几个小立方体所堆成的几何俯视图,小下方形里的数学字表示该位置小立方块的个数,请画出这个几何主视图和左视图:22.如图各图是棱长为1cm 的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm 2;如图②中,从正面看有3个正方形,表面积为18cm 2;如图③,从正面看有6个正方形,表面积为36cm 2;…(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n 个图形中,从正面看有多少个正方形?表面积是多少?23.如图,已知ABC 和点A '.(1)以点A '为顶点求作A B C ''',使A B C ABC '''∽,4A B C ABC SS '''=;(尺规作图,保留作图痕迹,不写作法) (2)设D 、E 、F 分别是ABC 三边AB 、BC 、AC 的中点,D '、E '、F '分别是你所作的A B C '''三边A B ''、B C ''、A C ''的中点,求证:DEF D E F '''∽.24.如图,O 为ABC 的外接圆,AB 为O 的直径,点D 为BC 的中点.(1)连接OD .求证://OD AC .(2)设OD 交BC 于E ,若43BC=2DE =.求阴影部分面积. 25.解答下列各题:(1)计算:(1012sin 6032202032-⎛⎫︒+-+ ⎪⎝⎭. (2)解方程:21133x x x-=--. 26.如图,已知一次函数y =x+2的图象与x 轴、y 轴分别交于点A ,B 两点,且与反比例函数y =m x的图象在第一象限交于点C ,CD ⊥x 轴于点D ,且OA =OD . (1)求点A 的坐标和m 的值; (2)点P 是反比例函数y =m x在第一象限的图象上的动点,若S △CDP =2,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.2.C解析:C【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.3.C解析:C【解析】解:因为人和树均垂直于地面,所以和光线构成的两个直角三角形相似,设树高x米,则1.6ACAB x=,即0.8 1.60.8 3.2x=+∴x=8故选C.4.B解析:B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.5.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.6.D解析:D【分析】连接AC,过点A作AM⊥BC于点M,根据菱形的面积公式即可求出答案.【详解】连接AC,过点A作AM⊥BC于点M,∵菱形的边长为2cm,∴AB=BC=2cm,∵有一个内角是60°,∴∠ABC=60°,∴AM=ABsin60°3,∴此菱形的面积为:323=2cm).故选:D.【点睛】本题考查菱形的性质,特殊角的三角函数值,解题的关键是熟练运用菱形的性质.7.B解析:B【分析】作AD⊥BC于D,由勾股定理得出BC2231+10,AB2211+2,由△ABC的面积求出AD=105,由三角函数定义即可得出答案.【详解】解:作AD⊥BC于D,如图所示:由勾股定理得:BC2231+10,AB2211+2,∵△ABC的面积=12BC×AD=12×3×1−12×1×1,∴1210×AD=12×3×1−12×1×1,解得:AD=105,∴sin∠ABC=ADAB 10525;故选:B.【点睛】本题考查了解直角三角形、勾股定理以及三角函数定义;熟练掌握勾股定理和三角函数定义是解题的关键.8.C解析:C【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD,进而利用锐角三角函数关系得出答案.【详解】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD=BDBC=BCAB=DCAC,只有选项C错误,符合题意.故选:C.【点睛】此题主要考查了锐角三角函数的定义,得出∠α=∠ACD是解题关键.9.A解析:A【分析】分别过O作OH⊥BC,过G作GI⊥OH,由O是中点,根据平行线等分线段定理,可得H为BC的中点,则可得BH=32,再由三个角都是直角的四边形是矩形,可得GI=BH=32,在等腰直角三角形OGI中,即可求解.【详解】解:过O作OH⊥BC于H,过G作GI⊥OH于I ∵∠ABC=90°,∴AB⊥BC,∴OH∥AB,又O为中点,∴H为BC的中点,∴BH=12BC=32∵GI⊥OH,∴四边形BHIG为矩形,∴GI∥BH,GI=BH=32,又∠F=45°,∴∠OGI=45°,∴在Rt△OGI中,32cos2GIOGOGI==∠.故选:A【点睛】本题考查了解直角三角形及平行线等分线段定理,构造合适的辅助线是解题关键.10.C解析:C【分析】如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度【详解】如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G∵BC 的坡度为1:0.75∴设CF 为xm ,则BF 为0.75xm∵BC=140m∴在Rt △BCF 中,()2220.75140x x +=,解得:x=112 ∴CF=112m ,BF=84m∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形∵DE=55m ,CE=FG=36m∴DG=167m ,BG=120m设AB=ym∵∠DAB=40°∴tan40°=1670.84120DG AG y ==+ 解得:y=78.8故选:C【点睛】本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值. 11.D解析:D【分析】先判断DE 为ABC 的中位线,则根据三角形中位线性质得到//DE BC ,12DE BC =,于是可对①进行判断;证明DOE △∽COB △,利用相似比得到12OE DE OD OB BC OC ===,14DOE COB S S =△△,则可对②进行判断;加上12AD AB =,则可对③进行判断;利用三角形面积公式得到13ODE DCE S S =△△,12DCE ADC S S =△△,则可对④进行判断.【详解】解:∵BE 、CD 为ABC 的中线,∴DE 为ABC 的中位线,∴//DE BC ,12DE BC =,所以①正确; ∵//DE BC ,∴DOE △∽COB △, ∴12OE DE OD OB BC OC ===,214DOE COB S DE S CB ⎛⎫== ⎪⎝⎭△△,所以②错误; ∵12AD AB =, ∴AD OE AB OB=,所以③正确; ∵:1:2OD OC =, ∴13ODE DCE S S =△△, ∵AE CE =, ∴12DCE ADC S S =△△, ∴16ODE ADC S S =△△,所以④正确. 故选D .【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练运用相似三角形的性质和判定定理. 12.B解析:B【分析】由于把双曲线平移,k 值不变,利用“左加右减,上加下减”的规律即可求解.【详解】 解:将函数6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是61y x =-, 故选:B .【点睛】本题考查了反比例函数的图象,注意:平移后解析式有这样一个规律“左加右减,上加下减”.二、填空题13.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.14.17【解析】【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最多的正方体的个数相加即可【详解】最多需要8+6+3=17个小正方体;故答案为:17【点睛】考查学生解析:17【解析】【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最多的正方体的个数,相加即可.【详解】最多需要8+6+3=17个小正方体;故答案为: 17.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.15.12+15π【解析】试题分析:由几何体的三视图可得:该几何体是长方体两个扇形和一个矩形的组合体该组合体的表面积为:S=2×2×3+×2+×3=12+15π故答案为12+15π解析:12+15π【解析】试题分析:由几何体的三视图可得:该几何体是长方体、两个扇形和一个矩形的组合体,该组合体的表面积为:S=2×2×3+22702360π⨯×2+2702180π⨯×3=12+15π,故答案为12+15π.16.或3或【分析】利用分类讨论①当∠BPC=90°时情况一:如图1利用直角三角形斜边的中线等于斜边的一半得出PO=BO易得△BOP为等边三角形利用锐角三角函数可得CP的长;情况二:如图2利用直角三角形斜解析:33或3或37.【分析】利用分类讨论,①当∠BPC=90°时,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO,易得△BOP为等边三角形,利用锐角三角函数可得CP的长;情况二:如图2,利用直角三角形斜边的中线等于斜边的一半可得结论.②当∠CBP=90°时,如图3,由对顶角的性质可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP的长,利用勾股定理可得CP的长.【详解】解:①当∠CPB=90°时,情况一:(如图1),∵点O为BC中点,∴AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=6,∴CP=CB•sin60°=6×32=33;情况二:如图2,∵点O 为BC 中点,∴AO=BO ,∵∠CPB=90°,∴PO=BO=CO ,∵∠AOC=60°,∴△COP 为等边三角形,∴CP=CO=3,②当∠CBP=90°时,如图3,∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP=33tan 303OB ==︒, 在直角三角形CBP 中, 22226(33)37BC BP +=+= 故答案为:333或37【点睛】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键. 17.m 【分析】根据有一个角是的等腰三角形是等边三角形判断出是等边三角形根据等边三角形的三边相等得出BC=AB=AC=2米在Rt 中根据正弦函数的定义及特殊锐角三角函数值由AD=即可求出AD 的长同理算出进而 解析:32m . 【分析】根据有一个角是60︒的等腰三角形是等边三角形判断出ABC 是等边三角形,根据等边三角形的三边相等得出BC=AB=AC=2米,在Rt ABD 中根据正弦函数的定义及特殊锐角三角函数值,由AD=AB?sin60︒即可求出AD 的长,同理算出11A D ,进而根据AD-11A D 即可得出答案.【详解】解:如图1,由题意可得:∵∠B=∠C=60︒,AB=AC∴ABC 是等边三角形BC=AB=AC=2米 在Rt ABD 中:23AD 2sin603=︒== 如图2,由题意可得:∵∠B 1=∠C 1=45︒,A 1B 1=A 1C 1=2m在111Rt A B D 中:11222sin452A D =︒== ∴(1132AD A D -=m . 故答案为:(32m . 【点睛】此题主要考查锐角三角函数定义、等腰三角形的性质、等边三角形的判定和性质、特殊角的三角函数值,正确理解锐角三角函数定义是解题关键. 18.4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD 进而可得出∠ACE=∠DCE 由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB 结合∠ACB=90°可求出∠ACE ∠A 的度解析:4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD ,进而可得出∠ACE=∠DCE ,由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB ,结合∠ACB=90°可求出∠ACE 、∠A 的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB 的长度. 详解:∵CE 所在直线垂直平分线段AD ,∴CE 平分∠ACD ,∴∠ACE=∠DCE .∵CD 平分∠BCE ,∴∠DCE=∠DCB .∵∠ACB=90°,∴∠ACE=13∠ACB=30°, ∴∠A=60°,∴AB=60BC sin =︒=4.故答案为4.点睛:本题考查了线段垂直平分线的性质、角平分线的性质以及特殊角的三角函数值,通过角的计算找出∠A=60°是解题的关键.19.5【分析】首先由勾股定理求出AC 再证明得到进而列方程求解即可【详解】解析:5【分析】首先由勾股定理求出AC ,再证明~ABE CDE ∆∆,得到AB AE CD CE=,进而列方程求解即可.【详解】 90ACB ∠=︒,10AB =,6BC =,8AC ∴==,∴设AE x =,则8CE x =-, BD 平分ABC ∠,ABD DBC ∴∠=∠,又//AB CD ,ABD BDC ∴∠=∠,DBC BDC ∴∠=∠,6BC CD ∴==,//AB CD ,∴~ABE CDE ∆∆,AB AE CD CE∴= 1068x x∴=- 解得5x =,5AE ∴=故答案为:5.【点睛】此题主要考查了相似三角形和判定与性质,熟练掌握并能灵活运用相似三角形和判定与性质定理是解答此题的关键.20.-10【分析】连接AC 交OB 于点D 根据菱形的性质可得出SOCD =×20=5再根据反比例函数系数k 的几何意义即可求出k 值由点C 在第二象限即可确定k 的值【详解】连接AC 交OB 于点D 如图所示∵四边形OAB解析:-10【分析】连接AC交OB于点D,根据菱形的性质可得出S OCD=14×20=5,再根据反比例函数系数k的几何意义即可求出k值,由点C在第二象限,即可确定k的值.【详解】连接AC交OB于点D,如图所示.∵四边形OABC为菱形,∴AC⊥OB,∵菱形OABC的面积为20,∴S OCD=14×20=5.∵点C在反比例函数kyx的图象上,CD⊥y轴,∴S OCD=12|k|=5,解得:k=±10.∵点C在第二象限,∴k=−10.故答案为:-10.【点睛】本题考查了反比例函数系数k的几何以及菱形的性质,根据菱形的性质找出S OCD=14×20=5是解题的关键.三、解答题21.见解析【分析】利用俯视图即可得出几何体的形状,进而得出几何体的主视图和左视图.【详解】解:如图所示:.【点睛】此题主要考查了作三视图以及由三视图判断几何体的形状,正确得出几何体的形状是解题关键.22.(1)126cm2;(2)3n(n+1)cm2.【分析】(1)由题意知,第4个图共有1+3+6+10=20个,从正面看有10个正方形,第5个图共有1+3+6+10+15=35个,从正面看有15个正方形,即可推出第6个图形的正方体和正面看到的正方形个数;(2)由题意知,从正面看有(1+2+3+4+…+n)个正方形,即可得出其表面积.【详解】(1)由题意可知,第6个图中,从正面看有1+2+3+4+5+6=21个正方形,表面积为:21×6=126cm2;(2)由题意知,从正面看到的正方形个数有(1+2+3+4+…+n)=(1)2n n+个,表面积为:(1)2n n+×6=3n(n+1)cm2.【点睛】本题主要考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.23.(1)见解析;(2)见解析.【分析】(1)分别作A'B'=2AB、A'C'=2AC、B'C'=2BC得△A'B'C'即为所求.(2)根据中位线定理易得DE= 12AC,DF=12BC,EF=12AB,D'E'=12A'C'=AC、D'F'=12B'C'=BC、E'F'=12A'B'=AB,于是''2''''DD E D F E FDE F EF===,故可证△DEF∽△D'E'F'.【详解】解:(1)如图1,①作线段A'B'=2AB;②分别以A'、B'为圆心,以2AC、2BC为半径作弧,两弧交于点C';③连接A'C'、 B'C'得△A'B'C'.△A'B'C'即为所求.证明:∵A'B'=2AB 、A'C'=2AC 、B'C'=2BC , ∴''2''''AB A A B A C B C C BC===, ∴△ABC ∽△A′B′C′, ∴2()4A B C ABC S A B S AB'''''∆∆==. (2)证明:如图2,∵D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点, ∴DE= 12AC ,DF =12BC ,EF =12AB , ∵D '、E '、F '分别是A B C '''三边A B ''、B C ''、A C ''的中点, ∴D'E'=12 A'C'=AC 、D'F'=12 B'C'=BC 、E'F'=12 A'B'=AB , ∴''2''''D D E D F E F DE F EF===, ∴△DEF ∽△D'E'F'.【点睛】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法.24.(1)证明见解析;(2)16433π- 【分析】(1)先根据圆周角定理可得90ACB ∠=︒,再根据垂径定理的推论可得OD 垂直平分BC ,然后根据平行线的判定即可得证;(2)设O 的半径为r ,从而可得,2OB r OE r ==-,再根据垂径定理的推论可得1232BE BC ==Rt OBE 中,利用勾股定理可得r 的值,从而可得OBC ∠的度数,最后利用扇形和三角形的面积公式即可得.【详解】(1)AB 为O 的直径,90ACB ∴∠=︒,即AC BC ⊥, 点D 为BC 的中点,OD ∴垂直平分BC ,//OD AC ∴;(2)设O 的半径为r ,则OB OD OC r ===,2DE =,2OE OD DE r ∴=-=-,由(1)已证:OD 垂直平分BC ,1122BE BC ∴==⨯=在Rt OBE 中,222OE BE OB +=,即222(2)r r -+=,解得4r =,4,2OB OE ∴==,在Rt OBE 中,1sin 2OE OBC OB ∠==, 30OBC ∴∠=︒,又OB OC =,30OCB OBC ,180120BOC OCB OBC ∴∠=︒-∠-∠=︒,则阴影部分面积为21204116236023OBC OBC S Sππ⨯-=-⨯=-扇形 【点睛】本题考查了圆周角定理、垂径定理的推论、扇形的面积公式、正弦三角函数等知识点,熟练掌握并灵活运用各定理和公式是解题关键.25.(1)1;(2)4x =-【分析】(1)原式利用特殊角的三角函数、绝对值的代数意义、负指数幂法则以及0指数幂的运算法则分别化简,即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,检验后即可得到分式方程的解的结果.【详解】解:(1)原式=2221++=1; (221133x x x-=--去分母得:()231x x --=-,去括号得:231x x -+=-,解得:4x =-,经检验4x =-是分式方程的解.【点睛】此题考查了实数的运算和解分式方程,实数运算的关键是掌握各运算类型的法则,解分式方程时把分式方程转化为整式方程求解,且一定注意要验根.26.(1)(-2,0);8 (2)(1,8)或(3,83) 【分析】(1)根据待定系数法就可以求出函数的解析式;(2)1||2CDP P C S CD x x =⨯⨯-△,即可求解. 【详解】解:(1)对于一次函数2y x =+,令0x =,则2y =,令0y =,则2x =-, 故点A 、B 的坐标分别为(2,0)-、(0,2), OA OD =,故点(2,0)D ,则点C 的横坐标为2,当2x =时,24y x =+=,故点(2,4)C ,将点C 的坐标代入反比例函数表达式得:42m =, 解得:8m =,故点A 的坐标为(2,0)-,8m =;(2)1142222CDP P C P S CD x x x =⨯⨯-=⨯⨯-=, 解得:3P x =或1,故点P 的坐标为(1,8)或8(3,)3.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.。
2022年江苏省南京市秦淮区九年级下学期第一次模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.开展中小学生课后服务,是促进学生健康成长、帮助家长解决按时接送学生困难的重要举措.据统计,全国义务教育学校共有7743.1万名学生参加了课后服务.将7743.1万用科学记数法表示为()A.7.7431×106B.7.7431×107C.0.77431×108D.77.431×106 2.下列各式中,计算错误..的是()A.a2·a3=a5B.(a2)3=a6C.(-2a)3=-6a3D.a3÷a=a23.2022年2月6日,中国女足在亚洲杯决赛中以3:2的比分战胜韩国队荣获冠军.队中23名球员的年龄统计如下表所示(单位:岁):她们年龄的众数和中位数分别是()A.26岁,26岁B.27岁,26岁C.27岁,27岁D.26岁,27岁4.某施工队整修一条480m的道路.开工后,每天比原计划多整修20m,结果提前4天完成任务.设原计划每天整修x m,根据题意所列方程正确的是()A.480480420x x-=+B.480480204x x-=-C.480480420x x-=+D.480480204x x-=-5.已知二次函数2223y x mx m=-+-(m为常数),它的图像与x轴的公共点个数的情况是()A.有两个公共点B.有一个公共点C.没有公共点D.无法确定6.如图,P是正方形ABCD的边AD上一点,连接PB,PC,则tan∠BPC的值可能是()A.0.9B.1.2C.1.5D.1.8二、填空题7.20=_________,12-=________.8.5的平方根是_________.9.若分式211xx-+的值为0,则x的取值为__________.10.计算_________.11.与10_________.12.点A(x1,y1),B(x2,y2)在函数4yx=-的图像上,若x1<0<x2,则y1_________y2.(填“>”、“<”或“=”)13.如图,点A,B,C在半径为4的∠O上,若∠AOB=130°,∠OAC=70°,则BC 的长为_________.14.若x2-4x+3=0,y2-4y+3=0,x≠y,则x+y-2xy的值是__________.15.如图,用一个平面去截一个长、宽、高分别为5、4、3的长方体,当截面(截出的面)的形状是矩形时面积的最大值是__________.16.如图,M,N是∠AOB的边OA上的两个点(OM<ON),∠AOB=30°,OM=a,MN=4.若边OB上有且只有1个点P,满足∠PMN是等腰三角形,则a的取值范围是__________.三、解答题17.解不等式2(x-1)<7-x,并写出它的正整数解.18.(a+21aa+)÷21aa-.19.如图,在四边形ABCD中,点E,F分别在边BC,CD上,连接AE,AF,已知∠ABE∠∠ADF.(1)若AD∥BC,求证:四边形ABCD是菱形;(2)以下条件:∠∠BAD=∠BCD;∠AB=CD;∠BC=CD.如果用其中的一个替换(1)中的“AD∥BC”,也可以证明四边形ABCD是菱形,那么可以选择的条件是(填写满足要求的所有条件的序号).20.农历正月十五是我国的传统节日——元宵节,这一天人们有吃汤圆的习俗.今年的元宵节,圆圆爸爸给圆圆准备了一碗汤圆,其中一个汤圆是花生馅的,一个汤圆是豆沙馅的,还有两个汤圆是芝麻馅的,这四个汤圆除了馅以外,其他都一样.(1)圆圆吃了其中两个汤圆,求这两个汤圆都是芝麻馅的概率;(2)圆圆吃了三个汤圆后,剩下的汤圆是芝麻馅的概率是.21.图∠是某饮品店去年11月至今年3月的销售额的情况,图∠是其最畅销饮品的销售额占月销售额的百分比的情况,已知这段时间该饮品店的销售总额是35万元.(1)将条形统计图补充完整;(2)该店最畅销饮品去年12月的销售额是多少万元?(3)店长观察图∠后,认为今年3月该店最畅销饮品的销售额是去年11月以来最少的,你同意他的看法吗为什么?22.在某次科技创新活动中,机器人A和B沿一直道同时同地出发进行50m赛跑.设A出发第x s时,A,B离终点的距离分别为y1 m,y2 m,其中y1是x的一次函数,y2=-0.01x2-0.02x+50,它们的图像如图所示.(1)求y1与x之间的函数表达式;(2)在比赛过程中,求两机器人离终点距离相等时x的值.23.图∠是2022年北京冬季奥运会自由式滑雪大跳台和单板滑雪大跳台的比赛场馆,别名“雪飞天”.我们画出一个与它类似的示意图∠,其中出发区EF、起跳区CD都与地面AB平行.助滑坡DE与着陆坡AC的长度之和为80m.已知EF到AB的距离是CD到AB的距离的3倍,∠A=30°,M为CD延长线上一点,∠EDM=37°.求EF到AB的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)24.如图,∠ABC内接于∠O,AB是直径,直线l过点C,AD∠l,交∠O于点F,垂足为D,BE∠l,垂足为E,且CF=CB.(1)求证:l与∠O相切;(2)当AD=4cm,BE=1.5cm时,∠O的半径为cm.25.如图,已知线段a,h,用直尺和圆规按下列要求分别作一个..等腰三角形ABC(保留作图痕迹,写出必要的文字说明).(1)∠ABC的底边长为a,底边上的高为h;(2)∠ABC的腰长为a,腰上的高为h.26.阅读下面的问题及解决途径.结合阅读内容,完成下面的问题.(1)填写下面的表格.(2)将函数y=-2x2+3x+1的图像沿y轴翻折,所得到的图像对应的函数表达式为.(3)将函数y=ax2+bx+c(a,b,c是常数,a≠0)的图像先向左平移1个单位长度,再沿y轴翻折,最后绕原点旋转180°,求所得到的图像对应的函数表达式.27.我们把存在内切圆与外接圆的四边形称为双圆四边形.例如,如图∠,四边形ABCD内接于∠M,且每条边均与∠P相切,切点分别为E,F,G,H,因此该四边形是双圆四边形.∠(1)双圆四边形的对角的数量关系是,依据是.(2)直接写出双圆四边形的边的性质.(用文字表述)(3)在图∠中,连接GE,HF,求证GE∠HF.(4)根据双圆四边形与四边形、平行四边形、矩形、菱形、正方形的关系,在图∠中画出双圆四边形的大致区域,并用阴影表示.∠(5)已知P,M分别是双圆四边形ABCD的内切圆和外接圆的圆心,若AB=1,BC=2,∠B=90°,则PM的长为.参考答案:1.B2.C3.D4.C5.A6.B7.1128.9.110.11.612.>13.2π14.-215.2516.a>8或a=417.3x<,正整数解为1和218.11 aa+ -19.(1)见解析(2)∠∠20.(1)1 4(2)1 221.(1)作图见解析;(2)1.2万元;(3)不同意店长的看法,理由见解析.22.(1)y1=-0.52x+50(2)5023.EF到AB的距离为15米24.(1)证明见解析(2)2.7525.(1)作图及理由见解析;(2)作图及理由见解析.26.(1)1x+,y,61 yx=+(2)2323y x x-=-+(3)2(2)y ax a b x a b c=--+---27.(1)对角互补,圆内接四边形对角互补(2)双圆四边形的两组对边和相等(3)见解析(4)见解析。
1江苏省南京市第二学期第一次模拟试题数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,只有一项是符合题目要求.)1.树叶上有许多气孔,在阳光下,这些气孔一面排出氧气和蒸腾水分,一面吸入二氧化碳, 一个气孔在一秒钟内能吸进25000亿个二氧化碳分子,用科学记数法表示25000亿为( )A.102.510⨯B.112.510⨯C. 122.510⨯D. 112510⨯2. 绝对值为4的实数是( )A. ±4 B . 4 C. -4 D. 23. 对232x x -+分解因式,结果为( )。
A. ()32x x -+B. ()()12x x --C. ()()12x x -+D. ()()12x x +- 4. 若a 为任意实数,则下列等式中恒成立的是( )A. 2a a a +=B. 2a a a ⨯=C. 22320a a -=D. 23236a a a ⨯=5. 已知小明同学身高1.5m ,经太阳照射,在地面的影长为2m ,若此时测得一塔在同一地面2 的影长为60m ,则塔高应为( )A. 90mB. 80mC. 45mD. 40m6. 如图,在△ABC 中,∠C=90°,AC=8,AB=10,点P 在AC上,AP=2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是( )A. 1B. 45C. 712 D. 49 二、填空题(本大题共10小题,每小题2分,共20分.)7. 我市冬季某一天的最高气温为-1℃,最低气温-6℃,那么这一天的最高气温比最低气温高__________℃.8. 二次函数122--=x x y 的图像的顶点坐标是_______.9. 计算:=-82________.10. 若关于x 的一元二次方程0122=-+x kx 有实数根,则k 的取值范围是_______.11. 代号为①、②、③、④的四张三角形纸片都有一个角为50°,如果把它们另外一个角分为50°,65°,70°,80°,那么其中代号为_______的三角形可以剪一刀得到等腰梯形. 12. 数轴上点A 表示2,将点A 在数轴上移动一个单位后表示的数为_______.13. 若14=+y x ,则xy 的最大值为______.14. 过边长为1的正方形的中心O 引两条互相垂直的射线,分别与正方形的边交于A,B 两点,则线段AB 长度的取值范围是_______.15. 用一条宽相等足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE ,其中∠BAC=_______度.316. 如图,⊙O1与⊙O2相交于点A 、B ,顺次连接O 1、A 、O 2、B 四点,得四边形O 1AO 2B .(1)根据我们学习矩形、菱形、正方形性质时所获得的经验,探求图中的四边形有哪些性质(用文字语言写出4条性质)性质1______________________________;性质2______________________________.三、解答题(本大题共11小题,共88分.解答应写出文字说明,证明过程或演算步骤.)17. (7分)先化简,再求值:x x x x x x x ÷--++--22121222,其中21=x .18. (7分)(1)解不等式1213≤--x x ,并把它的解集在数轴上表示出来. (2)若关于x 的一元一次不等式a x ≥只有3个负整数解,则a 的取值范围是 .19. (8分)4(1)一个不透明的口袋中装有红、黄、蓝、白4个小球,这4个小球中除颜色外完全相同.随机同时摸取两个小球,求摸取恰好是红色和黄色小球的概率.(2)任意抛掷一枚均匀的骰子2次,据此,请你设计一个相关的事件,使该事件发生的概率与(1)相同.20. (8分)已知一次函数m x y +=与反比例函数()11-≠+=m xm y 的图象在第一象限内的交点为()3,a P .(1)求一次函数与反比例函数的关系式;(2)当一次函数大于反比例函数值时,直接写出自变量x 的取值范围.21. (8分)如图,梯形ABCD中,AD//BC , AB=DC , BE//CD , CE//DB,AE与BC相交于点F,证明:AF=EF.22.(8分)某建筑物的金属支架如图所示,根据要求AB长为4m,C为AB的中点,点B到D的距离比立柱CD的长小0.5m,∠BCD=60°,求立柱CD长.23.(8分)在平面直角坐标系中,直线l的关系式为y=x+b,以原点O为圆心,2.5长为半径画圆,请分别求出当直线l与⊙O相离、相切、相交时b的取值范围.524.(8分)有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下某一天各自的销售情况(单位:元):甲:18,8, 10,43,5, 30,10,22,6, 27,25,58,14,18,30,41乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23小强用如图所示的方法表示甲城市16台自动售货机的销售情况.(1)请你仿照小强的方法将乙城市16台自动售货机的销售情况表示出来;(2)请你观察图1 ,你能从图1中获取哪些信息?(至少写出两条不同类型信息)(3)小芳用图2的条形统计图表示甲城市16台自动售货机的销售情况,请你观察图2,你能从图2中获取哪些信息?(至少写出两条不同类型信息)(4)如果收集到的数据很多,例如有200个,你认为图1和图2这两种统计图用哪一种更能直观的反映这些数据分布的大致情况?请说明理由.625.等边△ABC的边长为2,P是平面内任意一点,△PAB、△PBC、△PAC均为等腰三角形. (1)请用尺规作图的方法作出所有满足条件的点P(不写做法,保留作图痕迹,用P,P2,P3……表示);(2)直接写出∠PAB的度数;(3)在满足条件的所有点P中任取2点,则这两点距离的最小值是 ,最大值是.7826.还记得欧拉公式吗?它讲述的是多面体的顶点数(V)、面数(F)、棱数(E)之间存在存在的.【实际应用】 (2)足球一般有32块黑白皮子缝合而成(如图2),且黑色的是正五边形,白色的是正六边形,如果我们可近似把足球看成一个多面体.你能利用欧拉公式计算出正五边形和正六边形各有多少块吗?请写出你的解答过程.27.x 轴,设Q 是垂足,设点Q 的坐标为(t,0),△POQ 的面积为S(当点P 与M 、N 重合时,其面积记为0).9(1)试求S 与t 之间的函数关系式;(2)在如图所示的直角坐标系内画出这个函数的图象,并利用图象求使得s =a(a >0)的点P 的个数.参考答案1.C2.A3.C4.D5.C6.A107.5 8.(1,-2) 9.2- 10. 1-≥k 且0≠k11.根据三角形的内角和定理得①、②、③、④的4张三角形纸片的第三个角分别为:80°,60°,50°,40°,30° 则可得①有两相等角=50°,③有两相等角=50°,其它三角形的三角截不相等,要三角形纸片能沿直线剪一刀得到等腰梯形,根据等腰梯形的性质,知必须有两底角相等,故只有①③符合.14.15.18° 15. 性质可以是:有一组对角相等;有两组邻边相等;对边之和相等;对角线互相垂直;有一条对角线平分一组对角;是轴对称图形;其面积等于两条对角线乘积的一半.这个四边形也具有一般四边形的性质,如不稳定性;内角和为360“;外角和为360”等;16.解析:(1)根据小强的方法将乙城市16台自动售货机的销售情况如图所示:(2)甲城市16台自动售货机中销售额最高的为58元;甲城市16台自动售货机中有两台销售额为30元。
一、选择题1.如图,ABC 中,DE ∥BC ,AD:BD=1:3,则OE :OB=( )A .1:3B .1:4C .1:5D .1:62.如图,已知////AB CD EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E ,如果:3:1AD DF =,10BE =,那么CE 等于( )A .103B .203C .52D .1523.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:5 4.已知P ,Q 是线段AB 的两个黄金分割点,且AB=10,则PQ 长为( )A .5(5-1)B .5(5+1)C .10(5-2) -D .5(3-5)5.如图,菱形ABCD 的边长为10,面积为80,∠BAD <90°,⊙O 与边AB ,AD 都相切菱形的顶点A 到圆心O 的距离为5,则⊙O 的半径长等于( )A .2.5B 5C .22D .36.如图,△ABC 中,DE ∥BC ,25AD AB =,DE =3,则BC 的长为( )A .7.5B .4.5C .8D .67.已知:点A(1,y 1)、B (2,y 2)、C(-3,y 3)都在反比例函数ky x=图象上(k>0),则y 1、y 2、y 3的关系是( ) A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 2<y 18.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线y =8x上,过点C 作CE ∥x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .3.5D .59.若反比例函数()2221m y m x -=-的图象在第二、四象限,则m 的值是( )A .-1或1B .小于12的任意实数 C .-1D .不能确定10.如图,函数y =kx (k >0)与函数2y x=的图象相交于A ,C 两点,过A 作AB ⊥y 轴于B ,连结BC ,则三角形ABC 的面积为( )A .1B .2C .k 2D .2k 211.在平面直角坐标系中,对于不在坐标轴上的任意一点P (x ,y ),我们把的P '(1x,1y )称为点P 的“倒影点”.直线y =﹣2x +1上有两点A 、B ,它们的倒影点A '、B '均在反比例函数y kx=的图象上,若AB 5=,则k 的值为( )A .83-B .43-C .5D .1012.如图,正方形ABCD 的顶点A ,B 分别在x 轴和y 轴上与双曲线18y x=恰好交于BC 的中点E ,若2OB OA =,则ABO S △的值为( )A .6B .8C .12D .16第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.如图所示,在△ABC 中DE ∥BC ,若2EFB EFD S S ∆∆=,则 DE:BC=______.14.下列五组图形中,①两个等腰三角形;②两个等边三形;③两个菱形;④两个矩形;⑤两个正方形.一定相似的有_______(填序号) 15.已知:如图,ABC 内接于O ,且BC 是O 的直径,AD BC ⊥于D ,F 是弧BC 中点,且AF 交BC 于E ,6AB =,8AC =.则CD =_________________.AF =_________________.16.如图,在矩形ABCD 中,AB =2,BC =a ,点E 在边BC 上,且BE =35a .连接AE ,将△ABE 沿AE 折叠,若点B 的对应点B′落在矩形ABCD 的边上,则a 的值为______.17.如图,反比例函数6y x=在第一象限的图象上有两点,,A B 它们的横坐标分别为1,3,则OAB ∆的面积为___.18.如图,在ABO ∆中,90BAO AO AB ∠==,,且点4(2)A ,在双曲线(0)ky x x=>上,OB 交双曲线于点C ,则C 点的坐标为______.19.如图,在平面直角坐标系中,菱形OABC 的面积为20,点B 在y 轴上,点C 在反比函数ky x=的图像上,则k 的值为________.20.如图,一次函数1y kx b =+的图象与反比例函数24y x=的图象交于A (1,m ),B (4,n )两点.则不等式40kx b x+-≥的解集为______.三、解答题21.在ABC 与DEF 中,若34AB BC CA DE EF FD ===,且ABC 的周长为18cm ,求DEF 的周长.22.如图所示的一张矩形纸片ABCD (AD >AB ),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于点E ,交BC 边于点F ,交AC 于点O ,分别连接AF 和CE .(1)求证:四边形AFCE 是菱形;(2)过E 点作AD 的垂线EP 交AC 于点P ,求证:2AE 2=AC •AP ; (3)若AE =10cm ,△ABF 的面积为24cm 2,求△ABF 的周长.23.如图,ABC 内接于⊙O ,AB AC =,过点C 作AB 的垂线CD ,垂足为点E ,交O 于点F ,连接AD ,并使AD BC ∥.(1)求证:AD 为O 的切线;(2)若5AC =,2BE =,求AD 的长.24.为让同学们更好的了解电路,学校实验室购进一批蓄电池,已知蓄电池的电压为定值,同学们在实验过程中得到电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(电压=电流×电阻) (1)求蓄电池的电压是多少?(2)若保证电路中的小灯泡发光所需要的电流的范围为212I ≤≤,则求电路中能使小灯泡发光的电阻R 的取值范围.25.如图,已知在平面直角坐标系中,O 是坐标原点,点A(2,5)在反比例函数1k y x=的图象上.一次函数y 2=x +b 的图象过点A ,且与反比例函数图象的另一交点为B . (1)求反比例函数和一次函数的解析式; (2)连结OA 和OB ,求△OAB 的面积; (3)根据图象直接写出y 1>y 2时,x 的取值范围.26.已知反比例函数k y x =(x >0)的图象与一次函数142y x =-+的图象交于点(6,n ).求k 和n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先根据DE ∥BC ,得出ADE ∽ABC ,进而得出1=4AD DE AB BC = ,再根据DE ∥BC ,得到ODE ∽OCB ,进而得到1=1:44OE DE OB CB ==. 【详解】 解:∵DE ∥BC , ∴ADE ∽ABC , ∴=AD DEAB BC, 又∵1=3AD BD , ∴1=4AD DE AB BC =, ∵DE ∥BC ,∴ODE ∽OCB , ∴1=1:44OE DE OB CB ==. 故选:B . 【点睛】本题主要考查了相似三角形的判定与性质,平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.2.C解析:C 【分析】根据平行线分线段成比例得到BC ADCE DF=,代入已知解答即可. 【详解】解:∵////AB CD EF , ∴BC ADCE DF =, ∵:3:1AD DF =,10BE =, ∴1031CE CE -=, 解得:CE=52, 故选:C . 【点睛】本题考查平行线分线段成比例、比例的性质,掌握平行线分线段成比例是解答的关键,注意对应线段的顺序.3.A解析:A 【分析】根据DE ∥AC 可得到△DOE ∽△COA 和△DBE ∽△ABC ,再根据相似三角形的性质即可得出12BE EC =,再根据同高三角形的面积比等于底之比即可求出. 【详解】 ∵DE ∥AC∴△DOE ∽△COA ,△DBE ∽△ABC ∵S △DOE :S △COA =1:9 ∴13DE AC = ∴13DE BE AC BC == ∴12BE EC = ∴S △BDE :S △CDE =1:2 故答案选A . 【点睛】本题主要考察了相似三角形的性质,准确记住面积比等于相似比平方是解题关键.4.C解析:C 【分析】画出图像,根据黄金分割的概念写出对应线段的比值,求出AQ 、PB 的长度,再根据PQ =AQ +PB -AB 即可求出PQ 的长度. 【详解】 解:如图,根据黄金分割点的概念,可知512PB AQ AB AB -==, ∴AQ =PB ,AB =10,∴AQ =PB =5110555-⨯=-,∴PQ =AQ +PB -AB =555555101052010(52)-+--=-=-.故选:C . 【点睛】本题主要考查黄金分割的概念,熟记黄金分割的概念并根据黄金分割的比值列式是解题关键.5.B解析:B 【分析】如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .利用菱形的面积公式求出DH ,再利用勾股定理求出AH ,BD ,由△AOF ∽△DBH ,可得=OA OFBD BH,即可解决问题. 【详解】解:如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=10,面积为80, ∴AB•DH=80, ∴DH=8,在Rt △ADH 中,226AH AD DH =-=,∴HB=AB-AH=4,在Rt △BDH 中,BD =,设⊙O 与AB 相切于F ,与AD 相切于J ,连接OF ,OJ ,则OF ⊥AB ,OJ ⊥AD ,OF=OJ ,∴OA 平分∠DAB , ∵AD=AB , ∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°, ∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°, ∴△AOF ∽△DBH , ∴=OA OFBD BH, ∴4OF, ∴故选:B . 【点睛】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.A解析:A 【分析】先判断△ADE ∽△ABC ,然后利用相似比求BC 的长. 【详解】 解:∵DE ∥BC , ∴△ADE ∽△ABC , ∴25DE AD BC AB ==, ∴5515.3222BC DE ==⨯=. 故选:A . 【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了等腰三角形的性质.7.D解析:D 【分析】先根据反比例函数中k <0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∵反比例函数kyx(k>0),∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小,∵-3<0,∴点C(-3,y3)位于第三象限,∴y3<0;∵2>1>0,∴A(1,y2)、B(2,y3)在第一象限,∵2>1,∴0<y2<y1,∴y3<y2<y1.故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.B解析:B【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN =DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD =CD ,∠DHA =∠CGD =90°,∴△DHA ≌△CGD (AAS),∴HA =DG ,DH =CG ,同理△ANB ≌△DGC (AAS),∴AN =DG =1=AH ,则点G (m ,8m﹣1),CG =DH , AH =﹣1﹣m =1,解得:m =﹣2,故点G (﹣2,﹣5),D (﹣2,﹣4),H (﹣2,1),则点E (﹣85,﹣5),GE =25, CE =CG ﹣GE =DH ﹣GE =5﹣25=235, 故选B .【点睛】 本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.9.C解析:C【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-是反比例函数, ∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<, 解得12m <,即m 的值是1-. 故选:C . 【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.10.B解析:B【分析】设点A 坐标2,x x ⎛⎫ ⎪⎝⎭,根据点A ,C 关于原点对称,可得出点C 坐标,最后根据三角形的面积计算即可.【详解】设点A 坐标2,x x ⎛⎫ ⎪⎝⎭,则点C 坐标2,x x ⎛⎫--⎪⎝⎭, ∵AB ⊥y 轴, ∴()114222ABC A C S AB y y x x=⋅-=⋅=, 故选B .【点睛】本题考查反比例函数图象上点的坐标特征,熟练掌握双曲线是关于原点对称,两个分支上的点也是关于原点对称是解题的关键.11.A解析:A【分析】设点A (a ,-2a+1),B (b ,-2b+1)(a <b ),则A '(1a ,112a -),B '(1b ,112b -),由AB =b=a+1,再根据反比例函数图象上点的坐标特征即可得出关于k 、a 、b 的方程组,解之即可得出k 值.【详解】设点A (a ,﹣2a +1),B (b ,﹣2b +1)(a <b ),则A '(1a ,112a -),B '(1b ,112b-).∵AB===(b ﹣a )=∴b ﹣a =1,即b =a +1.∵点A ',B '均在反比例函数y k x =的图象上, ∴k 1a =•1112a b =-•112b-, 解得:k 83=-. 故选:A .【点睛】此题考查反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k 、a 、b 的方程组是解题的关键. 12.C解析:C【分析】过点B 作x 轴的平行线,过点A ,C 分别作y 轴的平行线,两线相交于M ,N ,证明△ABM ≌△BCN ,可得BN=AM=2a ,CN=BM=a ,所以点C 坐标为(2a ,a ),BC 的中点E 的坐标为(a ,1.5a ),把点E 代入双曲线18y x=可得a 的值,进而得出S △ABO 的值. 【详解】 如图,过点B 作x 轴的平行线,过点A ,C 分别作y 轴的平行线,两线相交于M ,N ,∵四边形ABCD 为正方形,∴∠ABC=90°,AB=BC ,∴∠ABM=90°-∠CBN=∠BCN ,∵∠M=∠N=90°,∴△ABM ≌△BCN (AAS ),∵OB=2OA ,∴设OA=a ,OB=2a ,则BN=AM=2a ,CN=BM=a ,∴点C 坐标为(2a ,a ),∵E 为BC 的中点,B (0,2a ),∴E (a ,1.5a ),把点E 代入双曲线18y x=得1.5a 2=18,a 2=12, ∴S △ABO =12a•2a=12, 故选:C .【点睛】 此题考查反比例函数k 的几何意义,三角形全等的判定和性质,解题的关键是构造全等三角形表示出点E 的坐标.二、填空题13.1:2【分析】由可得DF :FB=1:2又由DE ∥BC 可得△DFE 和△BFC 相似确定DE:BC 【详解】解:设为1则为2∵∴DF :FB=1:2又∵DE ∥BC ∴△DFE ∽△BFC ∴DE:BC=DF:FB=解析:1:2【分析】由2EFB EFD S S ∆∆=,可得DF :FB=1:2,又由DE ∥BC ,可得△DFE 和△BFC 相似,确定DE:BC.【详解】解:设EFD S ∆为1,则EFB S ∆为2,∵2EFB EFD S S ∆∆=,∴DF :FB=1:2,又∵DE ∥BC ,∴△DFE ∽△BFC ,∴DE:BC=DF:FB=1:2故答案为1:2【点睛】本题考查了相似三角形的性质和判定,解题的关键在于根据面积比确定边长的比. 14.②⑤【分析】根据相似图形的性质对各个选项逐个分析即可得到答案【详解】两个等腰三角形的顶角不一定相等故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等故不一定相似;两个矩形的相邻边长比例不解析:②⑤【分析】根据相似图形的性质对各个选项逐个分析,即可得到答案.【详解】两个等腰三角形的顶角不一定相等,故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等,故不一定相似;两个矩形的相邻边长比例不一定相等,故不一定相似;两个正方形一定相似;故答案为:②⑤.【点睛】本题考查了图形相似的知识;解题的关键是熟练掌握相似图形的性质,从而完成求解. 15.【分析】根据直径所对的圆周角是直角求出BC 的长再用等面积法求出AD 长在用勾股定理求出CD 的长然后连接OF 证明利用对应边成比例求出DE 和OE 的长再利用两次勾股定理分别求出AE 和EF 的长最终得到AF 的长解析:325【分析】根据直径所对的圆周角是直角,求出BC 的长,再用等面积法求出AD 长,在Rt ACD △用勾股定理求出CD 的长,然后连接OF ,证明ADE FOE ,利用对应边成比例求出DE 和OE 的长,再利用两次勾股定理分别求出AE 和EF 的长,最终得到AF 的长.【详解】解:∵BC 是O 的直径,∴90BAC ∠=︒,∵6AB =,8AC =,∴10BC =, 利用等面积法,求出245AB AC AD BC ⋅==, 在Rt ACD △中,22325CD AC AD =-=, 如图,连接OF ,∵F 是弧BC 的中点,∴OF BC ⊥,∵AD BC ⊥,∴//OF AD , ∴ADE FOE ,∴AD DE FO OE=, ∵327555DO CD OC =-=-=, ∴设DE x =,75OE x =-, ∴245755x x =-,解得2435x =, ∴2435DE =,57OE =, 在Rt ADE △中,222427AE AD DE =+=, 在Rt EFO 中,222527EF EO FO =+=, ∴24225272AF AE EF =+=+=.故答案是:325;2.【点睛】本题考查圆周角定理,垂径定理,相似三角形的性质和判定,解题的关键是掌握这些性质定理进行证明求解.16.或【分析】分两种情况:①点落在AD 边上根据矩形与折叠的性质易得即可求出a 的值;②点落在CD 边上证明根据相似三角形对应边成比例即可求出a 的值【详解】解:分两种情况:①当点落在AD 边上时如图1四边形AB 解析:103或253. 【分析】分两种情况:①点'B 落在AD 边上,根据矩形与折叠的性质易得=AB BE ,即可求出a 的值;②点'B 落在CD 边上,证明''ADB B CE ∆∆,根据相似三角形对应边成比例即可求出a 的值.【详解】解:分两种情况:①当点B '落在AD 边上时,如图1.四边形ABCD 是矩形,90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,'1452BAE B AE BAD ∴∠=∠=∠=︒, AB BE ∴=,325a ∴=, 103a ∴=;②当点'B 落在CD 边上时,如图2.∵四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点'B 落在CD 边上,'90B AB E ∴∠=∠=︒,'2AB AB ==,'35BE B E a ==,DB '∴=3255EC BC BE a a a =-=-=. 在ADB '∆与B CE '∆中,9090B AD EB C AB D D C ∠=∠=︒-∠''⎧⎨∠=∠=︒'⎩, ''ADB B CE ∴∆∆, '''DB AB CE B E ∴=2355a a =,解得13a =,23a =-(舍去). 综上,所求a 的值为103. 故答案为103【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键.17.8【分析】根据题意结合反比例函数图象上点的坐标性质S △AEO=S △ACO =S △OBD =3得出S 四边形AODB 的值是解题关键【详解】解:如图所示:过点A 作AE ⊥x 轴于点E 过点B 作BD ⊥x 轴于点D ∵反比解析:8【分析】根据题意结合反比例函数图象上点的坐标性质S △AEO =S △ACO =S △OBD =3,得出S 四边形AODB 的值是解题关键.【详解】解:如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BD ⊥x 轴于点D ,∵反比例函数6y x=在第一象限的图象上有两点A ,B ,它们的横坐标分别是1,3, ∴x =1时,y =6;x =3时,y =2,故S △AEO =S △OBD =S △ACO=3, S 四边形AEDB =12×(2+6)×2=8, 故△AOB 的面积是:S 四边形AEDB + S 四边形AECO -S △ACO -S △OBD =8.故答案为:8.【点睛】此题主要考查了反比例函数图象上点的坐标性质,得出四边形AODB 的面积是解题关键. 18.()【分析】根据等腰直角三角形求得B 得坐标联立方程即可求得C 得坐标【详解】解:将A 点代入得k=8∴双曲线y =(x >0)设点B (mn )m >0∵△ABO 为等腰直角三角形则AO =BO =OB ∴且m >0解得即解析:(6263) 【分析】根据等腰直角三角形求得B 得坐标,联立方程即可求得C 得坐标.【详解】解:将A 点代入得4=2k , k=8, ∴双曲线y =8x(x >0), 设点B (m ,n )m >0 ∵△ABO 为等腰直角三角形 则AO =BO =22OB ∴()()()222242416{2416n m m n -+-=++=+,且m >0 , 解得62m n ⎧⎨⎩==,即B (6,2),∴直线OB 得解析式为 y =13x , 联立方程138y x y x ⎧=⎪⎪⎨⎪=⎪⎩,且x >0解得x y ⎧=⎪⎨=⎪⎩∴C点的坐标为:(3)故答案为:(3). 【点睛】 本题主要考查双曲线与一次函数的交点问题,掌握等腰直角三角形的性质是解答本题的关键.19.-10【分析】连接AC 交OB 于点D 根据菱形的性质可得出SOCD =×20=5再根据反比例函数系数k 的几何意义即可求出k 值由点C 在第二象限即可确定k 的值【详解】连接AC 交OB 于点D 如图所示∵四边形OAB解析:-10【分析】连接AC 交OB 于点D ,根据菱形的性质可得出S OCD =14×20=5,再根据反比例函数系数k 的几何意义即可求出k 值,由点C 在第二象限,即可确定k 的值.【详解】连接AC 交OB 于点D ,如图所示.∵四边形OABC 为菱形,∴AC ⊥OB ,∵菱形OABC 的面积为20, ∴S OCD =14×20=5. ∵点C 在反比例函数k y x=的图象上,CD ⊥y 轴, ∴S OCD =12|k|=5, 解得:k =±10. ∵点C 在第二象限,∴k =−10.故答案为:-10.【点睛】本题考查了反比例函数系数k 的几何以及菱形的性质,根据菱形的性质找出S OCD =14×20=5是解题的关键. 20.【分析】将不等式变形为根据AB 两点的横坐标和图象直观得出一次函数值大于或等于反比例函数值时自变量的取值范围即为不等式的解集【详解】解:由则实际上就是一次函数的值大于或等于反比例函数值时自变量x 的取值 解析:0x <,14x ≤≤【分析】 将不等式变形为4kx b x+≥,根据A 、B 两点的横坐标和图象,直观得出一次函数值大于或等于反比例函数值时自变量的取值范围,即为不等式的解集.【详解】 解:由40kx b x+-≥,则4kx b x +≥ 实际上就是一次函数的值大于或等于反比例函数值时自变量x 的取值范围,根据图象可得,其解集有两部分,即:0x <,14x ≤≤.故答案为:0x <,14x ≤≤.【点睛】本题考查反比例函数、一次函数的图象和性质,利用数形结合思想,通过图象直接得出一次函数的值大于或等于反比例函数值时自变量x 的取值范围是解题关键.三、解答题21.24cm【分析】根据相似三角形的判定与性质即可得.【详解】34AB BC CA DE EF FD ===, D F ABC E ~∴,ABC ∴的周长与DEF 的周长之比为3:4, ABC 的周长等于18cm ,DEF ∴的周长为318=244÷cm , 故答案为:24cm .【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键. 22.(1)见解析;(2)见解析;(3)24cm【分析】(1)求出∠AOE=∠COF=90°,OA=OC ,∠EAO=∠FCO ,证△AOE ≌△COF ,推出OE=OF 即可;(2)证△AOE ∽△AEP ,得出比例式,即可得出答案;(3)设AB=xcm ,BF=ycm ,根据菱形的性质得出AF=AE=10cm ,根据勾股定理求出x 2+y 2=100,推出(x+y )2-2xy=100①,根据三角形的面积公式求出12xy=24.即xy=48 ②.即可求出x+y=14的值,代入x+y+AF 求出即可.【详解】解:(1)证明:当顶点A 与C 重合时,折痕EF 垂直平分AC ,∴OA=OC ,∠AOE=∠COF=90°,∵在矩形ABCD 中,AD ∥BC ,∴∠EAO=∠FCO ,在△AOE 和△COF 中, AOE COF OA OCEAO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△COF (ASA ),∴OE=OF ,∵OA=OC ,∴四边形AFCE 是平行四边形,∵EF ⊥AC ,∴平行四边形AFCE 是菱形.(2)证明:∵∠AEP=∠AOE=90°,∠EAO=∠EAP ,∴△AOE ∽△AEP , ∴AE AO AP AE=, 即AE 2=AO•AP , ∵AO=12AC ,∴AE2=1AC•AP,2∴2AE2=AC•AP.(3)设AB=xcm,BF=ycm.∵由(1)四边形AFCE是菱形,∴AF=AE=10cm.∵∠B=90°,∴x2+y2=100.∴(x+y)2-2xy=100①∵△ABF的面积为24cm2,∴1xy=24,即xy=48 ②,2由①、②得(x+y)2=196.∴x+y=14或x+y=-14(不合题意,舍去).∴△ABF的周长为:x+y+AF=14+10=24(cm).【点睛】本题综合考查了相似三角形的性质和判定,勾股定理,三角形的面积,全等三角形的性质和判定,平行四边形的性质和判定,菱形的性质和判定等知识点的应用,题目综合性比较强,有一定的难度.23.(1)证明见解析;(2)35【分析】(1)连接AO后交DC于点H,交BC于点G,由垂径定理可知AG⊥BC,然后根据互余关系得到∠HAE=∠HCG,然后利用平行关系得到∠ADE=∠HCG=∠HAE,等量代换后可得∠HAE +∠EAD=90°;(2)根据AC和BE可算出AE,然后在Rt△AEC中算出EC,然后证明△AED∽△BEC,然后利用比例关系算出DE,在Rt△AED中计算AD即可.【详解】解:(1)如图,连接AO交DC于点H,交BC于点G,则AG⊥BC∵AG⊥BC,AB⊥DC,∠AHE=∠CHG∴∠HAE=∠HCG∵AB⊥DC∴∠ADE+∠EAD=90°∵AD ∥BC∴∠ADE=∠HCG=∠HAE∴∠HAE +∠EAD=90°∴AD 为O 的切线 (2)∵AC=AB ,AC=5,BE=2∴AE=3在Rt △AEC 由勾股定理可得:4EC =∵AD ∥BC∴△AED ∽△BEC ∴BE EC AE DE= ∴DE=6在Rt △AED 由勾股定理可得:=【点睛】本题主要考查圆的相关定理,掌握切线的证明方法,灵活转化角关系是证明切线的关键,在圆中计算线段长度,找准相似三角形,结合勾股定理,是解题的关键.24.(1)蓄电池的电压是36V ;(2)电阻R 的取值范围是318R ≤≤.【分析】(1)根据“电压=电流×电阻”即可求解;(2)先利用待定系数法即可求出这个反比例函数的解析式,再将212I ≤≤代入即可确定电阻的取值范围.【详解】(1)蓄电池的电压是4×9=36,∴蓄电池的电压是36V ;(2)电流I 是电阻R 的反比例函数,设k I R =, ∵图象经过(9,4),∴9436k =⨯=, ∴36I R=, 当I=2时,18R =,当I=12时,3R =,∵I 随R 的增大而减小,∴电阻R 的取值范围是:318R ≤≤.【点睛】本题考查了反比例函数的应用,解题的关键是正确地从中整理出函数模型,并利用函数的知识解决实际问题.25.(1)反比例函数110y x =,一次函数23y x =+(2)212(3)5x <-或02x <<(1)本题根据待定系数法,将点A 坐标代入函数解析式求解即可.(2)本题首先求得点B 的坐标,继而求解直线与坐标轴的交点坐标,最后利用割补法求解本题.(3)本题根据图像即可直接作答.【详解】(1)∵点(2,5)A 是直线2y x b =+与反比例函数1k y x=的图象的一个交点, ∴将A 点分别代入得:52b =+;52k =, ∴3b =,10k =.故反比例函数和一次函数的解析式分别为110y x =和23y x =+. (2)如下图所示:联立方程12103y x y x ⎧=⎪⎨⎪=+⎩,得25x y =⎧⎨=⎩或52x y =-⎧⎨=-⎩, ∴点(5,2)B --.∵点C 与点D 分别是直线23y x =+与y 轴的交点和与x 轴的交点,∴点(0,3)C ,点(3,0)D -,即3OD OC ==,∴11213532222AOB AOD BOD S S S =+=⨯⨯+⨯⨯=. 故△OAB 的面积为212. (3)观察函数图象可知,12y y > 时,x 的取值范围为:5x <-或02x <<.【点睛】本题考查反比例函数与一次函数的综合,待定系数法求解解析式需要熟练掌握,其次求解不规则图形的面积通常利用割补法,比较函数大小时,利用图像法更为高效. 26.k =6;n =1【分析】利用一次函数图象上点的坐标特征可求出n 值,进而可得出点B 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值.当x=6时,n=-12×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=kx过点B(6,1),∴k=6×1=6.【点睛】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是:利用一次(反比例)函数图象上点的坐标特征,求出n、k的值.。
江苏省扬州中学教育集团树人学校2016届九年级物理下学期第一
次模拟测试试题
扬州树人学校初三一模试卷
答案
一、选择题(本题共12小题,每小题2分,共24分.每小题给出的四个选项中只有一个
....选项正确)
1. B
2. C
3.A
4. D
5. C
6. C
7. C
8. C
9. C 10. B 11. D 12.D
二、填空题(本题共10小题,每空1分,共27分)
13. ②③
14.变小圆不变
15. 0.5 天宫一号做功
16. (1)压缩(2)虚(3)比热容大热
17. 紫外线红外线
18. 大于两倍焦距能小于一倍焦距远
19. 0.45W 5Ω--20Ω
20. 3 83.3% 变大 90
21. 9.6W 15Ω
22. 484 大于
三、解答题(本题共8小题,作图每题2分,其余每空1分,共49分.解答24、25题时应有解题过程)
23.略
24. 5Ω 4V 10%Vol
25.C 8.82×108W η≈35.4%
26. (1)温度计玻璃泡碰到了容器底(2)98 (3)保持不变 (4)方向性
27.(1)运动 (2) 图略匀速(3)1.8 (4)A
28. ② BC AD BC
29.(1)左 0 (2)便于测量力臂 2 (3)变大不变
30.(1)滑动变阻器;先变大后变小;(2)不能;没有变阻器阻值小于定值电阻的实验。
(3)40。