全国各地2013届高考数学 押题精选试题分类汇编2 函数 理
- 格式:doc
- 大小:483.50 KB
- 文档页数:12
2013高考数学押题卷(最后一卷)( 理 科 数 学)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一个选项是符合题目要求的) 1.若ii m -+1是纯m 的值为( )A .1-B .0C .1 D2.已知集合}13|{},1|12||{>=<-=xx N x x M ,则N M ⋂=( )A .φB .}0|{<x xC .}1|{<x xD .}10|{<<x x3.若)10(02log ≠><a a a 且,则函数)1(log )(+=x x f a 的图像大致是( )4.已知等比数列}{n a 的公比为正数,且1,422475==⋅a a a a ,则1a =( )A .21 B .22 C .2 D .2 5.已知变量x 、y 满足的约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x xy ,则y x z 23+=的最大值为( )A .-3B .25 C .-5 D .46.过点(0,1)且与曲线11-+=x x y 在点(3,2)处的切线垂直的直线的方程为( )A .012=+-y xB .012=-+y xC .022=-+y xD .022=+-y x 7.函数)sin (cos 32sin )(22x x x x f --=的图象为C ,如下结论中正确的是( ) ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,内是增函数;④由x y 2sin 2=的图角向右平移π3个单位长度可以得到图象C (A )①②③ (B )②③④ (C )①③④ (D )①②③④8.已知620126(12)xa ax axa x-=+++⋅⋅⋅+,则0126a a a a +++⋅⋅⋅+=( )A .1B .1-C .63 D .629.若函数)(x f 的导函数34)('2+-=x x x f ,则使得函数)1(-x f 单调递减的一个充分不必要条件是x ∈( )A .[0,1]B .[3,5]C .[2,3]D .[2,4]10.设若2lg ,0,()3,0,ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰((1))1f f =,则a 的值是( ) A. -1 B. 2 C. 1 D.-211.△ABC 中,∠A=60°,∠A 的平分线AD 交边BC 于D ,已知AB=3,且)(31R ∈+=λλ,则AD 的长为( )A .1B .3C .32D .312.在三棱锥S —ABC 中,AB ⊥BC,AB=BC=2,SA=SC=2,,二面角S —AC —B 的余弦值是33-,若S 、A 、B 、C 都在同一球面上,则该球的表面积是( ) A .68B .π6C .24πD .6π二、填空题:(本大题4小题,每小题5分,共20分) 13.在△ABC 中,B=3π中,且34=⋅BC BA ,则△ABC 的面积是14.若函数1)(2++=mx mx x f 的定义域为R ,则m 的取值范围是15.已知向量,满足:2||,1||==,且6)2()(-=-⋅+b a b a ,则向量a 与b 的夹角是16.某几何体的三视图如图所示,则它的体积是正视图 侧视图 俯视图三、解答题(本大题共6小题,共70分。
一.选择题1.已知函数1()1f x x=-的定义域为 M ,()ln(1)g x x =+的定义域为N ,则M N ⋂=( )A.{x|x>-1}B.{x|x<1}C.{x|-1<x<1}D.∅2.已知i 是虚数单位,在复平面内与复数51034i i-++对应的点的坐标是( ) A.(-1,2) B. (-1,-2) C.(2,1) D.(1,2) 3.已知向量a =(1,2),b =(1,0),c =(3,4),若向量b a λ+与c 垂直,则λ等于 ( ) A . 113— B .133— C .-2 D.1 4.已知等差数列{}n a 的前n 项和分别为n S ,若564a a =-,则S 10等于 ( )A .10B .20C .40D .52log 2+5. 若程序框图如图所示,则该程序运行后输出的值是( )A. 1023B. 1024C. 2047D. 20486.已知ξ~N (0,σ2),若P (ξ>3)=0.023,则P (-3≤ξ≤3)=( )A. 0.477B. 0.628C. 0.954D. 0.977 7.某几何体的三视图如图所示,则该几何体的表面积为( )A . 2πB .22πC .(21)π+ D.(22)π+ 8..从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A .85B .56C .49D .289.如图,设D 是图中边长分别为2和4的矩形区域,E 是D 内位于函数y =x 2 图象下方的区域(阴影部分),向D 内随机抛掷30个点(点落在区域D 内任意位置的可能性相等),则落在E 内的点的个数约为( )A.15B.20C.5D.1010.已知四面体A-BCD 中,平面ABD ⊥平面BCD ,AB=AD=BD=2,BC=DC=2,则该四面体的外接球的表面积为( ). A.33π B.163π C.263π D.32327π 11.记实数12,,n x x x 中的最小数为123min{,,,}n x x x x ,设函数2()sin sin cos (0)3f x x x x πωωωω⎛⎫=++> ⎪⎝⎭的最小正周期为π,则函数()m i n {s i n 2,c g x x x ωω=的一个单调递减区间是( ) A. 0,4π⎛⎫ ⎪⎝⎭ B. ,42ππ⎛⎫ ⎪⎝⎭C. 3,24ππ⎛⎫ ⎪⎝⎭D. 3,4ππ⎛⎫ ⎪⎝⎭ 12.已知函数()f x 是R 上的偶函数,且对任意x R ∈都有(1)()f x f x +=-,当01x ≤≤时,()x f x e =,则方程()cos 0f x x π-=在[]2,2x ππ∈-上解的个数为( )A.5B. 6C. 7D. 8二.填空题13.已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为14.若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则21y x ++的取值范围是_________________(用区间形式表示).15.已知数列{n a }的前n 项和为n S ,满足1n 1n a =1,a 21S +=+. 且设1n 3n a log b += . 求数列n n 11b b +⎧⎫⎨⎬⎩⎭的和n T = 16.已知F 是双曲线 C :22221,(0,0)x y a b a b-=>>的一个焦点,B 点的坐标为(0,)b ,线段BF 的延长线交C 于点D ,且12BF FD =-,则C 的离心率为 .三.解答题17.在三角形ABC 中,,,A B C ∠∠∠所对的边分别为,,a b c ,且10c =,cos 4cos 3A bB a ==; (1)判断三角形ABC 的形状并求边长,a b ; (2)设函数()2sin cos 2cos 2C f x x x x ⎛⎫=++- ⎪⎝⎭,求函数()f x 的最大值.18.如图,已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是AB 、PC 的中点.(1)求证:EF ∥平面PAD ;(2)求证:EF ⊥CD ;(3)若∠PDA =45︒,求EF 与平面ABCD 所成的角的大小.19.(卢弘)《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm .罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下:(Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率; (Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼........中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及E ξ.(ppm)罗非鱼的汞含量0132159873211235420. 在平面直角坐标系xoy 中,经过点(0,2)且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q.(1)求k 的取值范围;(2)设椭圆与x 轴正半轴,y 轴正半轴的交点分别是A ,B ,是否存在常数k ,使得向量OP OQ +与向量AB 共线,如果存在,求k 的值,如果不存在,请说明理由.21.已知函数()ln(1)f x x ax =+-在12x =-处的切线的斜率为1; (1)求()f x 的最大值,(2)证明11111ln(1)234n n+++++>+.选答题,22.如图,在△ABC 中,∠C =90°,BC =8,AB =10,O 为BC 上一点,以O 为圆心,OB 为半径作半圆与BC 边、AB 边分别交于点D ,E ,连接DE(1)若BD =6,求线段DE 的长;(2)过点E 作半圆O 的切线,交AC 于点F ,证明:AF =EF .23.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合.直线l 的参数方程为:⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 21231(t 为参数),曲线C 的极坐标方程为:θρcos 4=. (1)写出曲线C 的直角坐标方程,并指明C 是什么曲线;(2)设直线l 与曲线C 相交于Q P ,两点,求PQ 的值24.已知()|1|()f x ax a R =+∈,不等式()3f x …的解集为{|2x -剎1x …}. (Ⅰ)求a 的值;(Ⅱ)若|()2()|2x f x f k -…恒成立,求k 的取值范围.。
2013年高考真题理科数学分类汇编(解析版)函 数1、(2013年高考(安徽卷))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥ 个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 (A ){}3,4 (B ){}2,3,4 (C ) {}3,4,5 (D ){}2,3【答案】B【解析】由题知,过原点的直线与曲线相交的个数即n 的取值.用尺规作图,交点可取2,3,4. 所以选B 2、(2013年高考(北京卷))函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --3、(2013年高考(广东卷))定义域为R 的四个函数3y x =,2xy =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .4、(2013年高考(全国(广西)卷))已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可知 1210,x -<+<,则112x -<<-。
故选B5、(2013年高考(全国(广西)卷))函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A【解析】由题意知1112(0)21y y x y x +=⇒=<-, 因此,故选A6、(2013年高考(全国(广西)卷))若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是(A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+7、(2013年高考(湖南卷))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A .3B .2C .1D .0【答案】B【解析】画出两个函数的图象,可得交点数。
2013高考数学—三角函数分类汇编1.(2013山东卷理3)已知函数)(x f 为奇函数,当0>x 时,xx x f 1)(2+=,在=-)1(f .A 2- .B 0 .C 1 .D 22.(2013陕西卷理1)设全集为R ,函数21)(x x f -=的定义域为M ,则M C R 为.A ]1,1[- .B )1,1(-.C ),1[]1,(+∞--∞ .D ),1()1,(+∞--∞3.(2013陕西卷理12)设][x 表示不大于x 的最大整数,则对任意实数y x ,,有.A ][][x x -=- .B ][2]2[x x = .C ][][][y x y x +≤+ .D ][][][y x y x -≤-4.(2013新课标2卷理10)已知函数c bx ax x x f +++=23)(,下列结论错误的是.A R x ∈∃0,0)(0=x f .B 函数)(x f y =的图像是中心对称图形.C 若0x 是)(x f 的极小值点,则)(x f 在区间),(0x -∞单调递减 .D 若0x 是)(x f 的极值点,则0)(0'=x f5.(2013新课标1卷理11)已知函数⎩⎨⎧>+≤+-=)0(),1ln()0(,2)(2x x x x x x f ,若ax x f ≥)(,则a 的取值范围是.A ]0,(-∞ .B ]1,(-∞ .C ]1,2[- ]0,2.[-D6.(2013新课标1卷理16)若函数))(1()(22b ax x x x f ++-=的图像关于直线2-=x 对称,在)(x f 的最大值是7.(2013江西卷理2)函数)1ln(x x y -=的定义域为.A )1,0( .B )1,0[ .C ]1,0( .D ]1,0[8.(2013江西卷理10)如图,半径为1的半圆O 与等边三角形夹在两平行线21,l l 之间,1l ∥2l ,l 与半圆相交于G F ,两点,与三角形ABC 两边相交于D E ,两点,设弧FG 的长为x (π<<x 0),CD BC EB y ++=,若l 从1l 平移到2l ,则函数)(x f y =的图像大致是9.(2013广西卷理5)函数)(11(log )(2+=xx f 的反函数)(1x f-=.A 121-x )0(>x.B 121-x )0(≠x .C 12-x (R x ∈) .D 12-x )0(>x10.(2013辽宁卷理11)已知函数)(x f 满足22)2(2)(a x a x x f ++-=,8)2(2)(22+--+-=a x a x x g 。
江苏省2013届高三最新数学(精选试题26套)分类汇编2:函数 一、填空题 .(江苏省2013届高三高考模拟卷(二)(数学) )定义在R上的奇函数f(x),当x∈(-∞,0)时,f(x)=x2+2x-1,则不等式f(x)<-1的解集是______. 【答案】(-2,0)∪(1+,+∞) .(南京师大附中2013届高三模拟考试5月卷)设函数f(x)的定义域为D,如果(x∈D,(y∈D,使=C(C为常数)成立,则称函数f(x)在D上的“均值”为C. 已知四个函数:①y=x3 (x∈R);②y=()x (x∈R);③y=lnx (x∈(0,+∞));④y=2sinx+1 (x∈R). 上述四个函数中,满足所在定义域上“均值”为1的函数是_____.(填满足要求的所有的函数的序号) 【答案】①③④ .(江苏省常州市西夏墅中学2013年高考冲刺模拟试卷)某同学为研究函数的性质,构造了如右图所示的两个边长为1的正方形和,点是边上的一个动点,设,则. 请你参考这些信息,推知函数的零点的个数是_______. 【答案】2个 .(江苏省大港中学2013届高三教学情况调研测试)定义在 上的函数 ;当若;则的大小关系为______________. 【答案】 .(江苏省2013届高三高考压轴数学试题)(),如果 (),那么的值是______. 【答案】 . .(江苏省启东中学2013届高三综合训练(1))若方程仅有一个实根,那么的取值范围是____ 【答案】或; .(江苏省启东中学2013届高三综合训练(2))已知为奇函数,_____ 【答案】 .(江苏省扬州中学2013届高三最后一次模拟考试数学试题)已知奇函数的图像关于直线对称,当时,,则=________._ 【答案】 .(江苏省扬州中学2013届高三最后一次模拟考试数学试题)已知函数,若在任意长度为2的闭区间上总存在两点,使得成立,则的最小值为_____________. 【答案】 .(武进区湟里高中2013高三数学模拟试卷)给出四个函数:①;②;③;④,则下列甲、乙、丙、丁四个函数图象对应上述四个函数分别是_____________(只需填序号). 甲 乙 丙 丁 【答案】解析:④,①,②,③ .(江苏省启东中学2013届高三综合训练(3))设且若定义在区间内的函数是奇函数,则的取值范围是_______. 【答案】 .(江苏省常州市金坛市第一中学2013年高考冲刺模拟试卷)设函数,则方程的实数解的个数为_________. 【答案】 3 .(江苏省启东中学2013届高三综合训练(2))设定义域为R的函数若关于的方程有8个不同的实数根,则实数b的取值范围是_______.【答案】 .(江苏省扬州市2013届高三下学期5月考前适应性考试数学(理)试题)从轴上一点A分别向函数与函数引不是水平方向的切线和,两切线、分别与轴相交于点B和点C,O为坐标原点,记△OAB的面积为,△OAC的面积为,则+的最小值为______. 【答案】8 提示:,设两切点分别为,,(,),:,即,令,得;令,得.:,即,令,得;令,得.依题意, ,得, +===,=,可得当时,有最小值8..(江苏省南通市通州区姜灶中学2013届高三5月高考模拟数学试题 )函数的单调减区间是________. 【答案】 .(江苏省常州市横山桥中学2013年高考数学冲刺模拟试卷doc)已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数.若f(1)<f(lnx),则x的取值范围是_____. 【答案】(0, )∪(e, +∞) .(江苏省常州市金坛四中2013年高考数学冲刺模拟试卷doc)设实数,若仅有一个常数c使得对于任意的,都有满足方程,这时,实数的取值的集合为_________ 【答案】 .(江苏省大港中学2013届高三教学情况调研测试)设函数是定义在上的奇函数,且对任意都有,当 时,,则的值为______________. 【答案】 .(江苏省常州市第五中学2013年高考数学文科)冲刺模拟试卷)已知函数,若,则的取值范围是____. 【答案】 .(江苏省常州市武进高级中学2013年高考数学文科)冲刺模拟试卷doc)对任意两个实数,定义若,,则的最小值为____. 【答案】-1 .(江苏省常州市西夏墅中学2013年高考冲刺模拟试卷)若关于x的方程2-|x|-x2+a=0有两个不相等的实数解,则实数a的取值范围是_______【答案】 .(江苏省大港中学2013届高三教学情况调研测试)已知函数(其中,为常数),若的图象如右图所示,则函数在区间[-1,1]上的最大值是__________. 【答案】 .(江苏省大港中学2013届高三教学情况调研测试)设是定义在R上的偶函数,对任意,都有,且当时,,若在区间内关于的方程恰有三个不同的实数根,则的取值范围为______________. 【答案】 .(江苏省2013届高三高考模拟卷(二)(数学) )定义在R上的函数f(x)满足f(x)=则f(2013)=________. 【答案】- .(江苏省启东中学2013届高三综合训练(1))函数对于任意实数满足条件,若,则______. 【答案】.; .(江苏省常州市第五中学2013年高考数学文科)冲刺模拟试卷)函数的定义域为,若满足①在内是单调函数,②存在,使在上的值域为,那么叫做对称函数,现有是对称函数, 那么的取值范围是_____________. 【答案】 .(南京师大附中2013届高三模拟考试5月卷)设实数a,x,y,满足则xy的取值范围是_____. 【答案】[-,+] .(武进区湟里高中2013高三数学模拟试卷)已知,,,若为偶函数,则的零点为________. 【答案】解析:根据函数的图像,有,所以或(舍去),所以的零点为. .(江苏省大港中学2013届高三教学情况调研测试)设的奇函数,则使的X的取值范围是______________. 【答案】(一1. 0) .(江苏省常州市第二中学2013年高考数学(文科)冲刺模拟试卷doc)已知函数若函数有3个零点,则实数m的取值范围是_____________. 【答案】 (0,1) .(江苏省启东中学2013届高三综合训练(1))已知函数f(x)=是R上的增函数,则实数k的取值范围是_______. 【答案】[,1); .(2013年江苏省高考数学押题试卷 )函数f(x)=lg(x2ax1)在区间(1,+∞)上单调增函数,则a的取值范围是________. 【答案】填(-∞,0]. g(x)=x2ax1的对称轴x=≤1,且 g(1)=a≥0, 所以a≤0. 二、解答题 .(江苏省常州市第五中学2013年高考数学文科)冲刺模拟试卷)某公司有价值万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值万元与技术改造投入万元之间的关系满足:①与和的乘积成正比;②时,; ③,其中t为常数,且. 求:(1)设,求表达式,并求的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入.【答案】解:(1)设,当时,,可得:,∴ ∴定义域为,为常数,且 (2) 当时,即,时,当,即,在上为增函数∴当时, ∴当,投入时,附加值y最大,为万元;当,投入时,附加值y最大,为万元14分 .(江苏省常州市奔牛高级中学2013年高考数学冲刺模拟试卷)某市环保研究所对市中心每天环境污染情况进行调查研究后,发现一天中环境综合污染指数f(x)与时间x(小时)的关系为,其中a为与气象有关的参数,且,若用每天f(x)的最大值为当天的综合污染指数,并记作M(a).(1)令,求t的取值范围.(2)求函数M(a)的表达式;(3)市政府规定,每天的综合污染指数不得超过2,试问目前市中心的完全污染指数是多少?是否超标?【答案】 .(江苏省大港中学2013届高三教学情况调研测试)设函数是定义域为的奇函数. (1)求值; (2)若,试判断函数单调性并求使不等式恒成立的的取值范围; (3)若,且,在上的最小值为,求的值. 【答案】解:(1)∵f(x)是定义域为R的奇函数,∴f(0)=0, ∴1-(k-1)=0,∴k=2, (2) 单调递减,单调递增,故f(x)在R上单调递减. 不等式化为恒成立, ,解得 (3)∵f(1)=,,即 ∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2. 令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x为增函数,∵x≥1,∴t≥f(1)=, 令h(t)=t2-2mt+2=(t-m)2+2-m2 (t≥) 若m≥,当t=m时,h(t)min=2-m2=-2,∴m=2 若m,舍去综上可知m=2. .(江苏省徐州市2013届高三考前模拟数学试题)某人年底花万元买了一套住房,其中首付万元,万元采用商业贷款.贷款的月利率为‰,按复利计算,每月等额还贷一次,年还清,并从贷款后的次月开始还贷. ⑴这个人每月应还贷多少元? ⑵为了抑制高房价,国家出台“国五条”,要求卖房时按照差额的20%缴税.如果这个人现在将住房万元卖出,并且差额税由卖房人承担,问:卖房人将获利约多少元? (参考数据:) 【答案】⑴设每月应还贷元,共付款次,则有 , 所以(元) 答:每月应还贷元 ⑵卖房人共付给银行元, 利息(元), 缴纳差额税(元), (元). 答:卖房人将获利约元 .(江苏省大港中学2013届高三教学情况调研测试)已知函数. (1)若,求不等式的解集;(2)当方程恰有两个实数根时,求的值;(3)若对于一切,不等式恒成立,求的取值范围. 【答案】解:(1)由得当时,恒成立 ∴ 当时,得或又 ∴ 所以不等式的解集为 (2)由得 令由函数图象知两函数图象在y轴右边只有一个交点时满足题意,即由得由图知时方程恰有两个实数根(3) 当时,,,, 所以 当时 ①当时,,即,令 时,,所以 时,,所以, 所以 ②当时,,即 所以, 综上,的取值范围是 .(江苏省大港中学2013届高三教学情况调研测试)已知函数()在区间上有最大值和最小值.设.(1)求、的值;(2)若不等式在上有解,求实数的取值范围;【答案】解:(1),因为,所以在区间上是增函数,故,解得. (2)由已知可得,所以可化为,化为,令,则,因,故,记,因为,故, 所以的取值范围是. .(武进区湟里高中2013高三数学模拟试卷)省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时)的关系为,其中是与气象有关的参数,且,若用每天的最大值为当天的综合放射性污染指数,并记作. (1)令,,求t的取值范围; (2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性 污染指数是否超标?【答案】解析:(1)当时,t=0; 当时,(当时取等号),∴,即t的取值范围是. (2)当时,记,则,∵在上单调递减,在上单调递增,且.故. ∴当且仅当时,. 故当时不超标,当时超标. y x 0 y x 0 y x 0 y x 0。
2013年高考解析分类汇编2:函数一、选择题错误!未指定书签。
.(2013年高考重庆卷(文1))函数21log (2)y x =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞D .(2,4)(4,)+∞【答案】C【命题立意】本题考查函数的定义域。
要使函数有意义则,220log (2)0x x ->⎧⎨-≠⎩,即2021x x ->⎧⎨-≠⎩,即2x >且3x ≠,所以选C. 错误!未指定书签。
.(2013年高考重庆卷(文9))已知函数3()s i n 4(,)f x a x b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A .5-B .1-C .3D .4 【答案】C【命题立意】本题考查函数的奇偶性以及对数的运算性质。
因为22lg10lg(log 10)lg(lg 2)lg(log 10lg 2)lg(lg 2)lg1012g +=⋅=⨯==,所以2l g (lg 2)l g (l o g 10)=-。
设2lg(log 10),t =则lg(lg 2)t =-。
由条件可知()5f t =,即3()sin 45f t at b t =++=,所以2si n 1a tb t +=,所以3()s i n 4143f t a t b t -=--+=-+=,选C. 错误!未指定书签。
.(2013年高考大纲卷(文6))函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数( )A .()1021x x >- B .()1021xx ≠- C .()21x x R -∈ D .()210x x -> 【答案】A)0)(11(log )(2>+==y x x f y ,所以y x 211=+,所以121-=y x,所以)0(121>-=y x y ,所以)0(121>-=x y x ,即)0(121)(1>-=-x x f x ,故选A.错误!未指定书签。
2013年高考理科数学——函数与导数大题目1.(2013广西卷22题).(本小题满分12分)已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若()0,0,x f x λ≥≤时求的最小值;; (II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:2.(2013全国新课标二卷21题)(本小题满分12分)已知函数f(x)=e x -ln(x+m)(Ι)设x=0是f(x)的极值点,求m ,并讨论f(x)的单调性; (Ⅱ)当m ≤2时,证明f(x)>03.(2013北京卷18题)(本小题共13分)设l 为曲线C :ln xy x=在点(1,0)处的切线. (I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方4.(2013安徽卷20题)(本小题满分13分)设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈,证明: (Ⅰ)对每个nn N∈,存在唯一的2[,1]3nx ∈,满足()0n n f x =;(Ⅱ)对任意n p N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<。
5.(2013福建卷17题)(本小题满分13分)已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.6.(2013广东卷21题).(本小题满分14分)设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .7.(2013年河南山西河北卷 21)(本小题满分共12分)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+ (Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
2013全国大纲版高考压轴卷 数学理试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效...........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
一.选择题 (1)若复数,12ii z -=则z 等于( )()()()()212221D C B A(2) 若{}8222<≤∈=-x Z x A ,{}1log 2>∈=x R x B ,则()B C A R 的元素个数为( )(A) 0(B) 1(C) 2 (D)3(3)已知函数()y f x =与()x fy 1-=互为反函数,且函数()1y fx =+与函数()11+=-xfy 也互为反函数,若(),01=f 则()20101-f=( )()()()()2009201010--D C B A(4) 已知等比数列{}n a 中,公比,0<q 若,42=a 则321a a a ++ 有( )(A)最小值-4 (B)最大值-4 (C)最小值12 (D)最大值12(5) 一圆形餐桌依次有A 、B 、C 、D 、E 、F 共有6个座位.现让3个大人和3 个小孩入座进餐,要求任何两个小孩都不能坐在一起,则不同的入座方法总 数为( ) (A )6 (B )12 (C )72 (D )144 (6) 已知函数sin()(0)y x ϕϕ=π+>的部分图象如右图所示,设P 是图象的最高点,,A B 是图象与x 轴的交点,则tan A P B ∠=( )。
一.选择题(30道)1.设集合{}2,ln A x =,{},B x y =,若{}0A B ⋂=,则y 的值为( ) A .0 B .1 C .e D .1e2. 已知R 是实数集,集合3|1M x x ⎧⎫=<⎨⎬⎩⎭,{}|3N y y t t ==-≥,则R N C M ⋂=( )A. []0,2B. [2,)+∞C.(,2]-∞D. []2,33.已知i 为虚数单位,则复数321ii+等于( )A .-1-iB .-1+iC .1+iD .1—i4.复数41(,)22m m i m R i -+-⋅∈其中为虚数单位在复平面上对应的点不可能位于A .第一象限B .第二象限C .第三象限D .第四象限5. “0m n >>”是“方程221m x ny +=表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.若命题“x ∃∈0R ,使得x m x m ++-<200230”为假命题,则实数m 的取值范围是( )(A )[,]26(B )[,]--62(C )(,)26(D )(,)--627.一个算法的程序框图如右,则其输出结果是( )A.0B.2C.12+18.下面的程序框图中,若输出S 的值为126,则图中应填上的条件为( )A .5n ≤B .6n ≤C .7n ≤D .8n ≤9.右图是函数sin()()y A x x R ωϕ=+∈在区间5[,]66ππ-上的图象.为了得到这个函数的图象,只需将sin ()y x x R =∈的图象上所有的点( )A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变10.已知,40,tan 12sin sin22πθθθθ<<=++k 则)4sin(πθ-的值( )A .随着k 的增大而增大B .有时随着k 的增大而增大,有时随着k 的增大而减小C .随着k 的增大而减小D .是一个与k 无关的常数11.关于函数x x x x f cos )cos (sin 2)(-=的四个结论:P 1:最大值为2; P 2:最小正周期为π; P 3:单调递增区间为∈⎥⎦⎤⎢⎣⎡+-k k k ,83,8ππππZ ;P 4:图象的对称中心为∈-+k k ),1,82(ππZ .其中正确的有( )A .1 个B .2个C .3个D .4个12.,a b 是两个向量,||a =1 ,||b =2 ,且()a b a +⊥,则a 与b 的夹角为( )(A )︒30 (B )︒60 (C )︒120 (D )︒15013.已知a ,b 是两个互相垂直的单位向量,且c ·a =c ·b =1,,则对任意正实数t ,1c ta b t++的最小值是( )A .2B .C .4D .14.一个几何体的三视图如右图所示,则它的体积为( )A .203B .403C .20D .4015.正方形A B C D 的边长为4,中心为M ,球O 与正方形A B C D 所在平面相切于M 点,过点M 的球的直径的另一端点为N ,线段N A 与球O 的球面的交点为E ,且E 恰为线段N A 的中点,则球O 的体积为( )A .83πB.3C .43πD.316.不等式组1,40,0x x y kx y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则k 的值为( )A.2- B. 1- C. 0 D.1 17.设函数3()f x x x =+,x R ∈. 若当02πθ<<时,不等式0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围是 ( ). A.(,1]-∞ B.[1,)+∞ C.1(,1)2D.1(,1]218、一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有( ) A.12种 B. 15种 C. 17种 D.19种 19、二项式8(2x-的展开式中常数项是( )A .28B .-7C .7D .-2820、高三毕业时,甲,乙,丙等五位同学站成一排合影留念,已知甲,乙相邻,则甲丙相邻的概率为( )A.110B.14C.310D.25某苗圃基地为了解基地内甲、乙两块地种植的同一种 树苗的长势情况,从两块地各随机抽取了10株树苗测 量它们的高度,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数x x 甲乙、和中位数y y 甲乙、进行比 较,下面结论正确的是( )A .x x y y >>甲乙甲乙,B .x x y y <<甲乙甲乙,C .x x y y <>甲乙甲乙,D .x x y y ><甲乙甲乙,22、公差不为0的等差数列{n a }的前21项的和等于前8项的和.若80k a a +=,则k =( ) A .20 B .21 C .22 D .2323、已知数列}{n a 为等比数列,274=+a a ,865-=⋅a a ,则101a a +的值为( )A .7B .5-C .5D .7-24. 已知21,F F 分别是双曲线12222=-by ax 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于B A ,两点,若2ABF ∆是锐角三角形,则该双曲线离心率的取值范围是( )A .⎪⎪⎭⎫⎝⎛+221,1 B .⎪⎪⎭⎫ ⎝⎛+∞+,221 C .()21,1+D .()+∞+,2125.圆2x 2+y -2x +my -2=0关于抛物线2x =4y 的准线对称,则m 的值为( )A.1B. 2C. 3D. 4 26.已知抛物线)0(:2>=a ax y C 的焦点到准线的距离为41, 且C 上的两点()()2211,,,y x B y x A 关于直线m x y +=对称, 并且2121-=x x , 那么m =( )A .23 B .25 C .2 D .327.如果函数()y f x =图像上任意一点的坐标(,)x y 都满足方程 lg()lg lg x y x y +=+,那么正确的选项是( )(A)()y f x =是区间(0,+∞)上的减函数,且4x y +≤ (B)()y f x =是区间(1,+∞)上的增函数,且4x y +≥(C)()y f x =是区间(1,+∞)上的减函数,且4x y +≥ (D)()y f x =是区间(1,+∞)上的减函数,且4x y +≤28.定义在R 上的奇函数()f x ,当x ≥0时, ))12lo g (1),0,1,()1|3|,1,,x x f x x x ⎧+∈⎡⎣⎪=⎨⎪--∈+∞⎡⎣⎩则关于x 的函数()()F x f x a =-(0<a <1)的所有零点之和为( )(A )1-2a(B )21a-(C )12a-- (D )21a--29.5(2)x a +的展开式中,2x 的系数等于40,则0(2)axe x dx +⎰等于( )A .eB .1e -C .1D .1e +30.已知函数2342013()12342013xxxxf x x =+-+-++,2342013()12342013xxxxg x x =-+-+--,设函数()(3)(4)F x f x g x =+⋅-,且函数()F x 的零点均在区间),,](,[Z ∈<b a b a b a 内,则-b a 的最小值为( ) A .8 B .9 C . 10 D . 11二.填空题(8道)31.已知A 0),B(0,1)),坐标原点O 在直线AB 上的射影为点C,则OCOA ⋅= .32.在6)11(x+的展开式中,含1x项的系数是________.(用数字作答)33.若实数x 、y 满足⎪⎩⎪⎨⎧+-≥≥≥-b x y x y y x 02,且2z x y =+的最小值为3,则实数b 的值为__34.已知四面体ABC P -的外接球的球心O 在AB 上,且⊥PO 平面ABC , AB AC 32=,若四面体ABC P -的体积为23,则该球的体积为_____________35.已知{,)|||1,||1}x y x y A Ω=≤≤(,是曲线2y x =与12y x =围成的区域,若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为 .36.公比为4的等比数列{}n b 中,若n T 是数列{}n b 的前n 项积,则有304020301020,,T T T T TT 也成等比数列,且公比为1004;类比上述结论,相应的在公差为3的等差数列{}n a 中,若n S 是{}n a 的前n 项和,则有一相应的等差数列,该等差数列的公差为_____________. 37.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、,且c A b B a 21cos cos =-,当)tan(B A -取最大值时,角C 的值为_______________38.已知抛物线)0(2:2>=p px y C 的准线为l ,过点)0,1(M 且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若MB AM =,则p 等于____________三.解答题(12道)39、ABC ∆中,a ,b ,c 分别是角,,A B C 的对边,向量m (2sin ,2cos 2)B B =-,2(2sin (),1)42B n π=+- ,n m ⊥.(1)求角B 的大小; (2)若a =1b =,求c 的值.40、已知等差数列{}n a 的首项11a =,公差0d >.且1452a a a ,,分别是等比数列}{n b 的432b b b ,,.(Ⅰ)求数列}{n a 与}{n b 的通项公式; (Ⅱ)设数列{}n c 对任意自然数n 均有1212c c b b ++ (1)n n nc a b ++=成立,求12c c ++ (2013)c +的值.41、一次考试中,五名同学的数学、物理成绩如下表所示:(1)请在直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程; (2)要从4名数学成绩在90分以上的同学中选2人参加一项活动,以X 表示选中的同学的物理成绩高于90分的人数,求随机变量X 的分布列及数学期望)(X E 的值. 42、十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意 单位:名(1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?(2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;(3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关 附:()()()()()22n a d b c K a b c d a c b d -=++++43、如图在四棱锥P A B C D -中,底面A B C D 是边长为a 的正方形,侧面P A D ⊥底面A B C D ,且2P A P D A D ==,设E 、F 分别为P C 、B D 的中点.(Ⅰ) 求证:E F //平面P A D ;(Ⅱ) 求证:面P A B ⊥平面P D C ; (Ⅲ) 求二面角B P D C --的正切值.44、已知椭圆C :22221(0)x y a b ab+=>>的焦距为离心率为2,其右焦点为F ,过点(0,)B b 作直线交椭圆于另一点A .(Ⅰ)若6A B B F ⋅=-,求A B F ∆外接圆的方程;(Ⅱ)若过点(2,0)M 的直线与椭圆:N 222213x y ab+=相交于两点G 、H ,设P 为N 上一点,且满足O G O H t O P += (O 为坐标原点),当3P G P H -< 时,求实数t 的取值范围.45. 已知定点A(1,0), B 为x 轴负半轴上的动点,以AB 为边作菱形ABCD,使其两对 角线的交点恰好落在y 轴上. (1) 求动点D 的轨迹五的方程.(2) 若四边形MPNQ 的四个顶点都在曲线E 上,M ,N 关于x 轴对称,曲线E 在M 点处的切线为l ,且PQ//l①证明直线PN 与QN 的斜率之和为定值;②当M 的横坐标为43,纵坐标大于O,PQN ∠=60°时,求四边形MPNQ 的面积46. 对于函数f (x )(x ∈D ),若x ∈D 时,恒有()f x '>()f x 成立,则称函数()f x 是D 上的J 函数.(Ⅰ)当函数f (x )=m xe lnx 是J 函数时,求m 的取值范围; (Ⅱ)若函数g (x )为(0,+∞)上的J 函数, ①试比较g (a )与1a e-g (1)的大小;②求证:对于任意大于1的实数x 1,x 2,x 3,…,x n ,均有 g (ln (x 1+x 2+…+x n ))>g (lnx 1)+g (lnx 2)+…+g (lnx n ).47. 设函数()ln a f x x x x=+, 32()3g x x x =--.(Ⅰ)讨论函数()()f x h x x=的单调性;(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M ; (Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.48.选修4-1:几何证明选讲.如图,过圆E 外一点A 作一条直线与圆E 交B,C 两点,且AB=31AC,作直线AF 与圆E 相切于点F ,连接EF 交BC 于点D,己知圆E 的半径为2,EBC ∠ =30. (1)求AF 的长. (2)求证:AD=3ED.49. 在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建坐标系.已知曲线θθρc o s 2s i n :2a C =)0(>a ,已知过点)4,2(--P 的直线l的参数方程为:⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 224222,直线l 与曲线C 分别交于N M ,两点. (1)写出曲线C 和直线l 的普通方程; (2)若|||,||,|PN MN PM 成等比数列,求a的值.50. 选修4-5:不等式选讲设.,)(R a a x x f ∈-=(1)当13,()3x f x -≤≤≤时,求a 的取值范围;(2)若对任意x ∈R ,()()12f x a f x a a -++≥-恒成立,求实数a 的最小值.11.【答案】C【点评】根据三角函数的图像确定三角函数的解析式是综合考察三角函数知识的掌握程度的重要手段,再结合三角函数图象的平移问题,使得这种题型常考常新,作为中档题是历年高考考察的重点,如9题;三角函数求值是历年高考的常考点,应用三角函数恒等变换化简式子并引入参数是一种创新题型,知识的综合程度较高,或许这种题型在未来几年的高考中会出现,如10题;结合三角函数的恒等变换,综合分析函数的性质,是对三角函数知识点的综合考察,要求知识的掌握程度为中等,历年高考对三角函数知识点的考察亦以中档容易为主,如11题。
2013届全国各地高考押题数学(理科)精选试题分类汇编2:函数一、选择题1 .(2013届北京市高考压轴卷理科数学)已知函数9()4(1)1f x x x x =-+>-+,当x=a 时,()f x 取得最小值,则在直角坐标系 中,函数11()()x g x a+=的大致图象为第二部分 (非选择题 共110分) 【答案】B 【解析】9941+511y x x x x =-+=+-++,因为1x >-,所以910,01x x +>>+,所以由均值不等式得91+5511y x x =+-≥=+,当且仅当911x x +=+,即2(1)9x +=,所以13,2x x +==时取等号,所以2a =,所以1111()()()2x x g x a ++==,又1111(),11()()222,1x x x x g x x +++⎧≥-⎪==⎨⎪<-⎩,所以选 B .2 .(2013届湖北省高考压轴卷 数学(理)试题)已知()f x 是定义在[,]a b 上的函数,其图象是一条连续不断的曲线,且满足下列条件:①()f x 的值域为G ,且[,]G a b ⊆;②对任意不同的,[,]x y a b ∈,都有()()f x f y x y-<-.那么,关于x 的方程()f x x =在[,]a b 上根的情况是 ( )A .没有实数根B .有且只有一个实数根C .恰有两个不同的实数根D .有无数个不同的实数根(一)必考题(11~14题)【答案】B 【解析】:令()(),[,]g x f x x x a b =-∈,则()()0,()()0g a f a a g b f b b =-≥=-≤,所以()()0g a g b ⋅≤.又因为,[,]x y a b ∈,都有()()1f x f y x y-<-,则()1f x '<,所以()()10g x f x ''=-<,所以函数()g x 在[,]a b 上单调递减,故函数()g x 在[,]a b 上只有一个零点,即方程()f x x =在[,]a b 上有且只有一个实数根.故选 B .3 .(2013届天津市高考压轴卷理科数学)已知函数()f x 是R 上的偶函数,若对于0≥x ,都有)()2(x f x f =+,且当)2,0[∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为( )A .2-B .1-C .1D .2【答案】C【解析】由函数()f x 是R 上的偶函数及0x ≥时(2()f x f x +=)得.11log 2log )0()1()0()2011()2012()2011(22=+=+=+=+-f f f f f f 故选C .4 .(2013届山东省高考压轴卷理科数学)已知函数()f x 是R 上的奇函数,若对于0x ≥,都有()2()f x f x +=,[)()()20,2,log 1x f x x ∈=+当时时,()()20132012f f -+的值为( )A .2-B .1-C .1D .2【答案】B 【解析】由()2()f x f x +=知,函数()f x 的周期为2,所以()()20132012f f -+.1)0()1()0()121006()21006()2013(-=+-=++⨯-=⨯+-=f f f f f f5 .(2013届辽宁省高考压轴卷数学理试题)函数f(x)=23x x +的零点所在的一个区间是 ( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)【答案】B 由1(1)30,(0)102f f -=-<=>及零点定理知f(x)的零点在区间(-1,0)上.6 .(2013届福建省高考压轴卷数学理试题)设函数11,(,2)()1(2),[2,)2x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()1F x xf x =-的零点的个数为 ( )A .4B .5C .6D .7【答案】C 【解析】由题意,()()1F x xf x =-的零点,即1()f x x 与的交点. 易绘(,2)x ∈-∞的函数图象,且131(0)(2)0,(1)1,()()222f f f f f =====当[2,)x ∈+∞时,11(4)(2)0,(6)(4)0,22f f f f ====依次类推,易得(4)(6)(8)(2)0f f f f n ===== 又11(3)(1)22f f ==, 同理11(5)(3)24f f ==,11(7)(5)28f f == 不难绘出[2,)x ∈+∞的函数图象如右,显然零点共6个,其中左边1个,右边5个.7 .(2013届辽宁省高考压轴卷数学理试题)已知函数31,0()3,0x x f x xx x ⎧+>⎪=⎨⎪+≤⎩,则方程2(2)f x x a +=(2a >)的根的个数不可能为 )(A 6 )(B 5 )(C 4 )(D 3【答案】A8 .(2013届四川省高考压轴卷数学理试题)已知集合{1,2,3}M =,{1,2,3,4}N =,定义函数:f M N →.若点(1,(1))A f 、(2,(2))B f 、(3,(3))C f ,ABC ∆的外接圆圆心为D ,且()DA DC DB R λλ+=∈,则满足条件的函数()f x 有( )A .6个B .10个C .12个D .16个【答案】C9 .(2013届上海市高考压轴卷数学(理)试题)对于定义域为[0,1]的函数()f x ,如果同时满足以下三个条件:①对任意的]1,0[∈x ,总有0)(≥x f ②1)1(=f③若0,021≥≥x x ,121≤+x x ,都有)()()(2121x f x f x x f +≥+ 成立; 则称函数)(x f 为理想函数. 下面有三个命题:(1)若函数)(x f 为理想函数,则0)0(=f ; (2)函数])1,0[(12)(∈-=x x f x 是理想函数;(3)若函数)(x f 是理想函数,假定存在]1,0[0∈x ,使得]1,0[)(0∈x f ,且00)]([x x f f =,则00)(x x f =;其中正确的命题个数有 ( )A .0个B .1个C .2个D .3个【答案】D 【解析】(1)取120x x ==,可得(0)(0)(0),f f f ≥+所以(0)0.f ≤又有条件①(0)0,f ≥故(0)0.f =(2)显然()21xg x =-在[0,1]上满足条件①()0g x ≥也满足条件②(1) 1.g = 若12120,0,1x x x x ≥≥+≤,则12121212121212()[()()]21[(21)(21)]2221(21)(21)0x x x x x x x x x x g x x g x g x +++-+=---+-=--+=--≥即满足条件③故()g x 是联想函数.(3)由条件③知,任給[0,1],m n ∈、当m n <时,由m n <知(0,1],n m -∈ 所以()()()()().f n f n m m f n m f m f m =-+≥-+≥ 若00(),x f x <则000()[()],f x f f x x ≤=前后矛盾; 若00(),x f x >则000()[()],f x f f x x ≥=前后矛盾.所以00().f x x =10.(2013届四川省高考压轴卷数学理试题)函数1()lg f x x x=-的零点所在的区间是 ( )A .(0,1)B .(1,2)C .(2,3)D .(3,10)【答案】C11.(2013届辽宁省高考压轴卷数学理试题)若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是 ( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)【答案】C 【解析】本题主要考查函数的对数的单调性、对数的基本运算及分类讨论思想,属于中等题.由分段函数的表达式知,需要对a 的正负进行分类讨论.2112220a<0()()log log log ()log ()a f a f a a a a a >⎧⎧⎪⎪>-⇒⎨⎨>->-⎪⎪⎩⎩或001-10112a a a a a a a <>⎧⎧⎪⎪⇒⇒><<⎨⎨<>⎪⎪⎩⎩或或12.(2013届江西省高考压轴卷数学理试题)设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++ (b 为常数),则(1)f -= ( )A .3B .1C .-1D .3-【答案】D 【解析】由()f x 为定义在R 上的奇函数可知0(0)210,1f b b b =+=+==-,于是(1)(1)(221)3f f -=-=-+-=-,故选D .13.(2013届福建省高考压轴卷数学理试题)设函数()log (01)a f x x a =<<的定义域为[,](m n m <)n ,值域为[0,1],若n m -的最小值为13,则实数a 的值为( ) A .14 B .14或23 C .23 D .23或34【答案】D 【解析】由题意,分1n =或1m =两种情况:(1)1n =时,23m =,此时()f x 在[,]m n 上单调递减, 故2()log 13a f m m a ==⇒=(2)1m =时,43n =,此时()f x 在[,]m n 上单调递增,故3()log 14a f n n a ==⇒=14.(2013届全国大纲版高考压轴卷数学理试题)已知函数()y f x =与()x fy 1-=互为反函数,且函数()1y f x =+与函数()11+=-x f y 也互为反函数,若(),01=f 则()20101-f=()()()()2009201010--D C B A【答案】 D . 由()11()1y f x f y x -=+⇔=+,,x y互换得,1()1y f x -=-,()()1111f x f x --∴-=+ ()()11111,(0)1f x f x f ---∴-+==又,累加法:()()1102010f f ---=()()()()()()()()=11111111011223200920102010f f f f f f f f --------⎡⎤⎡⎤⎡⎤⎡⎤-+-+-++-⎣⎦⎣⎦⎣⎦⎣⎦()()=112010*********f f --⇒=--15.(2013届北京市高考压轴卷理科数学)设函数1()7,02()0x x f x x ⎧-<⎪=≥,若()1f a <,则实数a 的取值范围是 ( )A .(,3)-∞-B .(1,)+∞C .(3,1)-D .(,3)(1,)-∞-+∞【答案】C【解析】若0a <,则由()1f a <得1()712a -<,即311()8()22a -<=,所以30a -<<.若0a ≥,则由()1f a <1<,,所以01a ≤<.综上a 的取值范围是31a -<<,即(3,1)-,选C .16.(2013届湖南省高考压轴卷数学(理)试题)已知函数,则( )A .32B .16C .D .【答案】C17.(2013届浙江省高考压轴卷数学理试题)函数21()x xe f x e +=的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称【答案】D 【解析】)(11)(22x f e e e e x f xxx x =+=+=--- )(x f ∴是偶函数,图像关于y轴对称.18.(2013届福建省高考压轴卷数学理试题)设函数()2xf x =,则下列结论中正确的是( ) A.(1)(2)(f f f -<< B.((1)(2)f f f <-<C.(2)((1)f f f <<-D.(1)((2)f f f -<<【答案】D 【解析】由题意,()22()xxf x f x -===-,即()f x 为偶函数.故(1)(1)(2)(2)(f f f f f f ⎧-=⎪-=⎨⎪=⎩. 显然0()2xx f x ≥=时,单调递增. 所以(1)(1)((2)(2)f f f f f f -=<=<-= 19.( 2013新课标高考压轴卷(一)理科数学)若函数()xxf x ka a-=-(a >0且1a ≠)在(,-∞+∞)上既是奇函数又是增函数,则()log ()a g x x k =+的图象是【答案】C 【解析】1()x x x x f x ka a ka a-=-=-是奇函数,所以(0)0f =,即10k -=,所以1k =,即1()x x f x a a =-,又函数1,x x y a y a==-在定义域上单调性相同,由函数是增函数可知1a >,所以函数()log ()log (1)a a g x x k x =+=+,选C .20.(2013届上海市高考压轴卷数学(理)试题)指数函数,0()(>=a a x f x且)1≠a 在R 上是减函数,则函数3)2()(x a x g -=在R 上的单调性为 ( )A .单调递增B .单调递减C .在),0(+∞上递增,在)0,(-∞上递减D .在),0(+∞上递减,在)0,(-∞上递增【答案】B【解析】由已知有10<<a ,显然函数3)2()(x a x g -=在R 上单调递减. 二、填空题21.(2013届山东省高考压轴卷理科数学)给定方程:1()sin 102x x +-=,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(–∞,0)内有且只有一个实数解;④若0x 是该方程的实数解,则0x >–1.则正确命题是___________.【答案】②③④【解析】由1()sin 102x x +-=得1sin 1()2x x =-,令()f x =sin x ,()g x =11()2x-,在同一坐标系中画出两函数的图像如右,由图像知:①错,③、④对,而由于()g x =11()2x-递增,小于1,且以直线1=y 为渐近线,()f x =sin x 在-1到1之间振荡,故在区间(0,+∞)上,两者图像有无穷多个交点,所以②对,故选填②③④.22.(2013届浙江省高考压轴卷数学理试题)若函数f (x )=(2x 2-a 2x-a )lg x 的值域为[)0,+∞,则a =_________【答案】1【解析】显然h (x )= 2x 2-a 2x-a ,g (x )= lg x 正负号一致,且h (1)=g (1)=0,∴a=-2或1 经检验得a= 1 23.(2013届江苏省高考压轴卷数学试题)已知函数()13log )12a x f x x a =+++-(0,1a a >≠),如果()3log 5f b = (0,1b b >≠),那么13log f b ⎛⎫ ⎪⎝⎭的值是______.【答案】3- .24.(2013届陕西省高考压轴卷数学(理)试题)定义域R 的奇函数()f x ,当(,0)x ∈-∞时()'()0f x xf x +<恒成立,若3(3)a f =,(log 3)(log 3)b f ππ=⋅,()22c f =--,则,,a b c 的大小关系为___.【答案】a c b >>【解析】设()()g x xf x =,依题意得()g x 是偶函数,当(,0)x ∈-∞时()'()0f x xf x +<,即'()0g x <恒成立,故()g x 在(,0)x ∈-∞单调递减,则()g x 在(0,)+∞上递增,3(3)(3)a f g ==,(log 3)(log 3)(log 3)b f g πππ==⋅,2(2)(2)(2)c f g g =--=-=.又log 3123π<<<,故a c b >>.25.(2013新课标高考压轴卷(一)理科数学)已知()f x 为R 上的偶函数,对任意x R ∈都有(6)()(3)f x f x f +=+且当[]12,0,3x x ∈, 12x x ≠ 时,有1212()()0f x f x x x ->-成立,给出四个命题:①(3)0f = ② 直线6x =-是函数()y f x =的图像的一条对称轴③ 函数()y f x =在[]9,6--上为增函数 ④ 函数()y f x =在[]9,9--上有四个零点其中所有正确命题的序号为______________【答案】①②④【解析】令3x =-,得(36)(3)(3)(3)f f f f -+=-+=,即(3)0f =,所以①正确.因为(6)()(3)f x f x f +=+,所以(6)()(3)()(3)f x f x f f x f -+=-+=+,即(6)(6)f x f x -+=+,所以直线6x =是函数()y f x =的图像的一条对称轴,因为函数为偶函数,所以6x =-也是函数()y f x =的图像的一条对称轴所以②正确.由1212()()0f x f x x x ->-可知函数()f x 在区间[0,3]上递增,又(6)()(3)()f x f x f f x +=+=,所以函数的周期为6,所以函数在[6,9]上递增,所以在[]9,6--上为减函数,所以③错误.因为函数的周期为6,所以(9)(3)(3)(9)0f f f f -=-===,故函数()y f x =在[]9,9--上有四个零点,所以④正确,所以正确的命题为①②④26.(2013届辽宁省高考压轴卷数学理试题)设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是________.【答案】,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭27.(2013届江苏省高考压轴卷数学试题)已知函数()|lg |f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于_________.【答案】28.(2013届海南省高考压轴卷理科数学)设函数f(x)=x-1x,对任意x [1,∈+∞),f(mx)+mf(x)<0恒成立,则实数m 的取值范围是________【答案】考点分析:本题主要考查了恒成立问题的基本解法及分类讨论思想,属于难题. 已知f(x)为增函数且m≠0若m>0,由复合函数的单调性可知f(mx)和mf(x)均为增函数,此时不符合题意. M<0,时有22111102()012m mx mx mx m x mx x m x m-+-<⇒--∙<⇒+<因为22y x =在[1,)x ∈+∞上的最小值为2,所以1+212m<即2m >1,解得m<-1.29.(2013届重庆省高考压轴卷数学理试题)若函数()f x =的定义域为R ,则α的取值范围为______【答案】解析:[]10-,三、解答题 30.(2013届上海市高考压轴卷数学(理)试题)本题共3小题,第(Ⅰ)小题6分,第(Ⅱ)小题6分,第(Ⅲ)小题2分.某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数()f x 与时刻x (时) 的关系为22()2,[0,24]13x f x a a x x =-++∈+,其中a 是与气象有关的参数,且1[0,]2a ∈.(Ⅰ)令2,[0,24]1xt x x =∈+,写出该函数的单调区间,并选择其中一种情形进行证明; (Ⅱ)若用每天()f x 的最大值作为当天的综合放射性污染指数,并记作()M a ,求()M a ;(Ⅲ)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?【答案】本题共3小题,第(Ⅰ)小题6分,第(Ⅱ)小题6分,第(Ⅲ)小题2分.解:(1)单调递增区间为[0,1];单调递减区间为[1,24].证明:任取121212122212()(1)01,()()(1)(1)x x x x x x t x t x x x --≤<≤-=++, 12120,(1)0x x x x -<->,所以1212122212()(1)()()0(1)(1)x x x x t x t x x x ---=<++. 所以函数()t x 在[0,1]上为增函数.(同理可证在区间[1,24]上减函数)(2)由函数的单调性知max min ()(1)1;()(0)0t x t t x t ====, ∴211[0,]112x t x x x==∈++,即t 的取值范围是1[0,]2. 当1[0,]2a ∈时,记2()23g t t a a =-++ 则23,03()21,32t a t a g t t a a t ⎧-++≤≤⎪⎪=⎨⎪++<≤⎪⎩∵()g t 在[0,]a 上单调递减,在1(,]2a 上单调递增,且()()2171103,,0232624g a g a g g a ⎛⎫⎛⎫⎛⎫=+=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故7111,0(),06424()11211(0),3,42342a a g a M a g a a a ⎧⎧+≤≤≤≤⎪⎪⎪⎪==⎨⎨⎪⎪<≤+<≤⎪⎪⎩⎩. (3)因为当且仅当49a ≤时,()2M a ≤. 故当409a ≤≤时不超标,当4192a <≤时超标. 31.(2013届江苏省高考压轴卷数学试题)如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中4AE =米,6CD =米.为了合理利用这块钢板,将在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上.(Ⅰ)设MP x =米,PN y =米,将y 表示成x 的函数,求该函数的解析式及定义域;(Ⅱ)求矩形BNPM 面积的最大值.N B M D F CA【答案】。