2012年四川省乐山市中考数学试题及答案
- 格式:doc
- 大小:842.50 KB
- 文档页数:13
2012年四川省乐山市中考数学试卷及解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A.﹣500元B.﹣237元C.237元D.500元解:根据题意,支出237元应记作﹣237元.故选B.2.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A.B.C.D.解:左视图从左往右,2列正方形的个数依次为2,1;依此画出图形.故选C.3.计算(﹣x)3÷(﹣x)2的结果是()A.﹣x B.x C.﹣x5 D.x5解:(﹣x)3÷(﹣x)2=﹣x3÷x2=﹣x;故选A.4.下列命题是假命题的是()A.平行四边形的对边相等B.四条边都相等的四边形是菱形C.矩形的两条对角线互相垂直D.等腰梯形的两条对角线相等解:A、平行四边形的两组对边平行,正确,是真命题;B、四条边都相等的四边形是菱形,正确,是真命题;C、矩形的对角线相等但不一定垂直,错误,是假命题;D、等腰梯形的两条对角线相等,正确,是真命题;故选C.5.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.1解:∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA===;∴∠A=30°∴∠B=60°∴sinB=故选C.6.⊙O1的半径为3厘米,⊙O2的半径为2厘米,圆心距O1O2=5厘米,这两圆的位置关系是()A.内含B.内切C.相交D.外切解:∵⊙O1的半径r=3,⊙O2的半径r=2,∴3+2=5,∵两圆的圆心距为O1O2=5,∴两圆的位置关系是外切.故选D.7.如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0 B.a+b<0 C.(b﹣1)(a+1)>0 D.(b﹣1)(a﹣1)>0解:a、b两点在数轴上的位置可知:﹣1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵﹣1<a<0,b>1,∴b﹣1>0,a+1>0,a﹣1<0故C正确,D错误.故选C.8.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,纵观各选项,只有A选项符合.故选A.9.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个解:①连接CD;∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;∵AE=CF,∴△ADE≌△CDF(SAS);∴ED=DF,∠CDF=∠EDA;∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形.(故①正确);②当E、F分别为AC、BC中点时,四边形CDFE是正方形(故②错误);③如图2所示,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,可以利用割补法可知四边形CEDF的面积等于正方形CMDN面积,故面积保持不变(故③错误);④△DEF是等腰直角三角形,DE=EF,当EF∥AB时,∵AE=CF,∴E,F分别是AC,BC的中点,故EF是△ABC的中位线,∴EF取最小值=2 ,∵CE=CF=2,∴此时点C到线段EF的最大距离为EF=.(故④正确);故正确的有2个,故选:B.10.二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是()A.0<t<1 B.0<t<2 C.1<t<2 D.﹣1<t<1解:∵二次函数y=ax2+bx+1的顶点在第一象限,且经过点(﹣1,0),∴易得:a﹣b+1=0,a<0,b>0,由a=b﹣1<0得到b<1,结合上面b>0,所以0<b<1①,由b=a+1>0得到a>﹣1,结合上面a<0,所以﹣1<a<0②,∴由①+②得:﹣1<a+b<1,在不等式两边同时加1得0<a+b+1<2,∵a+b+1=t代入得0<t<2,∴0<t<2.故选:B.二、填空题:本大题共6小题,每小题3分,共18分.11. |﹣|=.解:|﹣|=.故答案为:.12.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为24.解:挖去一个棱长为1cm的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.故答案为:24.13.据报道,乐山市2011年GDP总量约为91 800 000 000元,用科学记数法表示这一数据应为9.18×1010元.解:91 800 000 000=9.18×1010.故答案是9.18×1010.14.如图,⊙O是四边形ABCD的内切圆,E、F、G、H是切点,点P是优弧上异于E、H的点.若∠A=50°,则∠EPH=65°.解:如图,连接OE,OH,∵⊙O是四边形ABCD的内切圆,E、F、G、H是切点,∴∠OEA=∠OHA=90°,又∠A=50°,∴∠EOH=360°﹣∠OEA﹣∠OHA﹣∠A=360°﹣90°﹣90°﹣50°=130°,又∠EPH和∠EOH分别是所对的圆周角和圆心角,∴∠EPH=∠EOH=×130°=65°.故答案为:65°15.一个盒中装着大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是.如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是,则原来盒中有白色弹珠4颗.解:∵取得白色棋子的概率是,可得方程=又由再往盒中放进12颗白色棋子,取得白色棋子的概率是∴可得方程=,组成方程组解得:x=4,y=8故答案为4.16.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CDBC的平分线与∠A n﹣1CD的平分线交于点A2,…,∠A n﹣1的平分线交于点A n.设∠A=θ.则:(1)∠A1=;(2)∠A n=.解:(1)∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,∵∠A=θ,∴∠A1=;(2)同理可得∠A2=∠A1=•θ=,所以∠A n=.故答案为:(1),(2).三、本大题共3小题,每小题9分,共27分.17.化简:3(2x2﹣y2)﹣2(3y2﹣2x2).解:3(2x2﹣y2)﹣2(3y2﹣2x2)=6x2﹣3y2﹣6y2+4x2=10x2﹣9y2.18.解不等式组,并求出它的整数解的和.解:解不等式①,得x<3,解不等式②,得x≥﹣4.在同一数轴上表示不等式①②的解集,得∴这个不等式组的解集是﹣4≤x<3,∴这个不等式组的整数解的和是﹣4﹣3﹣2﹣1+0+1+2=﹣7.19.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C 与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.∴S=,四边形BB1C1C==12.四、本大题共3小题,每小题10分,共30分.20.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200名同学;(2)条形统计图中,m=40,n=60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得(册).答:学校购买其他类读物900册比较合理.21.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.解(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.22.如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)解(1)过点A作AC⊥OB于点C.由题意,得OA=千米,OB=20千米,∠AOC=30°.∴(千米).∵在Rt△AOC中,OC=OA•cos∠AOC==30(千米).∴BC=OC﹣OB=30﹣20=10(千米).∴在Rt△ABC中,==20(千米).∴轮船航行的速度为:(千米/时).(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵AB=OB=20(千米),∠AOC=30°.∴∠OAB=∠AOC=30°,∴∠OBD=∠OAB+∠AOC=60°.∴在Rt△BOD中,OD=OB•tan∠OBD=20×tan60°=(千米).∵>30+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.五、本大题共2小题,每小题10分,共20分23.已知关于x的一元二次方程(x﹣m)2+6x=4m﹣3有实数根.(1)求m的取值范围;(2)设方程的两实根分别为x1与x2,求代数式x1•x2﹣x12﹣x22的最大值.解:(1)由(x﹣m)2+6x=4m﹣3,得x2+(6﹣2m)x+m2﹣4m+3=0.∴△=b2﹣4ac=(6﹣2m)2﹣4×1×(m2﹣4m+3)=﹣8m+24.∵方程有实数根,∴﹣8m+24≥0.解得m≤3.∴m的取值范围是m≤3.(2)∵方程的两实根分别为x1与x2,由根与系数的关系,得∴x1+x2=2m﹣6,,∴=3(m2﹣4m+3)﹣(2m﹣6)2=﹣m2+12m﹣27=﹣(m﹣6)2+9∵m≤3,且当m<6时,﹣(m﹣6)2+9的值随m的增大而增大,∴当m=3时,的值最大,最大值为﹣(3﹣6)2+9=0.∴的最大值是0.24.如图,直线y=2x+2与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求k的值;(2)点N(a,1)是反比例函数(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)由y=2x+2可知A(0,2),即OA=2.∵tan∠AHO=2,∴OH=1.∵MH⊥x轴,∴点M的横坐标为1.∵点M在直线y=2x+2上,∴点M的纵坐标为4.即M(1,4).∵点M在y=上,∴k=1×4=4.(2)存在.过点N作N关于x轴的对称点N1,连接MN1,交x轴于P(如图所示).此时PM+PN 最小.∵点N(a,1)在反比例函数(x>0)上,∴a=4.即点N的坐标为(4,1).∵N与N1关于x轴的对称,N点坐标为(4,1),∴N1的坐标为(4,﹣1).设直线MN1的解析式为y=kx+b.由解得k=﹣,b=.∴直线MN1的解析式为.令y=0,得x=.∴P点坐标为(,0).六、本大题共3小题,第25题12分,第26题13分,共25分.25.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.解(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS).∴BD=CF.(2)①证明:设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°.∴BD⊥CF.②过点F作FN⊥AC于点N.∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC 中,AB=4,∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN中,tan∠FCN==.∴在Rt△ABM中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM===.∵△BMA∽△CMG,∴.∴.∴CG=.∴在Rt△BGC中,BG==.26.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.方法一:解(1)解方程x2﹣2x﹣3=0,得x1=3,x2=﹣1.∵m<n,∴m=﹣1,n=3∴A(﹣1,﹣1),B(3,﹣3).∵抛物线过原点,设抛物线的解析式为y=ax2+bx(a≠0).∴解得:,∴抛物线的解析式为.(2)①设直线AB的解析式为y=kx+b.∴解得:,∴直线AB的解析式为.∴C点坐标为(0,).…(6分)∵直线OB过点O(0,0),B(3,﹣3),∴直线OB的解析式为y=﹣x.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设P(x,﹣x),(i)当OC=OP时,.解得,(舍去).∴P1(,).(ii)当OP=PC时,点P在线段OC的中垂线上,∴P2(,﹣).(iii)当OC=PC时,由,解得,x2=0(舍去).∴P3(,﹣).∴P点坐标为P1(,)或P2(,﹣)或P3(,﹣).②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH,=DQ(OG+GH),=,=,∵0<x<3,∴当时,S取得最大值为,此时D(,﹣).方法二:(1)略.(2)①由A(﹣1,﹣1),B(3,﹣3)得l AB:y=﹣x﹣,∴C(0,﹣),l OB:y=﹣x,设P(t,﹣t),O(0,0),C(0,﹣),∵△OPC为等腰三角形,∴OP=OC,OP=PC,PC=OC,(t﹣0)2+(﹣t﹣0)2=(0﹣0)2+(0+)2,∴t1=,t2=﹣(舍),(0﹣0)2+(0+)2=(t﹣0)2+(﹣t+)2,∴t1=,t2=0(舍),(t﹣0)2+(﹣t﹣0)2=(t﹣0)2+(﹣t+)2,∴t=,∴P点坐标为P1(,)或P2(,﹣)或P3(,﹣).②过D作x轴垂线交OB于Q,∵B(3,﹣3),∴l OB:y=﹣x,设D(t,﹣t2+t),Q(t,﹣t),=(D Y﹣Q Y)(B X﹣O X),∵S△OBD=(﹣t2+t+t)•(3﹣0)=﹣t2+t,∴S△OBD当t=时,S有最大值,D(,﹣).(3)∵△FAB是以AB为斜边的直角三角形,∴∠GOA+∠BOH=90°,∵BH⊥OH,∴∠OBH+BOH=90°,∴∠GOA=∠OBH,∴△GOA∽△OBH,∵点F为x轴上一动点,∴设F(m,0),∵A(﹣1,﹣1),B(3,﹣3),∴,∴m2﹣2m=0,∴m=0或2,∴F1(0,0),F2(2,0).27.如图,△ABC内接于⊙O,直径BD交AC于E,过O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.(1)求证:OF•DE=OE•2OH;(2)若⊙O的半径为12,且OE:OF:OD=2:3:6,求阴影部分的面积.(结果保留根号)(1)证明:∵BD是直径,∴∠DAB=90°.∵FG⊥AB,∴DA∥FO.∴△FOE∽△ADE.∴.即OF•DE=OE•AD.∵O是BD的中点,DA∥OH,∴AD=2OH.∴OF•DE=OE•2OH.(2)解:∵⊙O的半径为12,且OE:OF:OD=2:3:6,∴OE=4,ED=8,OF=6.代入(1)中OF•DE=OE•AD,得AD=12.∴OH=AD=6.在Rt△OHB中,OB=2OH,∴∠OBH=30°,∴∠BOH=60°.∴BH=BO•sin60°=12×=6.∴S阴影=S扇形GOB﹣S△OHB=﹣×6×6=24π﹣18.。
2012年四川省乐山市中考数学试卷解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.(2012•乐山)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A.﹣500元B.﹣237元C.237元D.500元考点:正数和负数。
分析:根据题意237元应记作﹣237元.解答:解:根据题意,支出237元应记作﹣237元.故选B.点评:此题考查用正负数表示两个具有相反意义的量,属基础题.2.(2012•乐山)如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A.B.C.D.考点:简单组合体的三视图。
分析:左视图从左往右,2列正方形的个数依次为2,1,依此画出图形即可求出答案.解答:解:左视图从左往右,2列正方形的个数依次为2,1;依此画出图形.故选C.点评:此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.(2012•乐山)计算(﹣x)3÷(﹣x)2的结果是()A.﹣x B.x C.﹣x5D.x5考点:整式的除法。
分析:本题需先根据整式的除法法则和顺序进行计算即可求出正确答案.解答:解:(﹣x)3÷(﹣x)2=﹣x3÷x2=﹣x;故选A.点本题主要考查了整式的除法,在解题时要注意运算顺序和结果的符号是本题的关评: 键. 4.(2012•乐山)下列命题是假命题的是( )A .平行四边形的对边相等B .四条边都相等的四边形是菱形C .矩形的两条对角线互相垂直D .等腰梯形的两条对角线相等 考点: 等腰梯形的性质;平行四边形的性质;菱形的判定;矩形的性质;命题与定理。
分析: 根据等腰梯形的性质、平行四边形的性质、菱形的性质、矩形的性质及菱形的判定方法做出判断即可. 解答: 解:A 、平行四边形的两组对边平行,正确,是真命题; B 、四条边都相等的四边形是菱形,正确,是真命题;C 、矩形的对角线相等但不一定垂直,错误,是假命题;D 、等腰梯形的两条对角线相等,正确,是真命题; 故选C . 点评: 本题考查了等腰梯形的性质、平行四边形的性质、菱形的性质、矩形的性质及菱形的判定方法,属于基本定义,必须掌握. 5.(2012•乐山)如图,在Rt△ABC 中,∠C=90°,AB=2BC ,则sinB 的值为( )A .B .C .D .1考点: 特殊角的三角函数值。
【中考数学试题汇编】2013—2018年四川省乐山市中考数学试题汇编(含参考答案与解析)1、2013年四川省乐山市中考数学试题及参考答案与解析 (2)2、2014年四川省乐山市中考数学试题及参考答案与解析 (28)3、2015年四川省乐山市中考数学试题及参考答案与解析 (53)4、2016年四川省乐山市中考数学试题及参考答案与解析 (80)5、2017年四川省乐山市中考数学试题及参考答案与解析 (105)6、2018年四川省乐山市中考数学试题及参考答案与解析 (129)2013年四川省乐山市中考数学试题及参考答案与解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求. 1.﹣5的倒数是( ) A .﹣5 B .15 C .15D .5 2.乐山大佛景区2013年5月份某周的最高气温(单位:℃)分别为:29,31,23,26,29,29,29.这组数据的极差为( ) A .29 B .28 C .8 D .63.如图,已知直线a ∥b ,∠1=131°.则∠2等于( )A .39°B .41°C .49°D .59° 4.若a >b ,则下列不等式变形错误的是( ) A .a+1>b+1 B .22ab>C .3a ﹣4>3b ﹣4D .4﹣3a >4﹣3b 5.如图,点E 是▱ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF=3,DE=2,则▱ABCD 的周长为( )A .5B .7C .10D .146.如图,在直角坐标系中,P 是第一象限内的点,其坐标是(3,m ),且OP 与x 轴正半轴的夹角α的正切值是43,则sinα的值为( )A .45 B .54 C .35 D .537.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( ) A .1101002x x =+ B .1101002x x =+ C .1101002x x =- D .1101002x x =- 8.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为( )A .2πB .6πC .7πD .8π9.如图,圆心在y 轴的负半轴上,半径为5的⊙B 与y 轴的正半轴交于点A (0,1),过点P (0,﹣7)的直线l 与⊙B 相交于C ,D 两点.则弦CD 长的所有可能的整数值有( )A .1个B .2个C .3个D .4个 10.如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA ⊥OB ,cosA=3,则k 的值为( )A .﹣3B .﹣6C .D .- 二、填空题:本大题共6小题,每小题3分,共18分.11.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作3千米,向西行驶2千米应记作 千米.12.在一个布口袋里装有白、红、黑三种颜色的小球.它们除颜色之外没有任何其他区别,其中白球有5只,红球3只,黑球1只.袋中的球已经搅匀,闭上眼睛随机地从袋中取出1只球,取出红球的概率是 .13.把多项式分解因式:ax 2﹣ay 2= .14.如图,在四边形ABCD 中,∠A=45°.直线l 与边AB ,AD 分别相交于点M ,N ,则∠1+∠2= .15.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为 .16.对非负实数x“四舍五入”到个位的值记为(x ).即当n 为非负整数时,若1122n x n -+≤<,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论: ①(1.493)=1; ②(2x )=2(x ); ③若1142x ⎛⎫-=⎪⎝⎭,则实数x 的取值范围是9≤x <11; ④当x≥0,m 为非负整数时,有(m+2013x )=m+(2013x ); ⑤(x+y )=(x )+(y );其中,正确的结论有 (填写所有正确的序号). 三、解答题(本大题共3小题,每小题9分,共27分)17.(9分)计算:|﹣2|﹣4sin45°+(﹣1)2013. 18.(9分)如图,已知线段AB .(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法); (2)在(1)中所作的直线l 上任意取两点M ,N (线段AB 的上方).连结AM ,AN ,BM ,BN .求证:∠MAN=∠MBN .19.(9分)化简并求值:22112x yx y x y x y⎛⎫-+÷⎪-+-⎝⎭,其中x ,y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0.四、解答题(本大题共2个小题,每小题10分,共20分)20.(10分)中学生带手机上学的现象越来越受到社会的关注,为此某记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名中学生家长;(2)将图1补充完整;(3)根据抽样调查结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?21.(10分)如图,山顶有一铁塔AB的高度为20米,为测量山的高度BC,在山脚点D处测得塔顶A和塔基B的仰角分别为60°和45°.求山的高度BC.(结果保留根号)五、(选做题):从22、23两题中选做一题。
ABDE图235°60°主视方向图1乐山市2016年高中阶段教育学校招生统一考试数 学本试题卷分第一部分(选择题)和第二部分(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第一部分(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上. 2.本部分共10小题,每小题3分,共30分.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.下列四个数中,最大的数是()A 0()B 2()C 3-()D 42.图1是由四个大小完全相同的正方体组成的几何体,那么它的俯视图是3.如图2,CE 是ABC ∆的外角ACD ∠的平分线,若35B ∠=,60ACE ∠=,则A ∠=()A 35 ()B 95()C 85()D 754.下列等式一定成立的是()A 235m n mn += ()B 326()=m m ()C 236m m m ⋅=()D 222()m n m n -=-5.如图3,在Rt ABC ∆中,90BAC ∠=,AD BC ⊥于点D ,则下列结论不正确...的是图4()A sin ADB AB =()B sin ACB BC =()C sin ADB AC=()D sin CDB AC= 6. 不等式组20210x x +>⎧⎨-≤⎩的所有整数解是()A 1-、0 ()B 2-、1- ()C 0、1 ()D 2-、1-、07. 如图4,C 、D 是以线段AB 为直径的⊙O上两点,若CA CD =,且ACD ∠=则CAB ∠=()A 10 ()B 20()C 30()D 408.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A 13 ()B 16 ()C 19()D 1129. 若t 为实数,关于x 的方程2420x x t -+-=的两个非负实数根为a 、b ,则代数式22(1)(1)a b --的最小值是()A 15- ()B 16- ()C 15 ()D 1610.如图5,在反比例函数2y x=-于点B ,在第一象限内有一点C ,满足AC =ky x=的图象上运动,若tan 2CAB ∠=,则k ()A 2 ()C 6第二部分(非选择题图8DAE 图6DCBA二、填空题:本大题共6小题,每小题3分,共18分.11.计算:5-=__▲__.12.因式分解:32a ab -=__▲__.13.如图6,在ABC ∆中,D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,若ADE ∆与ABC ∆的周长之比为2:3,4AD =,则DB =___▲__.14.在数轴上表示实数a 的点如图72a -的结果为___▲__.15. 如图8,在Rt ABC ∆中,90ACB ∠=,AC =以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转0180后点B 与点A 恰好重合,则图中阴影部分的面积为___▲__.16.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数.例如:[]2.32=,[]1.52-=-. 则下列结论: ①[][]2.112-+=-; ②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<; ④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有___▲__(写出所有正确结论的序号).三、本大题共3小题,每小题9分,共27分.17. 计算:012016sin 453︒-+--. 18. 解方程:11322x x x--=--. 19. 如图9,在正方形ABCD 中,E 是边AB 的中点,F 是边BC 的中点,连结CE 、DF .求证:CE DF =.四、本大题共3小题,每小题10分,共30分.20. 先化简再求值:232()121x x x x x x --÷+++,其中x 满足220x x +-=. 21. 甲、乙两名射击运动员中进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图10所示.根据图中信息,回答下列问题:(1)甲的平均数是_____▲______,乙的中位数是______▲________;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?22.如图11,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A 处接到指挥部通知,在他们东北方向距离12海里的B 处有一艘捕鱼船,正在沿南偏东75︒方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C 处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.五、本大题共2小题,每小题10分,共20分.23.如图12,反比例函数k y x =与一次函数y ax b =+的图象交于点(2,2)A 、1(,)2B n . (1)求这两个函数解析式;(2)将一次函数y ax b =+的图象沿y 轴向下平移m 个单位,使平移后的图象与反比24.如图DE AB ⊥于点E ,ED 、AC 的延长线交于点F .(1)求证:EF 是⊙O 的切线; (2)若32EB =,且3sin 5CFD ∠=,求⊙O 的半径与线段AE 的长.六、本大题共2小题,第25题12分,第26题13分,共25分.25.如图14,在直角坐标系xoy 中,矩形OABC 的顶点A 、C 分别在x 轴和y 轴正半轴上,点B 的坐标是(52),,点P 是CB 边上一动点(不与点C 、点B 重合),连结OP 、AP ,过点O 作射线OE 交AP 的延长线于点E ,交CB 边于点M ,且AOP COM ∠=∠,令CP x =,MP y =. (1)当x 为何值时,OP AP ⊥?(2)求y 与x 的函数关系式,并写出x 的取值范围;(3)在点P 的运动过程中,是否存在x ,使O C M ∆的面积与ABP ∆的面积之和等于EMP∆的面积.若存在,请求x 的值;若不存在,请说明理由.26.在直角坐标系xoy 中,(0,2)A 、(B -15.1所示的BCD ∆.(1)求经过A 、B 、C 三点的抛物线的解析式;(2)连结AC ,点P 是位于线段BC 上方的抛物线上一动点,若直线PC 将ABC ∆的面积分成1:3两部分,求此时点P 的坐标;(3)现将ABO ∆、BCD ∆分别向下、向左以1:2的速度同时平移,求出在此运动过程中ABO ∆与BCD ∆重叠部分面积的最大值.乐山市2016年高中阶段教育学校招生统一考试数 学 参考答案与试题解析ABDE图235°60°图1第一部分(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.下列四个数中,最大的数是()A 0()B 2()C 3-()D 4答案:D考点:考查实数大小的比较,难度较小。
2024年四川省乐山市中考数学真题试卷一、选择题:本大题共10个小题,每小题3分,共30分. 1. 不等式20x -<的解集是( ) A. 2x <B. 2x >C. <2x -D. 2x >-2. 下列文物中,俯视图是四边形的是( ) A. 带盖玉柱形器B. 白衣彩陶钵C. 镂空人面覆盆陶器D. 青铜大方鼎3. 2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( ) A. 8410⨯B. 9410⨯C. 10410⨯D. 11410⨯4. 下列多边形中,内角和最小的是( ) A.B.C.D.5. 为了解学生上学的交通方式,刘老师在九年级800名学生中随机抽取了60名进行问卷调查,并将调查结果制作成如下统计表,估计该年级学生乘坐公交车上学的人数为( )A. 100B. 200C. 300D. 4006. 下列条件中,不能判定四边形ABCD 是平行四边形的是( ) A. ,AB CD AD BC ∥∥ B. ,AB CD AD BC == C. ,OA OC OB OD == D. ,AB CD AD BC =∥7. 已知12x <<,2x -的结果为( )A.1-B. 1C. 23x -D. 32x -8. 若关于x 的一元二次方程220x x p ++=两根为1x ,2x ,且12113x x +=,则p 的值为( )A. 23-B.23C. 6-D. 69. 已知二次函数()2211y x x x t =--≤≤-,当=1x -时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( ) A. 02t <≤B. 04t <≤C. 24t ≤≤D. 2t ≥10. 如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为( )A.B.C.D. 第Ⅱ卷(非选择题共120分)二、填空题:本大题共6个小题,每小题3分,共18分. 11. 计算:2a a +=______.12. 一名交警在路口随机监测了5辆过往车辆的速度,分别是:66,57,71,69,58(单位:千米/时).那么这5辆车的速度的中位数是______.13. 如图,两条平行线a ,b 被第三条直线c 所截.若160∠=︒,那么2∠=______.14. 已知3a b -=,10ab =,则22a b +=______.15. 如图,在梯形ABCD 中,AD BC ∥,对角线AC 和BD 交于点O,若13ABD BCD S S =△△,则AODBOCS S =△△______.16. 定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是______(填序号); ①3y x =-+;①2y x=;①221y x x =-+-. (2)若一次函数3y mx m =-图象上存在“近轴点”,则m 的取值范围为______.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17. 计算:()03π2024-+-18. 解方程组:425x y x y +=⎧⎨-=⎩19. 知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.20. 先化简,再求值:221x -,其中3x =.小乐同学的计算过程如下:(1)小乐同学的解答过程中,第______步开始出现了错误; (2)请帮助小乐同学写出正确的解答过程.21. 乐山作为闻名世界的文化旅游胜地,吸引了大量游客.为更好地提升服务质量,某旅行社随机调查了部分游客对四种美食的喜好情况(每人限选一种),并将调查结果绘制成统计图,如图所示.根据以上信息,回答下列问题:(1)本次抽取的游客总人数为______人,扇形统计图中m 的值为______; (2)请补全条形统计图;(3)旅行社推出每人可免费品尝两种美食的活动,某游客从上述4种美食中随机选择两种,请用画树状图或列表的方法求选到“钵钵鸡和跷脚牛肉”的概率. 22. 如图,已知点()1,A m ,(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m,n的值和一次函数的表达式;(2)连接AB,求点C到线段AB的距离.23. 我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA的长度;(2)如图2,将秋千从与竖直方向夹角为α的位置OA'释放,秋千摆动到另一侧与竖直方向夹=.根据上述条件能否求出秋千绳索OA的长度?角为β的地方OA'',两次位置的高度差PQ h如果能,请用含α,β和h的式子表示;如果不能,请说明理由.24. 如图,O是ABC的外接圆,AB为直径,过点C作O的切线CD交BA延长线于点D,点E为CB上一点,且AC CE=.∥;(1)求证:DC AEDA=,求阴影部分的面积.(2)若EF垂直平分OB,325. 在平面直角坐标系xOy中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222a>)与y轴交于点A.=-+(a为常数且0y ax ax aa=,求抛物线的顶点坐标;(1)若1(2)若线段OA(含端点)上的“完美点”个数大于3个且小于6个,求a的取值范围;=交于M,N两点,线段MN与抛物线围成的区域(含边界)内恰有(3)若抛物线与直线y x4个“完美点”,求a的取值范围.26. 在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题: 【问题情境】如图1,在ABC 中,90BAC ∠=︒,AB AC =,点D ,E 在边BC 上,且45DAE =︒∠,3BD =,4CE =,求DE 的长.解:如图2,将ABD △绕点A 逆时针旋转90︒得到ACD '△,连接ED '.由旋转的特征得BAD CAD '∠=∠,B ACD ∠=∠',AD AD =',BD CD '=. ①90BAC ∠=︒,45DAE =︒∠ ①45BAD EAC ∠+∠=︒. ①BAD CAD '∠=∠①45CAD EAC '∠+∠=︒,即45EAD '∠=︒. ①DAE D AE '∠=∠. 在DAE 和D AE '中AD AD =',DAE D AE '∠=∠,AE AE =①___①___. ①DE D E '=.又①90ECD ECA ACD ECA B ''︒∠=∠+∠=∠+∠= ①在Rt ECD '△中,___①___. ①3CD BD '==,4CE =①DE D E '==___①___. 【问题解决】上述问题情境中,“①”处应填:______;“①”处应填:______;“①”处应填:______.刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变. 【知识迁移】如图3,在正方形ABCD 中,点E ,F 分别在边BC CD 、上,满足CEF △的周长等于正方形ABCD 的周长的一半,连结AE AF 、,分别与对角线BD 交于M ,N 两点.探究BM MN DN 、、的数量关系并证明.【拓展应用】如图4,在矩形ABCD 中,点E ,F 分别在边BC CD 、上,且45EAF CEF ∠=∠=︒.探究BE EF DF 、、的数量关系:______(直接写出结论,不必证明).【问题再探】如图5,在ABC 中,90ABC ∠=︒,4AB =,3BC =,点D ,E 在边AC 上,且45DBE ∠=︒.设AD x =,CE y =,求y 与x 的函数关系式.2024年四川省乐山市中考数学真题试卷答案一、选择题.二、填空题. 11.【答案】3a 12.【答案】66 13.【答案】120︒ 14.【答案】2915.【答案】1916.【答案】 ①. ① ①. 102m -≤<或102m <≤三、解答题. 17.【答案】1 18,【答案】略 19.【答案】略20【答案】(1)① (2)略 21【答案】(1)240,35(2)略 (3)1622【答案】(1)3m =,3n =,21y x =+(2)点C 到线段AB 的距离为223.【答案】(1)秋千绳索的长度为14.5尺 (2)能,cos cos hOA βα=-24.【答案】(1)见解析 (2)3π4- 25.【答案】(1)()1,1 (2)3522a ≤<(3)2152a <≤ 【26题答案】【问题解决】①ADE AD E '≌△△;①222EC CD ED '='+;①5;【知识迁移】222DN BM MN +=,见解析;【拓展应用】22222BE DF EF +=;【问题再探】2160528x y x -=-。
乐山中考数学试题及答案由于机器学习模型的限制,我无法直接回答您提供的乐山中考数学试题及答案。
然而,我可以为您提供一份有关乐山中考数学试题的相关讨论和解决方案。
请注意,以下文章仅供参考,并非实际乐山中考数学试题。
乐山中考数学试题及答案导言:在乐山地区的中考数学试卷中,学生们常常面临各种各样的数学问题。
本文将讨论其中一些典型的数学题目,并提供相应的答案和解决方案。
希望通过这些例题和解析,帮助学生们更好地应对乐山中考的数学科目。
例题1: 线段垂直平分线问题问题描述:在平面直角坐标系中,已知线段AB,其坐标分别为A(2, 4)和B(6, 10)。
求线段AB的垂直平分线的方程。
解答过程:首先,我们可以计算出线段AB的中点坐标,记为M(x, y)。
由于垂直平分线需要过线段AB的中点,所以该线的方程应满足以下两点:1. 该线上的任意一点到A点的距离等于该点到B点的距离;2. 该线的斜率为线段AB斜率的相反数,并且与AB的斜率的乘积为-1。
根据以上条件,我们可以列出方程并解得垂直平分线的方程为:2(x - 4) - (y - 10) = 0简化方程后得:2x - y - 2 = 0所以,线段AB的垂直平分线的方程为2x - y - 2 = 0。
例题2: 空间几何体体积问题问题描述:一个长方体的宽度、长度和高度分别为4cm、6cm和8cm。
若该长方体的每个面都被剪下宽度为2cm的边,然后将其剩余的部分重新粘结在一起,求新构成的几何体的体积。
解答过程:原长方体的体积可以表示为V = 长 ×宽 ×高 = 4cm ×6cm × 8cm = 192cm³。
根据题目要求,剪下的宽度为2cm,意味着宽度和长度减少了2cm,而高度不变。
经过剪下和粘结后,新构成的几何体的宽度、长度和高度分别为2cm、4cm和8cm。
新构成的几何体的体积可以表示为V' = 长 ×宽 ×高 = 2cm × 4cm ×8cm = 64cm³。
A(第1题图)图形的变换(图形的平移、旋转与轴对称)一、选择题1、(2012年浙江五模)将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( ) A .23个单位 B .1个单位 C .21个单位 D .2个单位 答案:A2、(2012年浙江五模)如图,在Rt △ABC 中,AB =CB ,BO ⊥AC 于点O ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF .下列结论:①tan ∠ADB =2;②图中有4对全等三角形; ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD =BF ; ⑤S 四边形DFOE = S △AOF ,上述结论中错误的个数是( )A .1个B .2个C .3个D .4个答案:B3、(2012年浙江绍兴八校自测模拟)下列图形不是..轴对称图形的是( ) A . B . C . D .答案:C4、(2012年浙江绍兴八校自测模拟)平面直角坐标系中,点A 的坐标为(4,3),将线段OA 绕原点O 逆时针旋转90°得到OA ′,则点A ′的坐标是( ) A .(-4,3) B .(-3,4) C .(3,-4) D .(4,-3) 答案:B5、(2012年浙江绍兴县一模)由左图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是( )答案:A6、(2012年浙江绍兴县一模)如图,△ABC 纸片中,AB =BC >AC ,点D 是AB 边的中点,点E在AC 上,将纸片沿DE 折叠,使点A 落在BC 边上的点F 处.则下列结论成立的个数有( )①△BDF 是等腰直角三角形; ②∠DFE =∠CFE ; ③DE 是△ABC 的中位线; ④BF +CE =DF +DE . A .1个 B .2个 C .3个 D . 4个 答案:B7、(2012年重庆外国语学校九年级第二学期期中)下列图形中不是..中心对称图形的是()答案:C8、(保沙中学2012二模)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )A .1B .2 C.2 D .3答案:B答案:C 10、(广州海珠区2012毕业班综合调研)下列图形中,不是中心对称图形的是( )A. B. C. D.答案:B 11、(广州海珠区2012毕业班综合调研)如图所示,已知在三角形纸片ABC 中,∠BCA =90°,第6题图∠BAC =30°,AB =6,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为( ) A .6B .3C .32 D答案:C12、(2012荆门东宝区模拟) 下列图案是部分汽车的标志,其中是中心对称图形的是(A. B.C.D.答案:A13、(2012江西高安)如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为()A .①③B . ①④C .②③D .②④答案:A针方向旋转 90后的图形14、(2012广西北海市模拟)将图形 按顺时是····················( )答案:B 15、(2012江苏江阴市澄东一模 )下列五种图形:①平行四边形 ②矩形 ③菱形 ④正方形 ⑤等腰梯形.其中既是中心对称图形又是轴对称图形的共有多少种 ( ) A .2 B .3 C .4 D .5 答案:B16、(2012江苏南京市白下区一模)下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形答案:B 17、(2012年济宁模拟)下列轴对称图形中,只有两条对称轴的图形是( )C① ② ③ ④DC B A A . B . C .D .答案:A18、(2012四川夹江县模拟)下列图形中,是中心对称图形的是( )答案:B19、(2012四川乐山市市中区毕业会考)点(-1,2)关于原点对称的点的坐标是 (A )(1,2) (B )(-1,-2) (C )(2,-1) (D )(1,-2) 答案:D20、(2012年河北一模)下列图形是中心对称图形的是( )答案:D21、(2012年荆州模拟)如图,在Rt △ABC 中,∠BAC =900,∠B =600,△A 11C B 可以由△ABC 绕点 A 顺时针旋转90得到(点B 1与点B 是对应点,点C 1与点C 是对应点),连接CC ’,则∠CC ’B ’的度数是( )。
乐山市2024年初中学业水平考试数学参考答案及评分标准第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.题号12345678910答案A D C A D DB AC B第Ⅱ卷(非选择题共120分)二、填空题:本大题共6小题,每小题3分,共18分.11.3a ;12.66;13.120︒;14.29;15.19;16.(1)③;(2)102m -< 或102m < .注:16题第(1)空1分,第(2)空2分.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17.解:原式313=+-……………………………………………………………………………………6分1=.…………………………………………………………………………………………9分注:第一步含有三个式子的计算,答对一个得2分.18.解:4,2 5.x y x y +=⎧⎨-=⎩①②解法一:①+②,得39x =,解得3x =.……………………………………………………………3分将3x =代入①,得1y =.…………………………………………………………………6分31x y =⎧∴⎨=⎩.……………………………………………………………………………………9分解法二:由①,得4y x =-③.将③代入②,得2(4)5x x --=,解得3x =.…………………………………………3分将3x =代入③,得1y =.…………………………………………………………………6分31x y =⎧∴⎨=⎩.……………………………………………………………………………………9分19.证明:AB 是CAD ∠的平分线,CAB DAB ∴∠=∠.……………………………………………………………………………3分∴在ABC △和ABD △中,AC AD =,CAB DAB ∠=∠,AB AB =,ABC ∴△≌ABD △(SAS ).………………………………………………………………7分C D ∴∠=∠.……………………………………………………………………………………9分20.解:(1)第③步开始出现了错误.……………………………………………………………………3分(2)2212142(2)(2)2x x x x x x x -=---+--……………………………………………………4分22(2)(2)(2)(2)x x x x x x +=-+--+…………………………………………5分22(2)(2)x x x x --=+-……………………………………………………………6分2(2)(2)x x x -=+-……………………………………………………………7分12x =+.……………………………………………………………………8分当3x =时,原式15=.…………………………………………………………………………10分21.解:(1)总人数为240人,m 的值为35.…………………………………………………………2分(2)如下图所示.…………………………………………5分(3)记A :麻辣烫,B :跷脚牛肉,C :钵钵鸡,D :甜皮鸭.解法一:由题可得树状图:…………………………………………8分P (选到“钵钵鸡和跷脚牛肉”)16=.………………………………………………………10分解法二:由题可列表:第一次第二次A B C D A (,)B A (,)C A (,)D A B(,)A B (,)C B (,)D BC (,)A C (,)B C (,)D C D(,)A D (,)B D (,)C D …………………………………………8分P (选到“钵钵鸡和跷脚牛肉”)16=.………………………………………………………10分22.解:(1) 点(1,)A m 、(,1)B n 在反比例函数3y x=图象上,3m ∴=,3n =.…………………………………………………………………………………2分又 一次函数y kx b =+过点(1,3)A ,(0,1)C ,3,1.k b b +=⎧∴⎨=⎩解得2,1.k b =⎧⎨=⎩………………………………………………………………………4分∴一次函数表达式为21y x =+.………………………………………………………………5分(2)如图,连结BC .过点A 作AD BC ⊥,垂足为点D ,过点C 作CE AB ⊥,垂足为点E .(0,1)C ,(3,1)B ,BC x ∴//轴,3BC =.…………………………………………………………………………6分点(1,3)A ,(3,1)B ,AD BC ⊥,∴点(1,1)D ,2AD =,2DB =.在Rt ADB △中,AB ==.………………………………………………7分又1122ABC S BC AD AB CE =⋅=⋅ △,……………………………………………………8分即113222CE ⨯⨯=⨯,2CE ∴=,即点C 到线段AB 的距离为2.…………………………………………10分23.解:(1)如图,过点A '作A B OA '⊥,垂足为点B .设秋千绳索的长度为x 尺.由题可知,OA OA x '==,4AB =,10A B '=,4OB OA AB x ∴=-=-.在Rt OA B '△中,由勾股定理得:222A B OB OA ''+=22210(4)x x ∴+-=.……………………………………………………………………………3分解得14.5x =.答:秋千绳索的长度为14.5尺.…………………………………………………………………5分(2)能.…………………………………………………………………………………………6分由题可知,90OPA OQA '''∠=∠=︒,OA OA OA '''==.在Rt OA P '△中,cos cos OP OA OA αα'=⋅=⋅.……………………………………………7分同理,cos cos OQ OA OA ββ''=⋅=⋅.…………………………………………………………8分OQ OP h -= ,cos cos OA OA h βα∴⋅-⋅=.…………………………………………………………………9分cos cos hOA βα∴=-.…………………………………………………………………………10分24.证明:(1)如图,连结OC .CD 为O 的切线,点C 在O 上,90OCD ∴∠=︒,即90DCA OCA ∠+∠=︒.…………………………………………………1分又AB 为直径,90ACB ∴∠=︒,即190OCA ∠+∠=︒.1DCA ∴∠=∠.…………………………………………………………………………………2分OC OB = ,12∴∠=∠.………………………………………………………………………………………3分AC CE= ,23∴∠=∠.………………………………………………………………………………………4分3DCA ∴∠=∠.DC AE ∴//.……………………………………………………………………………………5分(2)连结OE 、BE .EF 垂直平分OB ,OE BE ∴=.又OE OB = ,OEB ∴△为等边三角形.60BOE ∴∠=︒,120AOE ∠=︒.………………………………………………………………6分OA OE = ,30OAE OEA ∴∠=∠=︒.DC AE // ,30D OAE ∴∠=∠=︒.又90OCD ∠=︒ ,60DOC ∴∠=︒.OA OC = ,AOC ∴△为等边三角形.60OCA ∴∠=︒,OA OC AC ==.30DCA ∴∠=︒.D DCA ∴∠=∠.3DA AC OA OC OE ∴=====.……………………………………………………………8分33sin 602EF OE ∴=⋅︒=.19324OAE S AO EF ∴=⋅=△.又12093360OAE S ππ︒⨯==︒扇形,34OAE OAE S S S π∴=-=-阴影扇形△.………………………………………………………10分25.解:(1)当1a =时,抛物线2222(1)1y x x x =-+=-+.………………………………………2分∴顶点坐标(1,1).…………………………………………………………………………………3分(2)由题可知(0,2)A a .线段OA 上的“完美点”的个数大于3个且小于6个,∴“完美点”的个数为4个或5个.……………………………………………………………4分∴当“完美点”个数为4个时,分别为(0,0),(0,1),(0,2),(0,3);当“完美点”个数为5个时,分别为(0,0),(0,1),(0,2),(0,3),(0,4).325a ∴< .……………………………………………………………………………………6分∴a 的取值范围是3522a < .…………………………………………………………………7分(3)易知抛物线的顶点坐标为(1,)a ,过点(2,2)P a ,(3,5)Q a ,(4,10)R a .显然,“完美点”(1,1),(2,2),(3,3)符合题意.下面讨论抛物线经过(2,1),(3,2)的两种情况:1当抛物线经过(2,1)时,解得12a =.此时,(2,1)P ,5(3,2Q ,(4,5)R .如图所示,满足题意的“完美点”有(1,1),(2,1),(2,2),(3,3),共4个.…………………………………………………………………9分2当抛物线经过(3,2)时,解得25a =.此时,4(2,)5P ,(3,2)Q ,(4,4)R .如图所示,满足题意的“完美点”有(1,1),(2,1),(2,2),(3,2),(3,3),(4,4),共6个.…………………………………………………………………11分∴a 的取值范围是2152a < .…………………………………………………………………12分26.解:(1)①ADE △≌AD E '△;②222EC CD ED ''+=;③5.…………………………………3分(2)222DN BM MN +=.………………………………………………………………………4分证明:如图,将ABE △绕点A 逆时针旋转90︒,得到ADF '△.过点D 作DH BD ⊥交边AF '于点H ,连结NH .由旋转的特征得AE AF '=,BE DF '=,BAE DAF '∠=∠.由题意得EF EC FC DC BC DF FC EC BE ++=+=+++,EF DF BE DF DF F F ''∴=+=+=.在AEF △和AF F '中,AE AF '=,EF F F '=,AF AF =,AEF ∴△≌AF F '(SSS ).…………………………………………………………………5分EAF F AF '∴∠=∠.又BD 为正方形ABCD 的对角线,45ABD ADB ∴∠=∠=︒.DH BD ⊥ ,45ADH HDB ADB ∴∠=∠-∠=︒.在ABM △和ADH △中,BAM DAH ∠=∠,AB AD =,ABM ADH ∠=∠,ABM ∴△≌ADH △(ASA ).………………………………………………………………6分AM AH ∴=,BM DH =.在AMN △和AHN △中,AM AH =,MAN HAN ∠=∠,AN AN =,AMN ∴△≌AHN △(SAS ).………………………………………………………………7分MN HN ∴=.在Rt HND △中,222DN DH HN +=,222DN BM MN ∴+=.…………………………………………………………………………8分(3)22222BE DF EF +=.……………………………………………………………………10分(4)如图,将BEC △绕点B 逆时针旋转90︒,得到BE C '',连结E D '.过点E 作EG BC ⊥,垂足为点G ,过点E '作EG BC ''⊥,垂足为G '.过点E '作E F BA '//,过点D 作DF BC //交AB 于点H ,E F '、DF 交于点F .由旋转的特征得BE BE '=,CBE C BE ''∠=∠,EG E G ''=,BG BG '=.90ABC ∠=︒ ,45DBE ∠=︒,45CBE DBA ∴∠+∠=︒.45C BE DBA ''∴∠+∠=︒,即45DBE '∠=︒.在EBD △和E BD '△中,BE BE '=,DBE DBE '∠=∠,BD BD =,EBD ∴△≌E BD '△(SAS ).DE DE '∴=.90ABC ∠=︒ ,4AB =,3BC =,∴5AC ==.又AD x = ,CE y=5DE DE x y '∴==--.DF BC// ADH C ∴∠=∠,90AHD ABC ∠=∠=︒.AHD ∴△∽ABC △.5AH HD AD x AB BC AC ∴===,即45AH x =,35HD x =.445HB AB AH x ∴=-=-.同理可得45EG y =,35GC y =.45E G y ''∴=,335BG BG y '==-.E G AB ''⊥ ,90ABC ∠=︒,E G BC FD ''∴////.又E F AB '// ,90FHG AHD '∠=∠=︒,∴四边形FE G H ''为矩形.90F ∴∠=︒,45FH E G y ''==,3455DF DH FH x y =+=+43434(3)15555FE HG HB BG x y x y '''==-=---=-+.在Rt E FD '△中,222E F DF E D ''+=.()2224334(1)()55555x y x y x y ∴-+++=--.解得2160528x y x -=-.………………………………………………………………………………13分。
2012乐山中考数学试题及答案2012年乐山中考数学试题一、选择题1. 若a=3,b=2,则下列哪个等式成立?A) a^2 + b^2 = 1 B) a - b = 1 C) a × b = 1 D) a ÷ b = 12. 某商店举行降价促销活动,原价400元的商品打八五折出售。
则促销价是多少元?A) 320 B) 340 C) 360 D) 3803. 若17×m=68,则m的值是多少?A) 2 B) 3 C) 4 D) 54. 下列哪个数可以被5整除?A) 103 B) 205 C) 307 D) 4995. 如图,在△ABC中,AB=AC,∠B=60°,点O在△ABC内部,且∠BOC=90°,则∠AOC的度数是多少?A) 45 B) 60 C) 75 D) 90二、填空题6. 已知一个正方形的周长为12cm,那么它的边长是__cm。
7. 若2a+3=9,那么a的值是__。
8. 一辆汽车每小时行驶60公里,它行驶3小时的路程是__公里。
9. 若一个数的一半再加上5等于15,那么这个数是__。
10. A、B两地相距320公里,从A地至B地的火车每小时行驶80公里,从B地至A地的火车每小时行驶60公里,则两地相遇所需的时间是__小时。
三、解答题11. 计算:3 × (2 + 4) ÷ 6 - 1 = __。
12. 不小于3000的最小奇数是__。
13. 如图,矩形ABCD的长为8cm,宽为5cm。
将其长和宽各乘以a,得到新的矩形EFGH。
若新矩形的长为20cm,求a的值。
14. 有一块长方形的铁皮,长度为12cm,宽度为8cm。
现要从每个边上各剪去相等长度的铁皮。
若每个边上剪去的铁皮长度都是x cm,求x的值。
2012年乐山中考数学试题答案:一、选择题1. B) a - b = 12. A) 3203. B) 34. B) 2055. C) 75二、填空题6. 3 cm7. 28. 180 km9. 2010. 4 小时三、解答题11. 312. 300113. a = 514. x = 2以上是2012年乐山中考数学试题及答案,希望对你的学习有所帮助。
乐山市2012年高中阶段教育学校招生统一考试数 学本试题卷分第一部分(选择题)和第二部分(非选择题),共6页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第一部分(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上.2.本部分共10小题,每小题3分,共30分.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1. 如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作 (A )500-元 (B )237-元(C )237元(D )500元2. 图1是小强用八块相同的小正方体搭建的一个积木,它的左视图是(A ) (B ) (C ) (D )3. 计算32()()x x -÷-的结果是(A )x - (B )x (C )5x - (D )5x 4. 下列命题是假命题的是(A )平行四边形的对边相等 (B )四条边都相等的四边形是菱形 (C )矩形的两条对角线互相垂直 (D )等腰梯形的两条对角线相等 5. 如图2,在Rt △ABC 中,∠C =90°,AB =2BC ,则sin B 的值为(A )12 (B )22(C )32(D )1CBA图2主视方向图16. ⊙O 1的半径为3厘米,⊙O 2的半径为2厘米,圆心距O 1O 2=5厘米,这两圆的位置 关系是(A )内含 (B )内切 (C )相交 (D )外切7. 如图3, A 、B 两点在数轴上表示的数分别为a 、b ,下列式子成立的是 (A )ab >0 (B )a b +<0 (C )(1)(1)b a -+>0 (D )(1)(1)b a -->08. 若实数a 、b 、c 满足0a b c ++=,且a b c <<,则函数y ax c =+的图象可能是(A ) (B ) (C ) (D )9. 如图4,在△ABC 中,∠C =90º,AC =BC =4,D 是AB 的中点,点E 、F 分别在 AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE =CF ,连接DE 、DF 、EF . 在此运动变化的过程中,有下列结论: ① △DFE 是等腰直角三角形; ② 四边形CEDF 不可能为正方形;③ 四边形CEDF 的面积随点E 位置的改变而发生变化; ④ 点C 到线段EF 的最大距离为2. 其中正确结论的个数是(A )1个 (B )2个 (C )3个 (D )4个10. 二次函数21y ax bx =++(0a ≠)的图象的顶点在第一象限,且过点(1-,0).设1t a b =++,则t 值的变化范围是(A )0<t <1 (B )0<t <2 (C )1<t <2 (D )11t -<<O yxx y Ox y O 图4Oy xFEDCBA 0图3baB A -11第二部分(非选择题 共120分)注意事项:1. 考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2. 作图时,可先用铅笔画线,确认后用0.5mm 黑色墨汁签字笔描清楚.3. 本部分共16小题,共120分.二、填空题:本大题共6小题,每小题3分,共18分. 11. 计算:12-= . 12. 从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的 表面积是 .13. 据报道,乐山市2011年GDP 总量约为91 800 000 000元,用科学记数法表示这一数据应为 元.14. 如图6,⊙O 是四边形ABCD 的内切圆, E 、F 、G 、H 是切点,点P 是优弧 EFH上异于E 、H 的点.若∠A =50°, 则∠EPH = .15. 一个盒中装着大小、外形一模一样的x 颗白色弹珠和y 颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是13.如果再往盒中放进12颗同样的白色弹珠,取得白 色弹珠的概率是23,则原来盒中有白色弹珠 颗.16. 如图7,∠ACD 是△ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠ 的平分线交于点A n . 设∠A =θ.则(1)1A ∠= ; (2)n A ∠= .图5A 2A 1DC B A图7图6PO HG F E DCBA三、本大题共3小题,每小题9分,共27分. 17. 化简:22223(2)2(32)x y y x ---.18. 解不等式组233,311,362x x x x +⎧⎪+-⎨-⎪⎩>≥ 并求出它的整数解的和.19. 如图8,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1; (要求:A 与A 1,B 与B 1,C 与C 1相对应)(2)在(1)问的结果下,连接BB 1,CC 1,求四边形BB 1C 1C 的面积.四、本大题共3小题,每小题10分,共30分.20. 在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每 位同学只选一类),图9是根据调查结果绘制的两幅不完整的统计图.条形统计图 扇形统计图请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了 名同学; (2)条形统计图中,m = ,n = ;(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?30%35%其他艺术科普文学图9nm3070人数类别其他科普艺术文学图8lCBA21. 菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后, 以每千克3.2元的单价对外批发销售. (1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元. 试问小华选择哪种方案更优惠,请说明理由.22. 如图10,在东西方向的海岸线l 上有一长为1千米的码头MN ,在码头西端M 的正西方向30 千米处有一观察站O .某时刻测得一艘匀速直线航行的轮船位于O 的北偏西30°方向,且与O 相距203千米的A 处;经过40分钟,又测得该轮船位于O 的正北方向,且与O 相距20千米的B 处. (1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.(参考数据:2 1.414≈,3 1.732≈)五、本大题共2小题,每小题10分,共20分,其中第24题为选做题. 23. 已知关于x 的一元二次方程2()643x m x m -+=-有实数根. (1)求m 的取值范围;(2)设方程的两实根分别为x 1与x 2,求代数式221212x x x x ⋅--的最大值.24. 选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分. 甲题:如图11,直线22y x =+与y 轴交于A 点,与反比例函数ky x=(x >0)的图象交 于点M ,过M 作MH ⊥x 轴于点H ,且tan ∠AHO =2.(1)求k 的值;(2)点N (a ,1)是反比例函数ky x =(x >0)图像上的点, 在x 轴上是否存在点P ,使得PM +PN 最小,若存 在,求出点P 的坐标;若不存在,请说明理由.y xOHNMA图11图10NM OBAl东北乙题:如图12,△ABC 内接于⊙O ,直径BD 交AC 于E ,过O 作FG ⊥AB ,交AC 于F ,交AB 于H ,交⊙O 于G .(1)求证:2OF DE OE OH ⋅=⋅;(2)若⊙O 的半径为12,且OE ∶OF ∶OD =2∶3∶6,求阴影部分的面积.(结果保留根号)六、本大题共2小题,第25题12分,第26题13分,共25分.25. 如图13.1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC边上,此时BD =CF ,BD ⊥CF 成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(090θ<<)时,如图13.2,BD =CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图13.3,延长BD 交CF 于点G .① 求证:BD ⊥CF ;② 当AB =4,AD =2时,求线段BG 的长.26. 如图14,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,n -),抛物线经过A 、O 、B 三点,连结OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、 n (m <n )分别是方程2230x x --=的两根. (1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点 (点D 在y 轴右侧),连结OD 、BD . ① 当△OPC 为等腰三角形时,求点P 的坐标; ② 求△BOD 面积的最大值,并写出此时点D 的坐标.图14PED CBAO yx图13.3图13.2图13.1A 45°θGABCDEFFEDC BF E D C BAH GF E DCBAO 图12·乐山市2012年高中阶段教育学校招生统一考试数学参考答案及评分标准第一部分(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有 一个选项符合题目要求.1.B2.D3.A4.C5.C6.D7.C8.A9.B 10.B第二部分(非选择题 共120分)二、填空题:本大题共6小题,每小题3分,共18分.11.1212. 24 13. 109.1810⨯ 14. 65° 15. 4 16. (1)2θ; (2)2n θ((1)问1分,(2)问2分)三、本大题共3小题,每小题9分,共27分. 17.解 22223(2)2(32)x yy x --- =22224636x y y x +-- …………………………………………(5分)=22910y x -. …………………………………………………………(9分)18.解 233,311,362x x x x +⎧⎪+-⎨-⎪⎩>≥解不等式①,得 3<x . …………………………………………(3分)解不等式②,得 4-≥x . …………………………………………(6分) 在同一数轴上表示不等式①②的解集,得∴这个不等式组的解集是34<≤-x . ………………………………(7分)∴这个不等式组的整数解的和是72101234-=+++----. …………………………………(9分)4-3①②19.解(1)如图,△A 1B 1C 1 是△ABC 关于直线l 的对称图形.…………………………………………(5分) (描点3分,连线1分,结论1分) (2)由图得四边形BB 1 C 1C 是等腰梯形,BB 1= 4,CC 1=2,高是4.………………………………………………(6分)∴S 四边形B B 1C 1C =4)(2111⨯+CC BB =4)24(21⨯+=12. …………(9分)四、本大题共3小题,每小题10分,共30分.20.(1)200; ………………………………………………………………… (2分) (2)40=m ,60=n ; ……………………………………………………(6分) (3)72; ……………………………………………………………………(8分) (4)解 由题意,得 900200306000=⨯(册). 答:学校购买其他类读物900册比较合理. ……………………………(10分) 21.解 (1)设平均每次下调的百分率为x . ………………………………(1分)由题意,得2.3)1(52=-x . …………………………………(4分)解这个方程,得2.01=x ,8.12=x . ………………………(6分)因为降价的百分率不可能大于1,所以8.12=x 不符合题意, 符合题目要求的是202.01==x %.答:平均每次下调的百分率是20%. ………………………………(7分) (2)小华选择方案一购买更优惠. ………………………………………(8分)理由:方案一所需费用为:1440050009.02.3=⨯⨯(元),方案二所需费用为:15000520050002.3=⨯-⨯(元). ∵ 14400 <15000, ∴小华选择方案一购买更优惠.……(10分)AB Cl图8A 1B 1C 122.解(1)过点A 作AC ⊥OB 于点C .由题意,得OA =320千米,OB =20千米,∠AOC =30°.∴3103202121=⨯==OA AC (千米).(1分) ∵在Rt △AOC 中,AOC OA OC ∠⋅=cos =23320⨯=30(千米).∴102030=-=-=OB OC BC (千米). ………………………(3分)∴在Rt △ABC 中,22BC AC AB +==2210)310(+20=(千米).(5分)∴轮船航行的速度为: 30604020=÷(千米/时). ………………(6分)(2)如果该轮船不改变航向继续航行,不能行至码头MN 靠岸 . …………(7分)理由:延长AB 交l 于点D .∵AB =OB =20(千米),∠AOC =30°.∴∠OAB =∠AOC =30°,∴∠OBD =∠OAB +∠AOC =60°. ∴在Rt △BOD 中,OBD OB OD ∠⋅=tan =20tan 60⨯ =320(千米). …………(9分)∵320>30+1,∴该轮船不改变航向继续航行,不能行至码头MN 靠岸 . …………(10分)五、本大题共2小题,每小题10分,共20分,其中第24题为选做题. 23. 解(1)由346)(2-=+-m x m x ,得034)26(22=+-+-+m m x m x . ………………………………(1分)∴)34(14)26(4222+-⨯⨯--=-=∆m m m ac b248+-=m . …………………………………………(3分)∵方程有实数根,∴248+-m ≥0. 解得 m ≤3.∴ m 的取值范围是m ≤3.……………………………………………(4分)(2)∵方程的两实根分别为x 1与x 2,由根与系数的关系,得∴6221-=+m x x , 34221+-=⋅m m x x ,……………………(5分) ∴22121222121)(3x x x x x x x x +-=-- =22)62()34(3--+-m m m =27122-+-m m=9)6(2+--m ………………………………………(7分)DC 图10N M OBAl东北∵m ≤3,且当6<m 时,9)6(2+--m 的值随m 的增大而增大, ∴当3=m 时,221212x x x x ⋅--的值最大,最大值为09)63(2=+--. ∴221212x x x x ⋅--的最大值是0. ……………………………………(10分)24. 解 甲题(1)由y =2x +2可知A (0,2),即OA =2.………………………………(1分) ∵tan ∠AHO =2,∴OH =1.………………………………………………(2分) ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上,∴点M 的纵坐标为4.即M (1,4).…………(3分)∵点M 在y =xk上,∴k =1×4=4. …………(4分)(2)∵点N (a ,1)在反比例函数4y x=(x >0)上,∴a =4.即点N 的坐标为(4,1).…………(5分)过N 作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于P (如图11).此时PM +PN 最小. ………………………………………………(6分) ∵N 与N 1关于x 轴的对称,N 点坐标为(4,1),∴N 1的坐标为(4,-1).……………………………………………………(7分) 设直线MN 1的解析式为y =kx +b .由4,14.k b k b =+⎧⎨-=+⎩解得k =-35,b =317.…………………………………(9分)∴直线MN 1的解析式为51733y x =-+.令y =0,得x =517. ∴P 点坐标为(517,0).………………………(10分)乙题:(1)∵BD 是直径,∴∠DAB =90°.………………(1分)∵FG ⊥AB ,∴DA ∥FO .∴∠EOF =∠EDA ,∠EFO =∠EAD . ∴△FOE ∽△ADE . ∴DEOEAD FO =.即OF ·DE =OE ·AD . ……(3分) ∵O 是BD 的中点,DA ∥OH ,∴AD =2OH .……………………………………(4分)∴OF ·DE =OE ·2OH .………………………………………………………(5分) (2)∵⊙O 的半径为12,且OE ∶OF ∶OD =2∶3∶6,P N 1yxOHNM A图11H GF E DCB AO 图12·∴OE =4,ED =8,OF =6.…………………………………………………(6分) 代入(1)结论得AD =12. ∴OH =6. 在Rt △ABC 中,OB =2OH ,∴∠BOH =60°.∴BH =BO ·sin60°=12×32=63.………………………………………(8分) ∴S 阴影=S 扇形GOB -S △OHB =26012360π⨯⨯ -21×6×63=2418-π3.(10分)六、本大题共2小题,第25题12分,第26题13分,共25分. 25. 解(1)BD =CF 成立.理由:∵△ABC 是等腰直角三角形,四边形ADEF 是正方形,∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,∵∠BAD =DAC BAC ∠-∠,∠CAF =DAC DAF ∠-∠, ∴∠BAD =∠CAF , ∴△BAD ≌△CAF .∴BD =CF .………………………………(3分)(2)①证明:设BG 交AC 于点M .∵△BAD ≌△CAF (已证),∴∠ABM =∠GCM . ∵∠BMA =∠CMG ,∴△BMA ∽△CMG . ∴∠BGC =∠BAC =90°.∴BD ⊥CF .……(6分)②过点F 作FN ⊥AC 于点N . ∵在正方形ADEF 中,AD =2,∴AN =FN =121=AE .∵在等腰直角△ABC 中,AB =4, ∴CN =AC -AN =3,BC =2422=+AC AB .∴在Rt △FCN 中,31tan ==∠CN FN FCN .∴在Rt △ABM 中,31tan tan =∠==∠FCN AB AM ABM .∴AM ==⨯AB 3134.∴CM =AC -AM =4-34=38,310422=+=AM AB BM .……(9分)∵△BMA ∽△CMG ,∴CGCMBA BM =. ∴CG3843104=. ∴CG =5104.……………………………………(11分)图图13.2A45°θHG ACDEF FE DC BMN FE DCBAG 45°图13.3∴在Rt △BGC 中,=-=22CG BC BG 5108. ………………(12分) 26. 解(1)解方程0322=--x x ,得 31=x ,12-=x .∵n m <,∴1-=m ,3=n ………………………………………………(1分) ∴A (-1,-1),B (3,-3).∵抛物线过原点,设抛物线的解析式为bx ax y +=2. ∴1,393.a b a b -=-⎧⎨-=-⎩ 解得21-=a ,21=b .∴抛物线的解析式为x x y 21212+-= . ………………………………(4分) (2)①设直线AB 的解析式为b kx y +=.∴1,33.k b k b -=-+⎧⎨-=+⎩ 解得21-=k ,23-=b .∴直线AB 的解析式为1322y x =--. ∴C 点坐标为(0,23-).………………(6分) ∵直线OB 过点O (0,0),B (3,-3), ∴直线OB 的解析式为x y -=.∵△OPC 为等腰三角形,∴OC =OP 或OP =PC 或OC =PC . 设x P (,)x -,(i )当OC =OP 时, 229()4x x +-=. 解得4231=x ,2324x =-(舍去). ∴ P 1(423, 423-). (ii )当OP =PC 时,点P 在线段OC 的中垂线上,∴ 2P (43,)43-. (iii )当OC=PC 时,由49)23(22=+-+x x , 解得231=x ,02=x (舍去). ∴ P 3()23,23-.∴P 点坐标为P 1(423,423-)或2P (43,)43-或P 3()23,23-.…(9分)②过点D 作DG ⊥x 轴,垂足为G ,交OB 于Q ,过B 作BH ⊥x 轴,垂足为H . 设Q (x ,x -),D(x ,x x 21212+-). HQG xyO ABCD EP图14=+=∆∆∆BDQ ODQ BOD S S S =)(212121GH OG DQ GH DQ OG DQ +=⋅+⋅=3)2121(212⨯⎥⎦⎤⎢⎣⎡+-+x x x =1627)23(432+--x , ∵0<x <3, ∴当23=x 时,S 取得最大值为1627,此时D (23,)83-.………………(13分)。