高三文科数学立体几何补充练习(学生用)
- 格式:doc
- 大小:445.50 KB
- 文档页数:3
高中数学《立体几何》练习题1.用斜二测画法画出长为6,宽为4的矩形水平放置的直观图,则该直观图面积为 ( ) A.12 B.24 C.62 D.1222.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是 ( ) A .若//,,m n m n αβ⊥⊥,则αβ⊥ B .若//,,m n m n αβ⊥⊥,则//αβ C .若//,,//m n m n αβ⊥,则α⊥β D .若//,,//m n m n αβ⊥,则//αβ3.如图,棱长为1的正方体1111D C B A ABCD -中,P 为线段B A 1上的动点,则下列结论错误..的是A .P D DC 11⊥B .平面⊥P A D 11平面AP A 1C .1APD ∠的最大值为090 D .1PD AP +的最小值为22+4.一个几何体的三视图如图所示(单位:m),则该几何体的体积为______m 3.5.若某几何体的三视图如图所示,则此几何体的体积等于 .6.如图是一个几何体的三视图,则该几何体的体积是____________7.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞F E D ,,,且知1:2:::===FS CF EB SE DA SD ,若仍用这个容器盛水,则最多可盛水的体积是原来的 .8.如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD.(1)证明:PQ ⊥平面DCQ ;(2)求棱锥Q ABCD 的体积与棱锥P DCQ 的体积的比值.[来9.如图所示的多面体中,ABCD 是菱形,BDEF 是矩形,ED ⊥面ABCD ,3BAD π∠=.(1)求证://BCF AED 平面平面.(2)若,BF BD a A BDEF ==-求四棱锥的体积。
10.在四棱锥ABCD P -中,底面ABCD 为矩形,ABCD PD 底面⊥,1=AB ,2=BC ,3=PD ,FG 、分别为CD AP 、的中点. (1) 求证:PC AD ⊥;(2) 求证://FG 平面BCP ;SFCB AD EF GPDCBA11.如图,多面体AEDBFC 的直观图及三视图如图所示,N M ,分别为BC AF ,的中点. (1)求证://MN 平面CDEF ; (2)求多面体CDEF A -的体积.NMFEDCBA直观图俯视图正视图侧视图22222212.如图,在三棱锥P ABC -中,90ABC ∠=,PA ⊥平面ABC ,E ,F 分别为PB ,PC 的中点. (1)求证://EF 平面ABC ;(2)求证:平面AEF ⊥平面PAB .A13.如图,在三棱锥P —ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA ⊥AC ,PA=6,BC=8,DF=5.求证:(1)直线PA ∥平面DFE ; (2)平面BDE ⊥平面ABC .14.如图. 直三棱柱ABC —A 1B 1C 1 中,A 1B 1= A 1C 1,点D 、E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点. 求证:(1)平面ADE ⊥平面BCC 1B 1 (2)直线A 1F ∥平面ADE .BA 1C 1 E C DAB 1F参考答案1.C 【解析】试题分析:斜二测法:要求长边,宽减半,直角变为045角,则面积为:2645sin 260=⨯⨯. 考点:直观图与立体图的大小关系.2.C 【解析】试题分析:此题只要举出反例即可,A,B 中由n m n ⊥⊥,β可得β//n ,则α,β可以为任意角度的两平面,A,B 均错误.C,D 中由n m n //,β⊥可得β⊥m ,则有βα//,故C 正确,D 错误.考点:线,面位置关系. 3.C 【解析】试题分析:⊥1DC 面11BCD A ,∴A 正确;⊥11A D 面11A ABB ,∴B 正确;当2201<<P A 时,1APD ∠为钝角,∴C 错;将面B AA 1与面11A ABB 沿B A 1展成平面图形,线段D A 1即为1PD AP +的最小值,解三角形易得D A 1=22+, ∴D 正确.故选C. 考点:线线垂直、线面垂直、面面垂直. 4.4 【解析】试题分析:已知三视图对应的几何体的直观图,如图所示:,所以其体积为:4211112=⨯⨯+⨯⨯=V ,故应填入:4. 考点:三视图. 5.24 【解析】试题分析:由三视图可知,原几何体是一个三棱柱被截去了一个小三棱锥得到的,如图111345(34)324232V =⨯⨯⨯-⨯⨯⨯=.考点:三视图. 【答案】12 【解析】试题分析:该几何体是一个直三棱柱,底面是等腰直角三角形 体积为12262V =⨯⨯⨯=12考点:三视图,几何体的体积. 7.2723 【解析】试题分析:过DE 作截面平行于平面ABC ,可得截面下体积为原体积的27193213=-)(,若过点F ,作截面平行于平面SAB ,可得截面上的体积为原体积的278323=)(,若C 为最低点,以平面DEF 为水平上面,则体积为原体积的27233132321=⨯⨯-,此时体积最大. 考点:体积相似计算. 8.(1)祥见解析; (2)1. 【解析】试题分析:(1)要证直线与平面垂直,只须证明直线与平面内的两条相交直线垂直即可,注意到QA ⊥平面ABCD ,所以有平面PDAQ ⊥平面ABCD ,且交线为AD ,又因为四边形ABCD 为正方形,由面面垂直的性质可得DC ⊥平面PDAQ ,从而有PQ ⊥DC ,又因为PD ∥QA ,且QA =AB =12PD ,所以四边形PDAQ 为直角梯形,利用勾股定理的逆定理可证PQ ⊥QD ;从而可证 PQ ⊥平面DCQ ;(2)设AB =a ,则由(1)及已知条件可用含a 的式子表示出棱锥Q -ABCD 的体积和棱锥P -DCQ 的体积从而就可求出其比值. 试题解析:(1)证明:由条件知PDAQ 为直角梯形.因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD. 又四边形ABCD 为正方形,DC ⊥AD , 所以DC ⊥平面PDAQ.可得PQ ⊥DC.在直角梯形PDAQ 中可得DQ =PQ , 则PQ ⊥QD.所以PQ ⊥平面DCQ.(2)设AB =a.由题设知AQ 为棱锥Q ABCD 的高,所以棱锥Q -ABCD 的体积V 1=13a 3.由(1)知PQ 为棱锥P -DCQ 的高,而PQ a ,△DCQ 的面积为2a 2, 所以棱锥P -DCQ 的体积V 2=13a 3. 故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1. 考点:1.线面垂直;2.几何体的体积.9.(1)证明过程详见解析;(2)36a . 【解析】试题分析:本题主要考查线线平行、线面平行、面面平行、四棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由于ABCD 是菱形,得到//BC AD ,利用线面平行的判定,得//BC ADE 面,由于BDEF 为矩形,得BF//DE ,同理可得BF//面ADE ,利用面面平行的判定,得到面BCF//面AED ;第二问,通过证明得到AO BDEF ⊥面,则AO 为四棱锥A BDEF -的高,再求出BDEF 的面积,最后利用体积公式13V Sh =,计算四棱锥A-BDEF 的体积.试题解析:证明:(1)由ABCD 是菱形 //BC AD ∴,BC ADE AD ADE ⊄⊂面面 //BC ADE ∴面 3分由BDEF 是矩形//BF DE ∴,BF ADE DE ADE ⊄⊂面面 //BF ADE ∴面,,BC BCF BF BCF BCBF B ⊂⊂=面面∴//BCF AED 平面平面. 6分 (2)连接AC ,ACBD O =由ABCD 是菱形, AC BD ∴⊥由ED ⊥面ABCD ,AC ABCD ⊂面 ED AC ∴⊥,,ED BD BDEF EDBD D ⊂=面 AO BDEF ∴⊥面, 10分则AO 为四棱锥A BDEF -的高 由ABCD 是菱形,3BAD π∠=,则ABD ∆为等边三角形,由BF BD a ==;则3,2AD a AO a ==,2BDEF S a =, 23133326A BDEF V a a a -=⋅⋅=14分考点:线线平行、线面平行、面面平行、四棱锥的体积.10.(1)见解析;(2)见解析.【解析】 试题分析:(1)欲证线线垂直往往通过证明线面垂直(即证明其中一条线垂直于另一条所在平面);(2)欲证线面平行,需在平面内寻找一条直线,并证此线平行于另一直线.此题也可以采用空间向量证明,即证明FG 的方向向量垂直于平面BCP 的法向量n 即可. 试题解析:(1)证明: 底面ABCD 为矩形 CD AD ⊥∴ABCD AD ABCD PD 平面底面⊂⊥ , PD AD ⊥∴D PD CD = PDC AD 平面⊥∴ABCD PC 平面⊂ PC AD ⊥∴H F GPD CBA(2)证明:取H BP 中点,连接CH GH ,中点分别为DC AP F G ,,GH ∴=//AB 21,FC =//AB 21 GH ∴=//FC GFCH 四边形∴是平行四边形, FG ∴//CH ,BCP CH 平面⊂,BCP FG 平面⊄ FG ∴//BCP 平面考点:(1)线线垂直;(2)线面平面.11.(1)证明:见解析;(2)多面体CDEF A -的体积83.【解析】试题分析: (1)由多面体AEDBFC 的三视图知,三棱柱BFC AED -中,底面DAE 是等腰直角三角形,2==AE DA ,⊥DA 平面ABEF ,侧面ABCD ABFE ,都是边长为2的正方形.连结EB ,则M 是EB 的中点,由三角形中位线定理得EC MN //,得证. (2)利用⊥DA 平面ABEF ,得到EF AD ⊥, 再据EF ⊥AE ,得到EF ⊥平面ADE ,从而可得:四边形 CDEF 是矩形,且侧面CDEF ⊥平面DAE .取DE 的中点,H得到AH =且⊥AH 平面CDEF .利用体积公式计算.所以多面体CDEF A -的体积383131=⋅⋅=⋅=AH EF DE AH S V CDEF . 12分 试题解析: (1)证明:由多面体AEDBFC 的三视图知,三棱柱BFC AED -中,底面DAE 是等腰直角三角形,2==AE DA ,⊥DA 平面ABEF ,侧面ABCD ABFE ,都是边长为2的 正方形.连结EB ,则M 是EB 的中点, 在△EBC 中,EC MN //,且EC ⊂平面CDEF ,MN ⊄平面CDEF , ∴MN ∥平面CDEF . 6分FDA(2)因为⊥DA 平面ABEF ,EF ⊂平面ABEF , AD EF ⊥∴,又EF ⊥AE ,所以,EF ⊥平面ADE ,∴四边形 CDEF 是矩形,且侧面CDEF ⊥平面DAE 8分 取DE 的中点,H ⊥DA ,AE 2==AE DA ,2=∴AH ,且⊥AH 平面CDEF . 10分所以多面体CDEF A -的体积383131=⋅⋅=⋅=AH EF DE AH S V CDEF . 12分 考点:三视图,平行关系,垂直关系,几何体的体积. 12.(1)见解析;(2)见解析 【解析】 试题分析:(1)由E 、F 分别为PB 、PC 中点根据三角形中位线定理知EF ∥BC ,根据线面平行的判定知EF ∥面ABC ;(2)由PA ⊥面PABC 知,PA ⊥BC ,结合AB ⊥BC ,由线面垂直的判定定理知,BC ⊥面PAB ,由(1)知EF ∥BC ,根据线面垂直性质有EF ⊥面PAB ,再由面面垂直判定定理即可证明面AEF ⊥面PAB.试题解析:证明:(1)在PBC ∆中,F E , 分别为PC PB ,的中点BC EF //∴ 3分 又⊂BC 平面ABC ,⊄EF 平面ABC //EF ∴平面ABC 7分 (2)由条件,⊥PA 平面ABC ,⊂BC 平面ABCBC PA ⊥∴︒=∠90ABC ,即BC AB ⊥, 10分 由//EF BC ,∴EF AB ⊥,EF PA ⊥又A AB PA =⋂,AB PA ,都在平面PAB 内 EF ∴⊥平面PAB又⊂EF 平面AEF ∴平面AEF ⊥平面PAB 14分考点:线面垂直的判定与性质;面面垂直判定定理;线面平行判定;推理论证能力13.(1)详见解析; (2) 详见解析. 【解析】 试题分析:(1) 由线面平行的判定定理可知,只须证PA 与平面DEF 内的某一条直线平行即可,由已知及图形可知应选择DE,由三角形的中位线的性质易知: DE ∥PA ,从而问题得证;注意线PA 在平面DEG 外,而DE 在平面DEF 内必须写清楚;(2) 由面面垂直的判定定理可知,只须证两平中的某一直线与另一个平面垂直即可,注意题中已知了线段的长度,那就要注意利用勾股定理的逆定理来证明直线与直线的垂直;通过观察可知:应选择证DE 垂直平面ABC 较好,由(1)可知:DE ⊥AC,再就只须证DE ⊥EF 即可;这样就能得到DE ⊥平面ABC ,又DE ⊂平面BDE ,从面而有平面BDE ⊥平面ABC .试题解析:(1)因为D ,E 分别为PC,AC 的中点,所以DE ∥PA. 又因为PA ⊄平面DEF ,DE ⊂平面DEF ,所以直线PA ∥平面DEF.(2)因为D ,E ,F 分别人棱PC,AC ,AB 的中点,PA =6,BC =8,所以DE ∥PA ,DE =21PA =3,EF =21BC =4. 又因为DF =5,故DF 2=DE 2+EF 2,所以∠DEF=90。
高三立体几何练习题立体几何作为数学中的一个重要分支,对于高三学生来说具有一定的难度。
为了帮助同学们更好地掌握立体几何的知识和技巧,下面将给大家提供一些高三立体几何的练习题,供大家练习与复习之用。
1. 请计算一个正方体的体积和表面积。
解析:正方体的体积是边长的立方,表面积等于6倍的正方形面积。
2. 一个圆台的高为12cm,上底半径为10cm,下底半径为8cm,请计算该圆台的体积。
解析:圆台的体积等于底面积乘以高的一半。
3. 一个长方体的长、宽和高分别为6cm、4cm和3cm,请计算该长方体的体积。
解析:长方体的体积等于长乘以宽乘以高。
4. 一个正方体的表面积为96cm²,请计算该正方体的边长。
解析:正方体的表面积等于6倍的边长的平方。
5. 一个球的体积为36π,求该球的半径。
解析:球的体积等于四分之三乘以半径的立方。
6. 一个长方体的体积是1000cm³,已知长和宽的比例是5:4,请计算该长方体的长、宽和高分别是多少。
解析:根据体积和比例关系,可以得到方程,从而求解出长、宽和高的值。
7. 一个圆柱的底面半径为6cm,高为8cm,请计算该圆柱的体积。
解析:圆柱的体积等于底面积乘以高。
通过以上练习题,我们可以巩固和运用立体几何的相关知识和公式。
希望同学们认真思考每道题目的解题思路,通过练习不断提高自己的解题能力。
注意:以上题目的解析仅供参考,实际计算时请注意单位的统一和计算过程的准确性。
希望同学们在进行练习时,注重理论与实践相结合,从而更好地掌握立体几何的知识和技巧。
祝愿所有的高三学子都能在立体几何的学习中取得优异的成绩!加油!。
高高高高高高高高高立体几何文科提升版高高高高高高高高1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A. 20πB. 24πC. 28πD. 32π2.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A. 81π4B. 16π C. 9π D. 27π43.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A. 若m//α,n//α,则m//nB. 若m⊥α,n⊂α,则m⊥nC. 若m⊥α,m⊥n,则n//αD. 若m//α,m⊥n,则n⊥α4.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A. 13+23π B. 13+√23π C. 13+√26π D. 1+√26π5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A. 18+36√5B. 54+18√5C. 90D. 816.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的有()(1)m⊂α,n⊂α,m//β,n//β⇒α//β(2)n//m,n⊥α⇒m⊥α(3)α//β,m⊂α,n⊂β⇒m//n(4)m⊥α,m⊥n⇒n//αA. 0个B. 1个C. 2个D. 3个7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17πB. 18πC. 20πD. 28π8.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A. 若m//α,n//α,则m//nB. 若α//β,m⊂α,n⊂β,则m//nC. 若α∩β=m,n⊂α,n⊥m,则n⊥βD. 若m⊥α,m//n,n⊂β则α⊥β9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A. πB. 3π4C. π2D. π410.已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为()A. 32√3πB. 48πC. 24πD. 16π11.已知一个简单几何体的三视图如图所示,则该几何体的体积为().A. 3π+6B. 6π+6C. 3π+12D. 1212.设α,β,γ是三个不重合的平面,l是直线,给出下列命题①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l//α;③若l⊥α,l//β,则α⊥β;④若α//β,l⊄β,且l//α,则l//β.其中正确的命题是()A. ①②B. ②③C. ②④D. ③④13.某几何体的三视图如图所示,则该几何体的体积是()A. πB. 2πC. 4πD. 8π14.已知三棱锥P−ABC的三条侧棱两两互相垂直,且AB=√5,BC=√7,AC=2,则此三棱锥的外接球的体积为()A. 83π B. 8√23π C. 163π D. 323π15.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=√2,则球O的表面积等于()A. 4πB. 3πC. 2πD. π16.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的外接球的体积为()A. √33π B. π C. 263π D. 32√327π17.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A. 若m//n,m⊥α,则n⊥αB. 若m//α,n//α,则m//nC. 若m⊥α,m//β,则α//βD. 若m//α,α⊥β,则m⊥β18.A,B,C,D是同一球面上的四个点,△ABC中,∠BAC=2π3,AB=AC,AD⊥平面ABC,AD=6,AB=2√3,则该球的表面积为______ .19.在三棱锥V−ABC中,面VAC⊥面ABC,VA=AC=2,∠VAC=120°,BA⊥BC则三棱锥V−ABC的外接球的表面积是______.20.如图,在三棱锥P−ABC中,PA⊥AB,PA⊥BC,,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:;(2)求证:平面BDE⊥平面PAC;(3)当PA//平面BDE时,求三棱锥E−BCD的体积.21.如图,四棱锥P−ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.(1)求证:AF//平面PEC;(2)求证:平面PEC⊥平面PCD.22.如图,在平行四边形ABCD中,AB=1,BC=2,∠ABC=60°,在直角梯形ABEF中,BE=2,AF=3,BE//AF,∠BAF=90°,平面ABCD⊥平面ABEF.(Ⅰ)求证:AC⊥平面ABEF;(Ⅱ)求证:CD//平面AEF;(Ⅲ)求三棱锥D−AEF的体积.23.如图,在四棱锥P−ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB//EF;(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,求证:AF⊥平面PCD.24.已知直四棱柱ABCD−A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM//平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.25.如图,在斜三棱柱ABC−A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE//平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.答案和解析1.【答案】C【解析】【分析】本题考查由三视图求表面积,空间立体几何三视图,属于基础题.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2√3,在轴截面中圆锥的母线长使用勾股定理求出,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,求出圆柱的表面积,注意不包括重合的平面. 【解答】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2√3, ∴在轴截面中圆锥的母线长是√12+4=4, ∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4, ∴圆柱表现出来的表面积是π×22+2π×2×4=20π. ∴空间组合体的表面积是. 故选C . 2.【答案】A【解析】【分析】本题主要考查四棱锥外接球的表面积,属于基础题.利用正四棱锥的底面边长和高求出外接球的半径,进而可得表面积. 【解答】解:由题可知正四棱锥P −ABCD 的外接球的球心在它的高PO 1上,记为O ,设球的半径为R ,∵棱锥的高为4,底面边长为2, ∴R 2=(4−R)2+(√2)2, ∴R =94,∴该球的表面积为4π×(94)2=81π4.故选A .3.【答案】B【解析】【分析】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型,属于基础题. A .运用线面平行的性质,结合线线的位置关系,即可判断; B .运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m//α,n//α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n//α或n⊂α,故C错;D.若m//α,m⊥n,则n//α或n⊂α或n⊥α或n与α相交,故D错.故选B.4.【答案】C【解析】【分析】本题考查空间几何体的三视图和体积,属于基础题.由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底面棱长为1,可得2R=√2,故R=√22,故半球的体积为23π⋅(√22)3=√26π,棱锥的底面面积为1,高为1,故棱锥的体积V=13,故组合体的体积为13+√26π,故选C.5.【答案】B【解析】【分析】本题考查由几何体的三视图求表面积考查棱柱的表面积,属于一般题.由已知中的三视图可得:该几何体是一个以边长为3的正方形为底面的斜四棱柱,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以边长为3的正方形为底面的斜四棱柱,其上下底面面积均为:3×3=9,侧面的面积为:(3×6+3×√32+62)×2=36+18√5,故棱柱的表面积为:9×2+36+18√5=54+18√5.故选B.6.【答案】B【解析】【分析】本题考查命题的真假判断与应用,考查空间中直线与直线,直线与平面,平面与平面的位置关系,考查空间想象能力和思维能力,属于中档题.由空间中直线与直线,直线与平面,平面与平面的位置关系逐一核对四个命题得答案.【解答】解:对于(1),m⊂α,n⊂α,m//β,n//β⇒α//β,错误,当m//n时,α与β可能相交;对于(2),n//m,n⊥α⇒m⊥α,正确,原因是:n⊥α,则n垂直于α内的两条相交直线,又m//n,则m也垂直α内的这两条相交直线,则m⊥α;对于(3),α//β,m ⊂α,n ⊂β⇒m//n ,错误,m 与n 有可能异面; 对于(4),m ⊥α,m ⊥n ⇒n //α,错误,也可能是n ⊂α. ∴正确命题的个数是1个. 故选B . 7.【答案】A【解析】【分析】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积. 【解答】解:由题意可知三视图复原的几何体是去掉18后的球,如图:可得78×43πR 3=28π3,R =2..故选A . 8.【答案】D【解析】【分析】本题考查空间中的线面关系以及面面垂直的判定定理,属于基础题. 由空间中的线面关系一一判定即可. 【解答】解:A.错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面; B .错误,两平面平行,两平面内的直线不一定平行,可能异面;C .错误,一个平面内垂直于两平面交线的直线,只有在两个平面互相垂直的时候才与另一个平面垂直;D .正确,由m ⊥α,m//n ,得n ⊥α,又n ⊂β,∴α⊥β. 故选D . 9.【答案】B【解析】【分析】本题考查圆柱的体积的求法,考查圆柱、球等基础知识,考查运算求解能力、空间想象能力,属于中档题.推导出该圆柱底面圆周半径r =√12−(12)2=√32,由此能求出该圆柱的体积.【解答】解:如图所示:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上, ∴该圆柱底面圆周半径r =√12−(12)2=√32,∴该圆柱的体积:V =Sℎ=π×(√32)2×1=3π4.故选B .10.【答案】A【解析】【分析】本题考查了球的内接体与球的体积,考查运算求解能力,空间想象能力,属于中档题. 把三棱锥D −ABC 扩展为三棱柱,上下底面中心E ,F 的连线的中点O 与A 的距离为球的半径,根据题中条件求出半径OA ,即可求出球的体积. 【解答】解:由题意画出几何体的图形如图,把三棱锥D −ABC 扩展为三棱柱,上下底面中心F ,E 的连线的中点O 与A 的距离为球的半径R , AD =2AB =6,OE =3,△ABC 是正三角形, 所以AE =23√AB 2−AB 24=√3.AO =√32+(√3)2=2√3.所求球的体积为43πR 3=43π⋅(2√3)3=32√3π. 故选A .11.【答案】A【解析】【分析】本题考查由三视图求面积、体积,关键是由三视图还原几何体,是中档题.由三视图还原几何体,可知该几何体为组合体,左边部分是四分之一圆锥,右边部分为三棱锥,然后由锥体体积求解. 【解答】解:由三视图还原几何体如图,该几何体为组合体,左边部分是四分之一圆锥,右边部分为三棱锥,则其体积V=14×13×π×32×4+13×12×3×3×4=3π+6.故选A.12.【答案】D【解析】【分析】本题考查的知识点是空间直线与平面之间的位置关系判定及命题的真假判断与应用,其中熟练掌握空间直线与平面位置关系的判定方法是解答本题的关键,属于基础题.由空间平面与平面之间位置关系的定义及判定方法,可以判断①的正误;根据空间直线与平面位置关系的定义及判定方法,可以判断②与④的正误;根据线面垂直的判定方法可以得到③为真命题,综合判断结论,即可得到答案.【解答】解:若α⊥β,β⊥γ,则α与γ可能相交,也可能平行,故①错误;若l上两点到α的距离相等,则l与α可能相交,也可能平行,故②错误;若l//β,则存在直线a⊂β,使l//a,又l⊥α,∴a⊥α,则α⊥β,故③正确;若α//β,且l//α,则l⊂β或l//β,又由l⊄β,∴l//β,故④正确;故选D.13.【答案】A【解析】【分析】由三视图可知,该几何体为底面直径为2,高为2的圆柱的一半,求出体积即可.本题的考点是由三视图求几何体的体积,需要由三视图判断空间几何体的结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的体积公式分别求解,考查了空间想象能力.【解答】解:由三视图可知,该几何体为底面直径为2,高为2的圆柱的一半.体积V=12×π×12×2=π.故选A.14.【答案】B【解析】【分析】本题给出三棱锥的空间特征及外接球问题,考查了计算能力和空间想象能力,属于中档题.求出PA=1,PC=√3,PB=2,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P−ABC外接球.算出长方体的对角线,即球直径,进而利用球的体积公式求解.【解答】解:∵AB=√5,BC=√7,AC=2,∴PA=1,PC=√3,PB=2,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P−ABC外接球.∵长方体的对角线长为√1+3+4=2√2,∴球直径为2√2,半径R=√2,因此三棱锥P−ABC外接球的体积是43πR3=43π×(√2)3=8√23π,故选B.15.【答案】A【解析】【分析】本题主要考查了线面垂直的判定和性质,以及外接球的表面积等有关知识,考查空间想象能力、运算能力和推理论证能力,属于中档题.先寻找球心,根据S,A,B,C是球O表面上的点,则OA=OB=OC=OS,根据直角三角形的性质可知O为SC的中点,则SC即为直径,根据球的表面积公式求解即可.【解答】解:如图所示:取SC的中点O,连接AO,BO,因为SA⊥平面ABC,,,∴SA⊥AC,SA⊥BC,∴在Rt△ASC中,OA=OS=OC,又AB⊥BC,SA∩AB=A,,又,∴BC⊥SB,∴在Rt△SBC中,有OB=OS=OC,又SA=AB=1,BC=√2,AB⊥BC,∴SC=2,∴OA=OB=OC=OS=1,即球O 的半径为1,∴球O 的表面积为4πR 2=4π.故选A .16.【答案】D【解析】解:设外接球半径为r ,则有(√3−r)2+1=r 2,所以r =2√33,所以V =43πr 3=32√327π. 故选:D .设外接球半径为r ,则有(√3−r)2+1=r 2,解出利用体积计算公式即可得出.本题考查了三棱锥的三视图、球的体积计算公式,考查了推理能力与计算能力,属于中档题.17.【答案】A【解析】【分析】本题主要考查了空间中直线与平面之间的位置关系,同时考查了推理能力,属于基础题. 根据线面、面面平行、垂直的判定与性质,进行判断,即可得出结论.【解答】解:对于A ,根据线面垂直的性质定理,可得A 正确;对于B ,若m//α,n//α,则m//n ,m ,n 相交或异面,不正确;对于C ,若m ⊥α,m//β,则α⊥β,不正确;对于D ,若m//α,α⊥β,则m 与β的位置关系不确定,不正确.故选:A .18.【答案】84π【解析】【分析】本题考查球的表面积的求法,球的内接体问题,考查空间想象能力以及计算能力,属于中档题.把A 、B 、C 、D 扩展为三棱柱,上下底面中心连线的中点与A 的距离为球的半径,求出半径即可求解球的表面积.【解答】解:由题意,设△ABC 外接圆的圆心为E ,球心为O ,把A 、B 、C 、D 扩展为三棱柱,AD =6,AB =AC =2√3,OE =3,△ABC 中,BC =√12+12−2×2√3×2√3×(−12)=6, ∴AE =12√32=2√3,∴球半径AO =√12+9=√21.所求球的表面积S =4π(√21)2=84π.故答案为84π.19.【答案】16π【解析】【分析】本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键,属于中档题.设AC中点为M,VA中点为N,过M作面ABC的垂线,球心O必在该垂线上,连接ON,则ON⊥AV.可得OA=2,即三棱锥V−ABC的外接球的半径为2,即可求出三棱锥的外接球表面积.【解答】解:如图,设AC中点为M,VA中点为N,∵面VAC⊥面ABC,BA⊥BC,∴过M作面ABC的垂线,由面面垂直得到OM垂直面ABC,即球心O是三角形VAC的外接圆圆心,球心O必在该垂线上,连接ON,则ON⊥AV.在Rt△OMA中,AM=1,∠OAM=60°,∴OA=2,即三棱锥V−ABC的外接球的半径为2,∴三棱锥V−ABC的外接球的表面积S=4πR2=16π.故答案为:16π.20.【答案】(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)解:PA//平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA//DE,又D为AC的中点,可得E为PC的中点,且DE=12PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC=12S△ABC=12×12×2×2=1,则三棱锥E−BCD的体积为13DE⋅S△BDC=13×1×1=13.【解析】本题考查空间的线线、线面和面面的位置关系,三棱锥的体积的求法,考查空间想象能力和推理能力,属于中档题.(1)运用线面垂直的判定定理可得PA⊥平面ABC,再由性质定理即可得证;(2)要证平面BDE⊥平面PAC,可证BD⊥平面PAC,由(1)运用面面垂直的判定定理可得平面PAC⊥平面ABC,再由等腰三角形的性质可得BD⊥AC,运用面面垂直的性质定理和判定定理,即可得证;(3)由线面平行的性质定理可得PA//DE,运用中位线定理,可得DE的长,以及DE⊥平面ABC,求得三角形BCD的面积,运用三棱锥的体积公式计算即可得到所求值.21.【答案】证明:(1)取PC的中点G,连结FG、EG,∴FG为△CDP的中位线,FG//CD,FG=12CD.∵四边形ABCD为矩形,E为AB的中点,∴AE//CD,AE=12CD.∴FG=AE,FG//AE,∴四边形AEGF是平行四边形,∴AF//EG.又EG⊂平面PEC,AF⊄平面PEC,∴AF//平面PEC;(2)∵PA=AD,F是PD的中点,∴AF⊥PD,∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,又因为CD⊥AD,AP∩AD=A,AP,AD⊂平面APD,∴CD⊥平面APD,∵AF⊂平面APD,∴CD⊥AF,又AF⊥PD,且PD∩CD=D,PD,CD⊂平面PDC,∴AF⊥平面PDC,由(1)得EG//AF,∴EG⊥平面PDC,又EG⊂平面PEC,∴平面PEC⊥平面PCD.【解析】本题主要考查了空间线面平行、面面垂直的判定,考查逻辑推理能力和空间想象能力,属于中档题.(1)取PC的中点G,连结FG、EG,AF//EG又EG⊂平面PEC,AF⊄平面PEC,AF//平面PEC;(2)由(1)得EG//AF,只需证明AF⊥平面PDC,即可得到平面PEC⊥平面PCD.22.【答案】解:(Ⅰ)证明:∵在△ABC中,AB=1,BC=2,∠ABC=60°,∴AC2=AB2+BC2−2AB⋅BC⋅cos∠ABC=12+22−2×1×2×12=3,∴AC2+AB2=BC2,∴AB⊥AC,∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,且AC⊂平面ABCD,∴AC⊥平面ABEF;(Ⅱ)∵四边形ABCD是平行四边形,∴CD//AB,∵CD⊄平面ABEF,AB⊂平面ABEF,∴CD//平面AEF;(Ⅲ)连结CF,由(Ⅱ)知CD//平面AEF,∴点D到平面AEF的距离等于点C到平面AEF的距离,由(Ⅰ)知AC=√3,∴三棱锥D−AEF的体积V三棱锥D−AEF =V三棱锥C−AEF=13×(12×3×1)×√3=√32.【解析】本题考查线面垂直、线面平行的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.(Ⅰ)推导出AB⊥AC,由此利用平面ABCD⊥平面ABEF,能证明AC⊥平面ABEF;(Ⅱ)求出CD//AB,利用线面平行的判定定理证明CD//平面AEF;(Ⅲ)利用等体积法求三棱锥的体积,即由V三棱锥D−AEF=V三棱锥C−AEF,求出三棱锥D−AEF的体积.23.【答案】解:(Ⅰ)证明:因为底面ABCD是正方形,所以AB//CD,又因为AB⊄平面PCD,CD⊂平面PCD,所以AB//平面PCD,又因为A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,AB⊂平面ABEF,所以AB//EF.(Ⅱ)证明:在正方形ABCD中,CD⊥AD,又因为平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,又AF⊂平面PAD,所以CD⊥AF,由(Ⅰ)可知AB//EF,又因为AB//CD,所以CD//EF,由点E是棱PC中点,所以点F是棱PD中点,在△PAD中,因为PA=AD,所以AF⊥PD,又因为PD∩CD=D,PD,CD⊂平面PCD,所以AF⊥平面PCD.【解析】本题考查线面平行的性质,平面与平面垂直的性质,考查线面垂直的判定,考查学生分析解决问题的能力,属于中档题.(Ⅰ)先证明AB//平面PCD,即可证明AB//EF;(Ⅱ)利用平面PAD⊥平面ABCD,即可证明CD⊥AF,再证明AF⊥PD,进而即可证明AF⊥平面PCD.24.【答案】证明:(1)延长C1F交CB的延长线于点N,连接AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF//AN.又MF不在平面ABCD内,AN⊂平面ABCD,∴MF//平面ABCD.(2)连BD,由直四棱柱ABCD−A1B1C1D1,可知A1A⊥平面ABCD,又∵BD⊂平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC,A1A⊂平面ACC1A1,∴BD⊥平面ACC1A1.在四边形DANB中,DA//BN且DA=BN,∴四边形DANB为平行四边形,故NA//BD,∴NA⊥平面ACC1A1,又∵NA⊂平面AFC1,∴平面AFC1⊥ACC1A1.【解析】(1)延长C1F交CB的延长线于点N,由三角形的中位线的性质可得MF//AN,从而证明MF//平面ABCD.(2)由A1A⊥BD,AC⊥BD,可得BD⊥平面ACC1A1,由DANB为平行四边形,故NA//BD,故NA⊥平面ACC1A1,从而证得平面AFC1⊥ACC1A1.本题考查直线与平面平行的判定,考查平面与平面垂直的判断,考查推理分析与运算能力,考查等价转化思想与数形结合思想的综合运用,属于中档题.25.【答案】证明:(1)连结BC1,取AB中点E′,∵侧面AA1C1C是菱形,AC1与A1C交于点O,∴O为AC1的中点,∵E′是AB的中点,∴OE′//BC1;∵OE//平面BCC1B1,平面OEBC1∩平面BCC1B1=BC1∴OE//BC1,∴E,E′重合,∴E是AB中点;(2)∵侧面AA1C1C是菱形,∴AC1⊥A1C,∵AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,∴AC1⊥平面A1BC,∵BC⊂平面A1BC,∴AC1⊥BC.【解析】【分析】本题考查的知识要点:线面平行的判定定理,线面垂直的判定定理和性质定理,属于中档题.(1)利用同一法,首先通过连接对角线得到中点,进一步利用中位线,得到线线平行,进一步利用线面平行的判定定理,得到结论.(2)利用菱形的对角线互相垂直,进一步利用线面垂直的判定定理,得到线面垂直,最后转化成线线垂直.。
2021届高三数学立体几何专题(文科)1解析:〔Ⅰ〕设AC的中点为O,连接EO.在三角形PBD中,中位线EO//PB,且EO在平面AEC上,所以PB//平面AEC.〔Ⅱ〕∵AP=1,AD3,3 V,P-ABD411V=PAABADP-ABD32作AH⊥PB角PB于H,33=AB=,∴643AB,2由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又313PAABAHPB13 ,故A点到平面PBC的距离31313.2.(1)证明:如下图,取PA的中点H,连接EH,DH,因为E为PB的中点,所以EH∥AB,EH=1AB,2又AB∥CD,CD=12AB.所以EH∥CD,EH=CD,因此四边形DCEH是平行四边形,所以CE∥DH,又DH?平面PAD,CE?平面PAD,所以CE∥平面PAD.1(2)如下图,取AB的中点F,连接CF,EF,所以AF=AB,21又CD=AB,所以AF=CD,又AF∥CD,所以四边形AFCD为平行四边形,所以CF∥AD,2又CF?平面PAD,所以CF∥平面PAD,由(1)可知CE∥平面PAD,又CE∩CF=C,故平面CEF∥平面PAD,故存在AB的中点F满足要求.3.(1)证明∵P EPF==λ(λ≠0),∴EF∥BC.∵BC∥AD,∴EF∥AD. PBPC又EF?平面PAD,AD?平面PAD,∴EF∥平面PAD.(2)解∵λ=12,∴F是PC的中点,在Rt△PAC中,PA=2,AC=2,∴PC=P A2+AC2=6,----12∴PF=PC=6.∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,2PA⊥AC,PA?平面PAC,∴PA⊥平面ABCD,∴PA⊥BC.又AB⊥AD,BC∥AD,∴BC⊥AB,又PA∩AB=A,PA,AB?平面PAB,7----∴BC⊥平面PAB,∴BC⊥PB,∴在Rt△PBC中,BF=12PC=62.连接BD,DF,设点D到平面AFB的距离为d,在等腰三角形BAF中,BF=AF=6,AB=1,2∴S△ABF=5,又S△ABD=1,点F到平面ABD的距离为1,4∴由V F-ABD=V D-AFB,得13×1×1=13×d×545,解得d=,即点D到平面AFB的距离为45455.4.证明(1)由题设知BB1∥DD1且BB1=DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD?平面CD1B1,B1D1?平面CD1B1,所以BD∥平面CD1B1.因为A1D1∥B1C1∥BC且A1D1=B1C1=BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B?平面CD1B1,D1C?平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B?平面A1BD,所以平面A1BD∥平面CD1B1. (2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.5.连接AC交BD于点O,连接MO,因为PM=MC,AO=OC,所以PA∥MO,因为PA?平面MBD,MO?平面MBD,所以PA∥平面MBD.因为平面PAHG∩平面MBD=GH,所以AP∥GH.6.[证明](1)在四棱锥P-ABCD中,因为PA⊥底面ABCD,CD?平面ABCD,所以PA⊥CD,因为AC⊥CD,且PA∩AC=A,所以CD⊥平面PAC,而AE?平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD?平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD?平面PAD,所以AB⊥PD.8----又因为AB∩AE=A,所以PD⊥平面ABE.7.(1)证明因为ABCD为正方形,所以AD∥BC.因为AD?平面PBC,BC?平面PBC,所以AD∥平面PBC.因为AD?平面AEFD,平面AEFD∩平面PBC=EF,所以AD∥EF.(2)证明因为四边形ABCD是正方形,所以AD⊥AB.因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD?平面ABCD,所以AD⊥平面PAB.因为PB?平面PAB,所以AD⊥PB.因为△PAB为等边三角形,E是PB中点,所以PB⊥AE.因为AE?平面AEFD,AD?平面AEFD,AE∩AD=A,所以PB⊥平面AEFD.(3)解由(1)知,V1=VC-AEFD,VE-ABC=VF-ADC=VC-AEFD=V1,∴V BC-AEFD=V1,那么V P-ABCD=V1+V1=V1,∴.8.[解](1)证明:在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.(2)证明:如图,连接PG.因为△PAD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB?平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF.在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.而FE?平面DEF,DE?平面DEF,EF∩DE=E,PB?平面PGB,GB?平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面PAD,PG?平面PAD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG?平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB⊥平面PAC.又AB?平面PAB,所以平面PAB⊥平面PAC.9----(3)棱PB上存在点F,使得PA∥平面CEF.理由如下:如图,取PB中点F,连接E F,CE,CF.又因为E为AB的中点,所以EF∥PA.又因为PA?平面CEF,且EF?平面CEF,所以PA∥平面CEF.10.证明(1)因为四边形ABCD是矩形,所以AB∥CD.又AB?平面PDC,CD?平面PDC,所以AB∥平面PDC,又因为AB?平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A,AF,AD?平面PAD,所以AB⊥平面PAD,又AB?平面ABCD,所以平面PAD⊥平面ABCD.11.(1)证明因为AB=BC,AD=CD,所以BD垂直平分线段A C.又∠ADC=120°,所以MD=11,AM=2AD=232.所以AC=3.又AB=BC=3,所以△ABC是等边三角形,3所以BM=,所以2 B MMD1=3,又因为PN=4PB,所以B MMDBNNP==3,所以MN∥PD.又MN?平面PDC,PD?平面PDC,所以MN∥平面PDC.(2)解因为PA⊥平面ABCD,BD?平面ABCD,所以BD⊥PA,又BD⊥AC,PA∩AC=A,PA,AC?平面PAC,所以BD⊥平面PAC.由(1)知MN∥PD,所以直线MN与平面PAC所成的角即直线PD与平面PAC所成的角,故∠DPM即为所求的角.在Rt△PAD中,PD=2,1所以sin∠DPM=D MDP=22=14,所以直线MN与平面PAC所成角的正弦值为14.12.【解】(1)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:1因为AD∥BC,BC=2AD,所以BC∥AM,且BC=AM,所以四边形AMCB是平行四边形,从而CM∥AB.又AB?平面PAB,CM?平面PAB,所以CM∥平面PAB.(说明:取棱PD的中点N,那么所找的点可以是直线MN上任意一点)10(2)由,PA⊥AB,PA⊥CD,因为AD∥BC,BC=1 2所以PA⊥平面ABCD,从而PA⊥BD.连接B M,1因为AD∥BC,BC=AD,所以BC∥MD,且BC=MD.21所以四边形BCDM是平行四边形.所以BM=CD=2AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面PAB.又BD?平面PBD,所以平面PAB⊥平面PBD.13.[证明](1)在直三棱柱ABCA1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又DE?平面A1C1F,A1C1?平面A1C1F,所以直线D E∥平面A1C1F.(2)在直三棱柱ABCA1B1C1中,A1A⊥平面A1B1C1.因为A1C1?平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A?平面ABB1A1,A1B1?平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D?平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1?平面A1C1F,A1F?平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D?平面B1DE,所以平面B1DE⊥平面A1C1F14.证明:(Ⅰ)连接B C1,那么O为B1C与BC1的交点,∵AO⊥平面BB1C1C.∴AO⊥B1C,⋯2分因为侧面BB1C1C为菱形,∴BC1⊥B1C,⋯4分∴BC1⊥平面ABC1,∵AB平面ABC1,故B1C⊥AB.⋯6分(Ⅱ)作OD⊥BC,垂足为D,连结A D,∵AO⊥BC,∴BC⊥平面AOD,又BC平面ABC,∴平面ABC⊥平面AOD,交线为AD,作OH⊥AD,垂足为H,∴OH⊥平面ABC.⋯9分∵∠CBB1=60°,所以ΔCBB1为等边三角形,又BC=1,可得OD=3 4,11由于AC⊥AB1,∴OAB1C,∴22227ADODOA,4 11由OH·AD=O·DOA,可得OH=2114,又O为B1C的中点,所以点B1到平面ABC的距离为217,所以三棱柱ABC-A1B1C1的高高为217。
2023年高三数学立体几何练习题及答案1. 已知正方体ABCDA1B1C1D1的边长为a,O为ABCDA1B1C1D1的重心,P为平面ABC1所在平面上一点,且OP⊥平面ABC1,求证:BP⊥PD1。
解析:首先,我们需要明确BP⊥PD1的含义,即BP和PD1两条线段垂直。
证明:由于O为立方体ABCDA1B1C1D1的重心,根据性质可知BO和OD1平分角BAD1。
又因为BP⊥平面ABC1,且PD1⊥平面ABC1,故可得P为平面ABC1上高的垂足,P也位于平面AD1C1的高。
由此可知,BP垂直于平面AD1C1,同时与PD1重合,故BP⊥PD1,证毕。
2. 已知四棱锥ABCD1的底面为菱形ABCD,AB=2,AC=√3,垂直于底面ABCD、PA、PB两直线与底面的交点分别是E和F,证明:AE=EB。
解析:根据题意,我们需要证明AE=EB,即底面菱形ABCD的两条对角线等长。
证明:连接AF、BF,并设∠AFB=x,∠APE=∠BPE=∠BDE=∠ADE=y。
由于垂直于底面的PA、PB分别与底面的交点为E和F,故可得∠EAF=x,∠EBF=x。
又因为∠APE=∠ADE=y,∠BPE=∠BDE=y。
根据三角形内角和定理可得,∠APE+∠EAF+∠EBF=180°,∠APE+∠APE+y=180°,2∠APE+y=180°。
同理,2∠BPE+y=180°。
将上述两个等式相加可得2∠APE+y+2∠BPE+y=360°。
化简得4∠APE+4∠BPE+2y=360°,即2(∠APE+∠BPE)+2y=360°,2x+2y=360°。
进一步简化得x+y=180°。
同时,根据三角形ABC和三角形CBD的内角和定理可得∠ABC+∠CAB+∠BCA=180°,∠ABC+∠CAB+x=180°,∠BCA+x=180°。
2020届高三数学立体几何专题(文科)吴丽康 2019-111.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设AP=1,AD =,三棱锥P -ABD 的体积V =, 求A 点到平面PBD 的距离.2. 如图,四棱锥P ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点.(1)求证:CE ∥平面PAD ;(2)在线段AB 上是否存在一点F ,使得平面PAD ∥平面CEF ?若存在,证明你的结论,若不存在,请说明理由.3433如图,在四棱锥P -ABCD 中,平面PAC ⊥平面ABCD ,且PA ⊥AC ,PA =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PF PC=λ(λ≠0). (1)求证:EF ∥平面PAD ;(2)当λ=12时,求点D 到平面AFB 的距离.4.如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)若平面ABCD∩平面B1D1C=直线l,证明:B1D1∥l.5..如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH. 求证:AP∥GH.6.如图,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.7.(2018通州三模,18)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,四边形ABCD为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC交于点F.(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出V1的值.V28...如图,在四棱锥PABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.9.(2016·高考卷)如图,在四棱锥PABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.10..如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.11..如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PA =AB =BC =3,AD =CD =1,∠ADC =120°,点M 是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB . (1)证明:MN ∥平面PDC ;(2)求直线MN 与平面PAC 所成角的正弦值.12..(2016·高考卷)如图,在四棱锥P ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD . (1)在平面PAD 找一点M ,使得直线CM ∥平面PAB ,并说明理由;(2)证明:平面PAB ⊥平面PBD .13.(2016·高考卷)如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .14.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.15.(2017,文17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC, PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.16.(2016·高考卷)如图,在三棱台ABC DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.17..(2018·全国Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC.(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.立体几何中的翻折问题18...如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值.19..如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图2.在图2所示的几何体D -ABC 中: (1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.20.如图,长方体ABCDA1B1C1D1中,AB=16,BC=10,AA1=8.点E,F分别在A1B1,D1C1上,过点E、F的平面α与此长方体的面相交,交线围成一个正方形EFGH.(1)求证:A1E=D1F;(2)判断A1D与平面α的关系.2020届高三数学立体几何专题(文科)1解析:(Ⅰ)设AC 的中点为O , 连接EO . 在三角形PBD 中,中位线EO //PB ,且EO 在平面AEC 上,所以PB //平面AEC .(Ⅱ)∵AP =1,3AD =,-34P ABD V =, -11=32P ABD V PA AB AD ∴⋅⋅⋅33==AB ,∴32AB =, 作AH ⊥PB 角PB 于H ,由题意可知BC ⊥平面PAB ,∴BC ⊥AH ,故AH ⊥平面PBC . 又313PA AB AH PB ⋅==,故A 点到平面PBC 的距离313. 2.(1)证明:如图所示,取PA 的中点H ,连接EH ,DH ,因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB ,又AB ∥CD ,CD =12AB . 所以EH ∥CD ,EH =CD ,因此四边形DCEH 是平行四边形, 所以CE ∥DH , 又DH ⊂平面PAD ,CE ⊄平面PAD , 所以CE ∥平面PAD . (2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD ,又CF ⊄平面PAD ,所以CF ∥平面PAD ,由(1)可知CE ∥平面PAD , 又CE ∩CF =C ,故平面CEF ∥平面PAD , 故存在AB 的中点F 满足要求.3.(1)证明 ∵PE PB =PFPC=λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .又EF ⊄平面PAD ,AD ⊂平面PAD ,∴EF ∥平面PAD . (2)解 ∵λ=12,∴F 是PC 的中点,在Rt △PAC 中,PA =2,AC =2,∴PC =PA 2+AC 2=6,∴PF =12PC =62.∵平面PAC ⊥平面ABCD ,且平面PAC ∩平面ABCD =AC ,PA ⊥AC ,PA ⊂平面PAC ,∴PA ⊥平面ABCD ,∴PA ⊥BC .又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又PA ∩AB =A ,PA ,AB ⊂平面PAB , ∴BC ⊥平面PAB , ∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =62.连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455.4.证明 (1)由题设知BB 1∥DD 1且BB 1=DD 1,所以四边形BB 1D 1D 是平行四边形, 所以BD ∥B 1D 1.又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1, 所以BD ∥平面CD 1B 1.因为A 1D 1∥B 1C 1∥BC 且A 1D 1=B 1C 1=BC ,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.5.连接AC交BD于点O,连接MO,因为PM=MC,AO=OC,所以PA∥MO,因为PA⊄平面MBD,MO⊂平面MBD,所以PA∥平面MBD.因为平面PAHG∩平面MBD=GH,所以AP∥GH.6.[证明] (1)在四棱锥PABCD中,因为PA⊥底面ABCD,CD⊂平面ABCD,所以PA⊥CD,因为AC⊥CD,且PA∩AC=A,所以CD⊥平面PAC,而AE⊂平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD⊂平面PAD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE.7.(1)证明 因为ABCD 为正方形,所以AD ∥BC.因为AD ⊄平面PBC,BC ⊂平面PBC,所以AD ∥平面PBC. 因为AD ⊂平面AEFD,平面AEFD ∩平面PBC=EF, 所以AD ∥EF. (2)证明 因为四边形ABCD 是正方形,所以AD ⊥AB.因为平面PAB ⊥平面ABCD,平面PAB ∩平面ABCD=AB,AD ⊂平面ABCD, 所以AD ⊥平面PAB.因为PB ⊂平面PAB,所以AD ⊥PB. 因为△PAB 为等边三角形,E 是PB 中点,所以PB ⊥AE.因为AE ⊂平面AEFD,AD ⊂平面AEFD,AE ∩AD=A,所以PB ⊥平面AEFD. (3)解 由(1)知,V 1=V C-AEFD ,V E-ABC =V F-ADC =23V C-AEFD =23V 1,∴V BC-AEFD =53V 1,则V P-ABCD =V 1+53V 1=83V 1, ∴V 1V 2=38.8.[解] (1)证明:在菱形ABCD 中,∠DAB =60°,G 为AD 的中点,所以BG ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , 所以BG ⊥平面PAD .(2)证明:如图,连接PG .因为△PAD 为正三角形,G 为AD 的中点, 所以PG ⊥AD .由(1)知,BG ⊥AD ,又PG ∩BG =G ,所以AD ⊥平面PGB . 因为PB ⊂平面PGB ,所以AD ⊥PB .(3)当F 为PC 的中点时,满足平面DEF ⊥平面ABCD . 证明如下:取PC 的中点F ,连接DE 、EF 、DF . 在△PBC 中,FE ∥PB ,在菱形ABCD 中,GB ∥DE .而FE ⊂平面DEF ,DE ⊂平面DEF ,EF ∩DE =E ,PB ⊂平面PGB ,GB ⊂平面PGB ,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面PAD,PG⊂平面PAD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB⊥平面PAC.又AB⊂平面PAB,所以平面PAB⊥平面PAC.(3)棱PB上存在点F,使得PA∥平面CEF.理由如下:如图,取PB中点F,连接EF,CE,CF.又因为E为AB的中点,所以EF∥PA.又因为PA⊄平面CEF,且EF⊂平面CEF,所以PA∥平面CEF.10.证明(1)因为四边形ABCD是矩形,所以AB∥CD. 又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC,又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A,AF,AD⊂平面PAD,所以AB ⊥平面PAD ,又AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD . 11.(1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC . 又∠ADC =120°,所以MD =12AD =12,AM =32. 所以AC =3.又AB =BC =3,所以△ABC 是等边三角形,所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BNNP =3,所以MN ∥PD .又MN ⊄平面PDC ,PD ⊂平面PDC , 所以MN ∥平面PDC .(2)解 因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA , 又BD ⊥AC ,PA ∩AC =A ,PA ,AC ⊂平面PAC ,所以BD ⊥平面PAC .由(1)知MN ∥PD ,所以直线MN 与平面PAC 所成的角即直线PD 与平面PAC 所成的角, 故∠DPM 即为所求的角.在Rt △PAD 中,PD =2,所以sin ∠DPM =DM DP =122=14, 所以直线MN 与平面PAC 所成角的正弦值为14.12.【解】 (1)取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下: 因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM ,所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB ,所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,PA ⊥AB ,PA ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交.所以PA ⊥平面ABCD ,从而PA ⊥BD .连接BM , 因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD .所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD . 13.[证明] (1)在直三棱柱ABCA 1B 1C 1中,A 1C 1∥AC .在△ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE ∥AC ,于是DE ∥A 1C 1. 又DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F . (2)在直三棱柱ABCA 1B 1C 1中,A 1A ⊥平面A 1B 1C 1.因为A 1C 1⊂平面A 1B 1C 1,所以A 1A ⊥A 1C 1.又A 1C 1⊥A 1B 1,A 1A ⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1, 所以A 1C 1⊥平面ABB 1A 1.因为B 1D ⊂平面ABB 1A 1,所以A 1C 1⊥B 1D .又B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F .因为直线B 1D ⊂平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F14.证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1, 故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD ,又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD , 作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分 ∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD =3, 由于AC ⊥AB 1,∴11122OA B C ==,∴227AD OD OA =+=,由 OH ·AD=OD ·OA ,可得OH=2114,又O 为B 1C 的中点, 所以点B 1到平面ABC 的距离为217, 所以三棱柱ABC-A 1B 1C 1的高高为217。
高三数学专项训练:立体几何解答题(三)(文科)1.如图,在四棱锥A-BCDE 中,侧面∆ADE 是等边三角形,底面BCDE 是等腰梯形,且CD ∥BE,DE=2,CD=4,60CDE ∠=︒ ,M 是DE 的中点,F 是AC 的中点,且AC=4,求证:(1)平面ADE ⊥平面BCD;(2)FB ∥平面ADE.2.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠= 。
(Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,,求三棱柱111ABC A B C -的体积。
3.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,已知BD =2AD =2PD =8,AB=2DC =(Ⅰ)设M 是PC 上一点,证明:平面MBD ⊥平面PAD ;(Ⅱ)若M 是PC 的中点,求棱锥P -DMB 的体积.4.如图,三棱锥P ABC -中,90ABC ︒∠=,PA ABC ⊥底面(Ⅰ)求证:PAC PBC ⊥平面平面; (Ⅱ)若AC BC PA ==,M 是PB 的中点,求AM 与平面PBC 所成角的正切值5.如图,在等腰梯形CDEF 中,CB DA 、是梯形的高,2AE BF ==,现将梯形沿CB DA 、折起,使//EF AB ,且2E F A B =,得一简单组合体ABCDEF 如图所示,已知M N P 、、分别为,,AF BD EF 的中点.(1)求证://MN 平面BCF ;(2)求证:AP ⊥平面DAE .6.如图,四棱锥ABCD P -的底面ABCD 为正方形,⊥PA 底面ABCD ,F E ,分别是PB AC ,的中点.PFEDC B A(1)求证://EF 平面PCD ;(2)求证:平面⊥PBD 平面PAC ;(3)若AB PA =,求PD 与平面PAC 所成的角的大小.7.如图,在矩形ABCD 中,2AB BC =,点M 在边CD 上,点F 在边AB 上,且DF AM ⊥,垂足为E ,若将ADM ∆沿AM 折起,使点D 位于D '位置,连接B D ',C D '得四棱锥ABCM D -'.(Ⅰ)求证:F D AM '⊥;(Ⅱ)若3π='∠EF D ,直线F D '与平面ABCM 所成角的大小为3π,求直线D A '与平面ABCM 所成角的正弦值.8.如图,在四棱锥-P ABCD 中,四边形ABCD 是菱形,PA PC =,E 为PB 的中点.(Ⅰ)求证:PD ∥平面AEC ;(Ⅱ)求证:平面AEC ⊥平面PBD .9.如图,在直三棱柱ABC -A 1B 1C 1中,点M 是A 1B 的中点,点N 是B 1C 的中点,连接MN(Ⅰ)证明:MN//平面ABC ; (Ⅱ)若AB=1,AC=AA 1BC=2,求二面角A —A 1C —B 的余弦值的大小10.如图,四棱锥P ABCD -的底面是直角梯形,//AB CD ,AB AD ⊥,PAB ∆和PAD ∆是两个边长为2的正三角形,4DC =,O 为BD 的中点,E 为PA 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求证://OE 平面PDC ;(Ⅲ)求直线CB 与平面PDC 所成角的正弦值.C 111.在四棱锥P ABCD -中,底面ABED 为直角梯形,//BC AD 、090ADC ∠=,,PA PD =,,E F 为,AD PC 的中点.(1)求证://PA 平面BEF ;(2)求证:AD PB ⊥.12.如图,正三棱柱111ABC A B C -中,点D 是BC 的中点. (Ⅰ)求证: AD ⊥平面11BCC B ;(Ⅱ)求证: 1AC 平面1AB D .ABCDA 1B 1C 113.如图,在多面体ABCDFE 中,四边形ABCD 是矩形,AB ∥EF , 902=∠=EAB EF AB ,,平面ABCD ABFE 平面⊥.(1)若G 点是DC 中点,求证:AED FG 面//.(2)求证:BAF DAF 面面⊥.(3)若,2,1===AB AD AE 求的体积三棱锥AFC D -.高三数学专项训练:立体几何解答题(三)(文科)参考答案1.(1)证明详见解析;(2)证明详见解析.【解析】试题分析:(1)首先根据直线与平民啊垂直的判定定理证明AM ⊥平面BCD,然后再根据平面垂直的判定定理证明平面ADE ⊥平面BCD ;(2),取DC 的中点N ,首先证FN ∥平面ADE,然后再证∴BN ∥平面ADE,再根据平面与平民啊平行的判定定理证明∴平面ADE ∥平面FNB,最后由面面平行的性质即可.试题解析:(1)∵∆ADE 是等边三角形,,M 是DE 的中点,∵在∆DMC 中,DM=1,60CDE ∠=︒,CD=4,∴22241241cos6013MC =+-⨯⨯⋅︒= ,即在∆AMC∴AM ⊥MC, 又∵,AM DE ⊥MC DE M = , ∴AM ⊥平面BCD,∵AM ⊆平面ADE, ∴平面ADE ⊥平面BCD.(2)取DC 的中点N ,连结FN,NB,∵F,N 分别是AC ,DC 的中点,∴FN ∥AD,由因为FN ⊄平面ADE,AD ⊆平面ADE, ∴FN ∥平面ADE,∵N 是DC 的中点,∴BC=NC=2,又60CDE ∠=︒,∴∆BCN 是等边三角形,∴BN ∥DE, 由BN ⊄平面ADE,ED ⊆平面ADE, ∴BN ∥平面ADE,∵FN BN N = , ∴平面ADE ∥平面FNB,∵FB ⊆平面FNB, ∴FB ∥平面ADE.考点:1.直线与平面垂直的判定;2.平面一平面垂直的判定;3.直线与平面平行的判定.2.(1)取AB 的中点O ,连接1OC O 、1OA O 、1A B ,因为CA=CB ,所以OC AB ⊥,由于AB=AA 1,∠BA A 1=600,所以1OA AB ⊥,所以AB ⊥平面1OAC ,因为1AC ⊂平面1OAC ,所以AB ⊥A 1C ;(2)因为221AC OC =因为ABC ∆为等边三角形,所以,底面积3【解析】(1)构造辅助线证明线面垂直,进而得到线线垂直;(2)利用体积公式进行求解.【学科网考点定位】本题考查线面垂直的判定、线面垂直的性质以及三棱柱的体积公式,考查学生的化归与转化能力以及空间想象能力.3.(Ⅰ)详见解析;【解析】试题分析:(Ⅰ)要证明平面MBD ⊥平面PAD ,只需证明一个平面过另一个平面的垂线,因为M 是PC 上一点,不确定,故证明BD ⊥平面PAD ,显然易证;(Ⅱ)求棱锥P -DMB 的体积,直接求,底面面积及高都不好求,但注意到棱锥P -DMB 是棱锥P -D CB 除去一个小棱锥M-D CB 而得到,而这两个棱锥的体积都容易求,值得注意的是,当一个几何体的体积不好求时,可进行转化成其它几何体来求. 试题解析:(I )证明:在ABD ∆中,由于5,所以222AD BD AB +=.故AD BD ⊥。
8.42021届⾼三数学专题复习练习空间向量与⽴体⼏何(学⽣版)【课前测试】如图,已知正⽅形ABCD和矩形ACEF所在的平⾯互相垂直,AB=,AF=1,M是线段EF的中点.(2)求⼆⾯⾓A﹣DF﹣B的⼤⼩;(3)试在线段AC上⼀点P,使得PF与CD所成的⾓是60°.1空间向量与⽴体⼏何【知识梳理】⼀、平⾏、垂直的向量证法设直线l,m的⽅向向量分别为a,b,平⾯α,β的法向量分别为u,ν,则线线平⾏:l∥m?a∥b?a=k b,k∈R;线⾯平⾏:l∥α?a⊥u?a·u=0;⾯⾯平⾏:α∥β?u∥ν?u=kν,k∈R.线线垂直:l⊥m?a⊥b?a·b=0;线⾯垂直:l⊥α?a∥u?a=k u,k∈R;⾯⾯垂直:α⊥β?u⊥ν?u·ν=0.⼆、空间⾓的求法1、异⾯直线所成的⾓设a,b分别是两异⾯直线l1,l2的⽅向向量,则设直线l的⽅向向量为a,平⾯α的法向量为n,直线l与平⾯α所成的⾓为θ,则sin θ=|cos〈a,n〉|=|a·n| |a||n|.3、求⼆⾯⾓的⼤⼩23①如图①,AB ,CD 是⼆⾯⾓α-l -β的两个⾯内与棱l 垂直的直线,则⼆⾯⾓的⼤⼩θ=〈AB →,CD →〉.②如图②③,n 1,n 2分别是⼆⾯⾓α-l -β的两个半平⾯α,β的法向量,则⼆⾯⾓的⼤⼩θ满⾜|cos θ|=|cos 〈n 1,n 2〉|,⼆⾯⾓的平⾯⾓⼤⼩是向量n 1与n 2的夹⾓(或其补⾓).4【课堂讲解】考点⼀空间向量法证明平⾏或垂直问题例1、如图,在多⾯体ABC -A 1B 1C 1中,四边形A 1ABB 1是正⽅形,AB =AC ,BC =2AB ,B 1C 1平⾏且等于12BC ,⼆⾯⾓A 1-AB -C 是直⼆⾯⾓.求证:(1)A 1B 1⊥平⾯AA 1C ; (2)AB 1∥平⾯A 1C 1C .变式训练:1、已知正⽅体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平⾯ADE ; (2)平⾯ADE ∥平⾯B 1C 1F .52、如图,在四棱锥E-ABCD中,AB⊥平⾯BCE,CD⊥平⾯BCE,AB=BC=CE=2CD=2,∠BCE=120°.求证:平⾯ADE⊥平⾯ABE.3、如右图,在四棱锥P-ABCD中,底⾯ABCD是正⽅形,侧棱PD⊥底⾯ABCD,PD=DC,E是Pc的中点,作EF上PB交PB于F,证明:(1)直线PA∥平⾯EDB;(2)直线PB⊥平⾯EFD.67考点⼆利⽤空间向量求异⾯直线所成⾓例2、如图,在正⽅体ABCD -A 1B 1C 1D 1中,E 为AB 的中点. (1)求直线AD 和直线B 1C 所成⾓的⼤⼩; (2)求证:平⾯EB 1D ⊥平⾯B 1CD .变式训练:1.长⽅体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异⾯直线BC 1与AE 所成⾓的余弦值为( ) A.1010B.3010C.21510D.310102.如图,在四棱锥P -ABCD 中,P A ⊥平⾯ABCD ,底⾯ABCD 是菱形,AB =2,∠BAD =60°. (1)求证:BD ⊥平⾯P AC ;(2)若P A =AB ,求PB 与AC 所成⾓的余弦值.8考点三利⽤空间向量求直线与平⾯所成⾓例3、如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平⾯ACD 1所成⾓的正弦值.变式训练:1、如图所⽰,在四棱台ABCD -A 1B 1C 1D 1中,AA 1⊥底⾯ABCD ,四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2.(1)若M 为CD 的中点,求证:AM ⊥平⾯AA 1B 1B ; (2)求直线DD 1与平⾯A 1BD 所成⾓的正弦值.2、在三棱柱ABC-A1B1C1中,侧⾯ABB1A1为矩形,AB=2,AA1=22,D是AA1的中点,BD与AB1交于点O,且CO⊥平⾯ABB1A1.(1)证明:BC⊥AB1;(2)若OC=OA,求直线CD与平⾯ABC所成⾓的正弦值.考点四利⽤空间向量求⼆⾯⾓例4、已知正三棱柱ABC-A1B1C1中,AB=2,AA1= 6.点F,E分别是边A1C1和侧棱BB1的中点.(1)证明:FB⊥平⾯AEC;9(2)求⼆⾯⾓F-AE-C的余弦值.1011变式训练:1、如图,在四棱锥S -ABCD 中,底⾯ABCD 是直⾓梯形,侧棱SA ⊥底⾯ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =1,M 是棱SB 的中点. (1)求证:AM ∥平⾯SCD ;(2)求平⾯SCD 与平⾯SAB 所成的⼆⾯⾓的平⾯⾓的余弦值;2、在四棱锥P -ABCD 中,P A ⊥平⾯ABCD ,E 是PD 的中点,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,AC =AP =2. (1)求证:PC ⊥AE ;(2)求⼆⾯⾓A -CE -P 的余弦值.3、如图,四边形ABCD 为正⽅形,PD⊥平⾯ABCD ,PD∥QA ,QA = AB =1PD.2(I)证明:平⾯PQC ⊥平⾯DCQ ;考点五解决探索性问题例5、如图,四棱锥P-ABCD的底⾯为直⾓梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD =60°,平⾯P AD⊥底⾯ABCD,E为AD的中点,△P AD为正三⾓形,M是棱PC上的⼀点(异于端点).(1)若M为PC的中点,求证:P A∥平⾯BME.(2)是否存在点M,使⼆⾯⾓M-BE-D的⼤⼩为30°?若存在,求出点M的位置;若不存在,说明理由.12变式训练:1、直三棱柱ABC A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在⼀点D,使得平⾯DEF与平⾯ABC所成锐⼆⾯⾓的平⾯⾓的余弦值为1414?若存在,说明点D的位置,若不存在,说明理由.2、如图,在四棱锥P-ABCD中,P A⊥平⾯ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=42,P A=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在⼀点M,使得⼆⾯⾓M-AC-D的⼤⼩为45°,如果存在,求BM与平⾯MAC所成⾓的正弦值,如果不存在,请说明理由.1314考点六空间中的距离问题例6、如图,平⾯P AD ⊥平⾯ABCD ,四边形ABCD 为正⽅形,△P AD 是直⾓三⾓形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点. (1)求证:平⾯EFG ⊥平⾯P AB ; (2)求点A 到平⾯EFG 的距离.变式训练:如图,在四棱锥O ABCD -中,底⾯ABCD 四边长为1的菱形,4ABC π∠=OA ABCD ⊥底⾯ 2OA = M 为OA 的中点,N 为BC 的中点(1)证明:直线MN OCD平⾯‖;(2)求异⾯直线AB 与MD 所成⾓的⼤⼩; (3)求点B 到平⾯OCD 的距离。
高三立体几何习题文科含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三立体几何习题文科含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三立体几何习题文科含答案(word版可编辑修改)的全部内容。
23正视图 图1侧视图 图22 2图3立几习题21若直线l 不平行于平面a ,且l a ∉,则 A .a 内的所有直线与异面 B .a 内不存在与l 平行的直线C .a 内存在唯一的直线与l 平行D .a 内的直线与l 都相交2.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A )12l l ⊥,23l l ⊥13//l l ⇒(B )12l l ⊥,23//l l ⇒13l l ⊥(C )233////l l l ⇒1l ,2l ,3l 共面(D)1l ,2l ,3l 共点⇒1l ,2l ,3l 共面3.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为A .3.4 C .3.24。
某几何体的三视图如图所示,则它的体积是( )A 。
283π- B.83π-C 。
8-2πD 。
23π5、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PAD5(本小题满分13分)如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,1OA=,OD=,△OAB,△OAC,△ODE,△ODF都是正三角形。
所示,下面选项中,不可能是该锥体的俯视图的是( )解析:若俯视图为选项C,侧视图的宽应为俯视图中三角形的高是线段CD的中点,则三棱锥P-A1B1A的侧视图为( )解析:如图,画出原正方体的侧视图,显然对于三棱锥P-A B A,B(C) 4.如图,矩形O′A′B′C是水平放置的一个平面图形的直观图,C.菱形 D.一般的平行四边形解析:如图,在原图形OABC中,22+2是菱形,因此选C..如图所示是一个物体的三视图,则此三视图所描述物体的直解析:先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确,故选D.答案:D6.[2019·济南模拟]我国古代数学家刘徽在学术研究中,不迷信古人,坚持实事求是.他对《九章算术》中“开立圆术”给出的公式产生质疑,为了证实自己的猜测,他引入了一种新的几何体“牟合方盖”:以正方体相邻的两个侧面为底做两次内切圆柱切割,然后剔除外部,剩下的内核部分.如果“牟合方盖”的主视图和左视图都是圆,则其俯视图形状为( )解析:本题考查几何体的三视图.由题意得在正方体内做两次内切圆柱切割,得到的几何体的直观图如图所示,由图易得其俯视图为B,故选B.答案:B7.[2019·河北模拟]某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则( )A.3∈A B.5∈AC.26∈A D.43∈A解析:由三视图可得,该几何体的直观图如图所示,其中底面是的棱的长度为( )C. 6D. 5解析:根据三视图,利用棱长为2的正方体分析知,该多面体是几何体的各个面中,面积最小的面的面积为( )A.8 B.4C.4 3 D.4 2解析:由三视图可知该几何体的直观图如图所示,由三视图特征答案:D10.[2019·江西南昌模拟]如图,在正四棱柱ABCD-A B C D中,.:.:1.:.:2解析:根据题意,三棱锥正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥视图与侧视图的面积之比为:1.答案:A二、填空题11.下列说法正确的有________个.(1)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(2)正棱锥的侧面是等边三角形.(3)底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.解析:(1)错误.棱锥的定义是:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.而“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,故此说法是错误的.如图所示的几何体满足此说法,但它不是棱锥,理由是△ADE和△BCF无公共顶点.(2)错误.正棱锥的侧面都是等腰三角形,不一定是等边三角形.(3)错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有AB=AD=BD=BC=CD.满足底面△BCD为等边三角形.三个侧面△ABD,△ABC,△ACD都是等腰三角形,但AC长度不一定,三个侧面不一定全等.答案:012.[2019·山东安丘模拟]一个几何体的三视图如图所示,其中正视图是边长为2的正三角形,俯视图是正方形,那么该几何体的侧视图的面积是________.解析:根据三视图可知该几何体是一个四棱锥,其底面是正方形,四边形BFD1E在该正方体的面上的射影可能是________.解析:分别作出在六个面上的射影可知选②③.15.[2019·惠州调研]某三棱锥的三视图如图所示,且图中的三D.647解析:将三视图还原为如图所示的三棱锥P-ABC,其中底面ABC =x,所以-72]=+-2=64128-x2,即x=2xy的最大值是64.答案:C16.如图所示是水平放置三角形的直观图,点D是△ABC的BC⎛52-⎝×(2+29答案:空间几何体的表面积和体积[基础达标]一、选择题1.若圆锥的侧面展开图是圆心角为120°,半径为l的扇形,则这个圆锥的表面积与侧面积比是()A.:2 B.:1.:3.:解析:底面半径r=23π2πl:某几何体的三视图如图所示,则其表面积为()A.12+2 2 B.8+2 2答案:D3.[2019·益阳市,湘潭市高三调研]如图,网格纸上小正方体的解析:由三视图可得三棱锥为图中所示的三棱锥A-PBC(放到棱视图为扇形,则该几何体的体积为()2ππ体的表面积为()A.4+2 3 B.4+4 2解析:由三视图还原几何体和直观图如图所示,易知BC⊥平面出的是某多面体的三视图,则该多面体的表面积为()A.14 B.10+4 2解析:解法一 由三视图可知,该几何体为一个直三棱柱切去一⎣⎢⎡+2×2+2,故选已知一个球的表面上有粗实线画出的是某空间几何体的三视图,则该几何体的体积为( )A.+3B.+3C. 3 D.2 3解析:取AB的中点O,连接OO,如图,在△ABC中,AB=22,二、填空题11.[2019·南昌模拟]如图,直角梯形ABCD中,AD⊥DC,AD∥BD=3,∠CBD=90°,则球O的体积为________.解析:设A到平面BCD的距离为h,∵三棱锥的体积为3,BC 314.[2018·江苏卷,10]如图所示,正方体的棱长为2,以其所有粗线画出的是某个几何体的三视图,则该几何体的表面积为( )A .4+42+2 3B .14+4 2C .10+42+2 3D .4解析:如图,该几何体是一个底面为直角梯形,有一条侧棱垂直52+SB 2+BC 2=(2角三角形.过22-62=SCD 的面积为的面积为12×22×4=4 2.+42+23=10+4何体的体积是( )A .13B .14解析:所求几何体可看作是将长方体截去两个三棱柱得到的几何________.解析:依题意可得该几何体的直观图为图中所示的三棱锥B-答案:11π空间点、直线、平面之间的位置关系[基础达标]一、选择题1.[2019·江西七校联考]已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )A.相交或平行 B.相交或异面C.平行或异面 D.相交、平行或异面解析:依题意,直线b和c的位置关系可能是相交、平行或异面.答案:D2.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( )A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α解析:b与α相交或b⊂α或b∥α都可以.答案:D3.如图所示,ABCD-A1B1C1D1是正方体,O是B1D1的中点,直线A1C 交平面AB1D1于点M,则下列结论正确的是( )A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面解析:连接A1C1,AC(图略),则A1C1∥AC,∴A1,C1,A,C四点共面,∴A1C⊂平面ACC1A1.∵M∈A1C,∴M∈平面ACC1A1.又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上,∴A,M,O三点共线.解析:1连接A D,过点A作A M⊥AC于点M,连接BM,设AA=2,由∠A AM 44解法二令M为AC的中点,连接MB,MA,易得MA,MB,MA两a∩β=P时,②错;的序号).解析:图(1)中,直线GH∥MN;直线AB与MN所成角的大小为________.解析:如图,取AC的中点P,连接PM,PN,则PM∥AB,且PM∵PM∥AB,∴∠PMN或其补角是AB与MN所成的角,∵AB=CD,∴PM=PN,若∠PMN=60°,则△PMN是等边三角形,∴∠PMN=60°,∴AB与MN所成的角为60°.若∠MPN=120°,则∠PMN=30°,∴AB与MN所成的角为30°,综上,异面直线AB与MN所成的角为30°或60°.答案:30°或60°三、解答题9.如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC 分别与平面α相交于点E,G,H,F,求证:E,F,G,H四点必定共线.证明:因为AB∥CD,所以AB,CD确定一个平面β.又因为AB∩α=E,AB⊂β,所以E∈α,E∈β,即E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点,因为若两个平面有公共点,那么它们有且只有一条通过公共点的公共直线,所以E,F,G,H四点必定共线.10.如图,已知不共面的三条直线a,b,c相交于点P,A∈a,B∈a,C∈b,D∈c,求证:AD与BC是异面直线.证明:假设AD和BC共面,所确定的平面为α,那么点P,A,B,C,D都在平面α内,∴直线a,b,c都在平面α内,与已知条件a,b,c不共面矛盾,假设不成立.∴AD和BC是异面直线.F分别在棱AB,CD上,且AE=CF=1.(1)求异面直线A E与C F所成角的余弦值;解析:(1)如图,在正方体ABCD-A1B1C1D1中,延长DC至M,使CM=1,则AE綊CM.直线、平面平行的判定和性质[基础达标]一、选择题1.已知α∥β,a⊂α,B∈β,则在β内过点B的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线解析:因为a与点B确定一个平面,该平面与β的交线即为符合条件的直线.答案:D2.[2019·河南开封模拟]在空间中,a,b是两条不同的直线,α,β是两个不同的平面,则下列命题中的真命题是( ) A.若a∥α,b∥α,则a∥b B.若a⊂α,b⊂β,α⊥β,则a⊥bC.若a∥α,a∥b,则b∥α D.若α∥β,a⊂α,则a∥β解析:对于A,若a∥α,b∥α,则a,b可能平行,可能相交,可能异面,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,b∥α或b在平面α内,故C 是假命题;对于D,若α∥β,a⊂α,则a与β没有公共点,则a∥β,故D是真命题.故选D.答案:D3.[2019·石家庄模拟]过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有( )A.4条 B.6条C.8条 D.12条解析:如图,H,G,F,I是相应线段的中点,棱的中点,则能得出平面ABC∥平面DEF的是( )解析:在B中,如图,连接MN,PN,∵A,B,C为正方体所在棱的中点,AA1于点Q,则线段AQ的长为________.18.[2019·福建泉州模拟]如图,在正方体ABCD-A B C D中,O为底9.[2019·安徽合肥一中模拟]如图,四棱锥P-ABCD中,E为AD10.[2019·江西临川二中月考]如图,在矩形ABCD中,AB=1,AD11.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为(2)取AC中点M,连接EM,DM,因为E为PC的中点,M是AC的中点,直线、平面垂直的判定和性质[基础达标]一、选择题1.直线a⊥平面α,b∥α,则a与b的关系为( )A.a⊥b,且a与b相交B.a⊥b,且a与b不相交C.a⊥bD.a与b不一定垂直解析:∵b∥α,∴b平行于α内的某一条直线,设为b′,∵a⊥α,且b′⊂α,∴a⊥b′,∴a⊥b,但a与b可能相交,也可能异面.答案:C2.PA垂直于正方形ABCD所在平面,连接PB,PC,PD,AC,BD,则下列垂直关系正确的是( )①平面PAB⊥平面PBC;②平面PAB⊥平面PAD;③平面PAB⊥平面PCD;④平面PAB⊥平面PAC.A.①② B.①③C.②③ D.②④解析:由PA⊥平面ABCD,BC⊂平面ABCD得PA⊥BC,又BC⊥AB,PA∩AB=A,则BC⊥平面PAB,又BC⊂平面PBC,得平面PAB⊥平面PBC,故①正确,同理可证②正确.答案:A3.[2019·成都诊断性检测]已知m,n是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( ) A.若m⊂α,则m⊥βB.若m⊂α,n⊂β,则m⊥nC.若m⊄α,m⊥β,则m∥αD.若α∩β=m,n⊥m,则n⊥α解析:选项A中,若m⊂α,则直线m和平面β可能垂直,也可能平行或相交,故选项A不正确;选项B中,直线m与直线n的关系不确定,可能平行,也可能相交或异面,故选项B不正确;选项C中,若m⊥β,则m∥α或m⊂α,又m⊄α,故m∥α,选项C正确;选项D中,缺少条件n⊂β,故选项D不正确,故选C.答案:C4.[2017·全国卷Ⅲ]在正方体ABCDA1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1 B.A1E⊥BDC.A1E⊥BC1 D.A1E⊥AC解析:∵ A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴ B,D错;∵ A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,∴ A1E⊥BC1,故C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴ BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴ A1E⊥BC1)∵ A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故A 错.故选C.答案:C5.[2019·惠州调研]设l,m,n为三条不同的直线,α为一个平面,则下列命题中正确的个数是( )①若l⊥α,则l与α相交;②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;③若l∥m,m∥n,l⊥α,则n⊥α;④若l∥m,m⊥α,n⊥α,则l∥n.A.1 B.2C.3 D.4解析:对于①,若l⊥α,则l与α不可能平行,l也不可能在α内,所以l与α相交,①正确;对于②,若m⊂α,n⊂α,l⊥m,l⊥n,则有可能是l⊂α,故②错误;对于③,若l∥m,m∥n,则l∥n,又l⊥α,所以n⊥α,故③正确;对于④,因为m⊥α,n⊥α,所以m∥n,又l∥m,所以l∥n,故④正确.选C.答案:C二、填空题6.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,∴AB⊥AP.与AP垂直的直线是AB.答案:AB,BC,AC AB7.假设平面α∩平面β=EF,AB⊥α,CD⊥β,垂足分别为B,D,如果增加一个条件,就能推出BD⊥EF,现有下面四个条件:①AC⊥α;②AC∥α;③AC与BD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的是________.(把你认为正确的条件序号都填上)解析:如果AB与CD在一个平面内,可以推出EF垂直于该平面,又BD在该平面内,所以BD⊥EF.故要得到BD⊥EF,只需AB,CD在一个平面内即可,只有①③能保证这一条件.答案:①③8.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可).解析:∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC)三、解答题9.[2019·陕西质量检测]如图,在三棱柱ABC-A1B1C1中,AA1=AB,∠ABC=90°,侧面A1ABB1⊥底面ABC.(1)求证:AB1⊥平面A1BC;(2)若AC=5,BC=3,∠A1AB=60°,求三棱柱ABC-A1B1C1的体积.解析:(1)证明:在侧面A1ABB1中,∵A1A=AB,∴四边形A1ABB1为菱形,∴AB1⊥A1B.∵侧面A1ABB1⊥底面ABC,∠ABC=90°,∴CB⊥平面A1ABB1.∵AB1⊂平面A1ABB1,∴CB⊥AB1.又A1B∩BC=B,∴AB1⊥平面A1BC.(2)解法一如图,过A1作A1D⊥AB,垂足为D.∵平面ABC⊥平面A1ABB1,平面ABC∩平面A1ABB1=AB,∴A1D⊥平面ABC,∴A1D为三棱柱ABC-A1B1C1的高.∵BC=3,AC=5,∠ABC=90°,∴AB=4,又AA1=AB,∠A1AB=60°,PB的中点.(1)求证:PE⊥BC;因为F,G分别为PB,PC的中点,(2)记平面PAB与平面PCE相交于直线l,求证:AB∥l.5。
高三文科数学立体几何补充练习参考答案
1. D 2 D 3. D 4. C 5 D 690°
7.
8解D :过A 作AE 垂直于BC 交BC 于E ,连结SE ,过
A 作AF 垂直于SE 交SE 于F ,连BF ,∵正三角形ABC ,∴ E 为BC 中点,∵ BC ⊥AE ,SA ⊥BC ,∴ BC ⊥面SAE ,∴ BC ⊥AF ,AF ⊥SE ,∴ AF ⊥面SBC ,∵∠ABF 为直线A
B 与面SBC
所成角,由正三角形边长3,∴
AE =AS=3,∴
SE=AF=32,∴
3
sin 4ABF ∠=
9
(Ⅰ)连BD ,设AC 交BD 于O ,由题意SO AC ⊥。
在正方形ABCD 中,AC BD ⊥,所以AC SBD ⊥平面,得AC SD ⊥.
(Ⅱ)设正方形边长a
,则SD =。
又2
OD a =
,所以060SOD ∠=
, A B
C
S
E
F
连OP ,由(Ⅰ)知AC SBD ⊥平面,所以AC OP ⊥,
且AC OD ⊥,所以POD ∠是二面角P AC D --的平面角。
由SD PAC ⊥平面,知SD OP ⊥,所以0
30POD ∠=, 即二面角P AC D --的大小为0
30。
(Ⅲ)在棱SC 上存在一点E ,使//BE PAC 平面
由(Ⅱ)
可得PD =
,故可在SP 上取一点N ,使PN PD =,过N 作PC 的平行线与SC 的交点即为E 。
连BN 。
在BDN 中知//BN PO ,又由于//NE PC ,故平面
//BEN PAC 平面,得//BE PAC 平面,由于21SN NP =::
,故21SE EC =::.
10解
因为平面ABEF ⊥平面ABCD ,BC ⊂平面ABCD ,BC ⊥AB ,平面ABEF ∩平面ABCD=AB ,
所以BC ⊥平面ABEF. 所以BC ⊥EF. 因为⊿ABE 为等腰直角三角形,AB=AE , 所以∠AEB=45°,又因为∠AEF=45, 所以∠FEB=90°,即EF ⊥BE.
因为BC ⊂平面ABCD, BE ⊂平面BCE, BC ∩BE=B 所以EF BCE ⊥平面 (II )取BE 的中点N,连结CN,MN,则MN
12
A
B PC
∴ PMNC 为平行四边形,所以PM ∥CN. ∵ CN 在平面BCE 内,PM 不在平面BCE 内, ∴ PM ∥平面BCE. (III )由EA ⊥AB,平面ABEF ⊥平面ABCD,易知EA ⊥平面ABCD.
作FG ⊥AB,交BA 的延长线于G,则FG ∥EA.从而FG ⊥平
面ABCD,
作GH ⊥BD 于H,连结FH,则由三垂线定理知BD ⊥FH. ∴ ∠FHG 为二面角F-BD-A 的平面角.
∵ FA=FE,∠AEF=45°,∠AEF=90°, ∠FAG=45°
.
设AB=1,则AE=1,AF=
2
,则1FG AF sin FAG 2=⋅=在Rt ⊿BGH 中, ∠
GBH=45°,BG=AB+AG=1+
12=32,3GH BG sin GBH 224
=⋅=⋅=,
在Rt ⊿FGH 中, FG tan FHG GH 3
=
=
, 11
(I
)
证
明
:
在
ABD
∆中,
2,4,
A B A D D A B
︒
==∠=
2
2
2
,BD AB BD AD AB DE
∴==∴+=∴⊥ 又 平面EBD ⊥平面ABD
平面EBD 平面,ABD BD AB =⊂平面ABD AB ∴⊥平面EBD
DF ⊂ 平面,EBD AB DE ∴⊥
(Ⅱ)解:由(I )知,//,,AB BD CD AB CD BD ⊥∴⊥从而DE D ⊥
在Rt DBE ∆中,2DB DE DC AB ====
1
2
ABE S DB DE ∆∴=
⋅= 又AB ⊥ 平面,EBD BE ⊂平面,EBD AB BE ∴⊥ 1
4,42
ABE BE BC AD S AB BE ∆===∴=
⋅= ,DE BD ⊥ 平面EBD ⊥平面ABD ED ∴⊥,平面ABD 而AD ⊂平面1
,,42
ADE ABD ED AD S AD DE ∆∴⊥∴=
⋅=
综上,三棱锥E ABD -的侧面积,8S =+。