等比数列及其通项公式教案新部编本
- 格式:doc
- 大小:149.00 KB
- 文档页数:5
等比数列的通项公式教案一、教学目标知识与技能:1. 理解等比数列的定义及其性质;2. 掌握等比数列的通项公式及其应用。
过程与方法:1. 通过探究等比数列的性质,引导学生发现等比数列的通项公式;2. 运用等比数列的通项公式解决实际问题,培养学生的数学建模能力。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生的团队协作能力和自主学习能力。
二、教学重点与难点重点:1. 等比数列的定义及其性质;2. 等比数列的通项公式及其应用。
难点:1. 等比数列的通项公式的推导;2. 等比数列通项公式在实际问题中的应用。
三、教学准备教师准备:1. 等比数列的相关知识资料;2. 等比数列的实际问题案例;3. 多媒体教学设备。
学生准备:1. 预习等比数列的相关知识;2. 准备好笔记本,以便记录重点知识。
四、教学过程1. 导入:a. 复习等差数列的相关知识;b. 提问:等差数列有通项公式,那等比数列有没有通项公式呢?c. 引入等比数列的通项公式。
2. 等比数列的定义及其性质:a. 引导学生回忆等比数列的定义;b. 讲解等比数列的性质;c. 举例说明等比数列的性质。
3. 等比数列的通项公式:a. 引导学生探究等比数列的通项公式;b. 讲解等比数列的通项公式;c. 举例说明等比数列通项公式的应用。
4. 实际问题中的应用:a. 给出实际问题案例;b. 引导学生运用等比数列通项公式解决问题;c. 讲解解题思路和步骤。
5. 课堂小结:a. 回顾本节课所学内容;b. 强调等比数列通项公式的重点知识;c. 提醒学生注意等比数列通项公式的应用。
五、课后作业1. 复习等比数列的定义及其性质;2. 熟练掌握等比数列的通项公式及其应用;3. 完成课后练习题,巩固所学知识。
六、教学延伸与拓展1. 引导学生思考等比数列的通项公式能否推广到更一般的数列;2. 探讨等比数列的通项公式在数学其他领域的应用,如组合数学、概率论等;3. 引导学生进行自主研究,探索等比数列的通项公式的推导过程。
一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的通项公式。
2. 培养学生运用等比数列知识解决实际问题的能力。
3. 提高学生对数列这一数学思想的认知,培养学生的逻辑思维能力。
二、教学内容1. 等比数列的概念2. 等比数列的通项公式3. 等比数列的性质三、教学重点与难点1. 教学重点:等比数列的概念,等比数列的通项公式。
2. 教学难点:等比数列通项公式的推导和应用。
四、教学方法1. 采用问题驱动法,引导学生主动探索等比数列的概念和性质。
2. 运用案例分析法,让学生通过具体例子理解等比数列的通项公式。
3. 采用小组讨论法,培养学生的合作意识和团队精神。
五、教学过程1. 导入新课:通过回顾数列的概念,引导学生思考等比数列的特点。
2. 讲解等比数列的概念:借助具体例子,讲解等比数列的定义和性质。
3. 推导等比数列的通项公式:引导学生运用已知知识,推导出等比数列的通项公式。
4. 应用等比数列通项公式:通过实例,展示等比数列通项公式的应用。
5. 课堂练习:布置相关练习题,巩固所学知识。
6. 总结与拓展:对本节课内容进行总结,提出拓展问题,激发学生课后思考。
7. 课后作业:布置适量作业,巩固所学知识。
六、教学评价1. 通过课堂表现、作业和练习,评价学生对等比数列概念和通项公式的掌握程度。
2. 结合课后作业和课堂讨论,评估学生运用等比数列知识解决实际问题的能力。
3. 通过小组讨论和课堂提问,了解学生对数列思想的认知和逻辑思维能力的提升。
七、教学资源1. PPT课件:制作包含等比数列概念、性质和通项公式的PPT课件,以便于学生理解和记忆。
2. 练习题库:准备一定数量的等比数列练习题,包括基础题、应用题和拓展题,以供课堂练习和课后作业使用。
3. 教学视频:搜集相关的教学视频,如等比数列的动画演示、讲解等,以辅助教学。
八、教学进度安排1. 第一课时:介绍等比数列的概念和性质。
2. 第二课时:推导等比数列的通项公式,讲解应用实例。
高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的性质。
2. 引导学生掌握等比数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
二、教学内容1. 等比数列的概念2. 等比数列的性质3. 等比数列的通项公式4. 等比数列的求和公式5. 运用通项公式解决实际问题三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及其应用。
2. 教学难点:等比数列通项公式的推导和运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。
2. 利用多媒体课件,生动展示等比数列的图形和性质,提高学生的直观认识。
3. 结合例题,讲解等比数列通项公式的应用,培养学生解决问题的能力。
4. 开展小组讨论,促进学生之间的交流与合作,提高学生的团队意识。
五、教学过程1. 引入新课:通过讲解现实生活中的例子,引出等比数列的概念。
2. 讲解等比数列的性质:引导学生发现等比数列的规律,总结等比数列的性质。
3. 推导等比数列的通项公式:引导学生利用已知的数列性质,推导出通项公式。
4. 讲解等比数列的求和公式:结合通项公式,讲解等比数列的求和公式。
5. 运用通项公式解决实际问题:选取典型例题,讲解等比数列通项公式的应用。
6. 课堂练习:布置适量习题,巩固所学知识。
7. 总结与反思:引导学生总结本节课所学内容,反思自己的学习过程。
8. 课后作业:布置课后作业,巩固所学知识,提高学生的应用能力。
9. 教学评价:对学生的学习情况进行评价,了解学生对等比数列知识的掌握程度。
10. 教学反思:总结本节课的教学效果,针对存在的问题,调整教学策略。
六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生深刻理解等比数列的概念和性质。
2. 互动教学:鼓励学生积极参与课堂讨论,提问引导学生思考,增强课堂的互动性。
高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。
2. 引导学生推导等比数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力、运算能力和解决问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质和判定方法。
2. 等比数列的通项公式:引导学生推导通项公式,并进行证明。
3. 等比数列的求和公式:介绍等比数列前n项和的公式。
三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式和求和公式。
2. 教学难点:等比数列通项公式的推导和证明。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析和归纳等比数列的性质。
2. 运用类比法,让学生理解等比数列与等差数列的异同。
3. 利用多媒体辅助教学,展示等比数列的动态变化过程。
4. 开展小组讨论,培养学生的合作意识和解决问题的能力。
五、教学过程1. 导入新课:通过引入日常生活中的实例,如银行存款利息问题,引导学生思考等比数列的概念。
2. 讲解等比数列的定义和性质:让学生通过观察、分析和归纳等比数列的性质,得出等比数列的定义。
3. 推导等比数列的通项公式:引导学生利用已知条件,通过变换和代数运算,推导出等比数列的通项公式。
4. 证明等比数列的通项公式:让学生理解并证明等比数列通项公式的正确性。
5. 介绍等比数列的求和公式:引导学生运用通项公式,推导出等比数列前n项和的公式。
6. 课堂练习:布置一些有关等比数列的题目,让学生巩固所学知识。
7. 总结与反思:对本节课的内容进行总结,让学生反思自己的学习过程,提高学习效果。
8. 课后作业:布置一些有关等比数列的练习题,巩固所学知识。
六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生更好地理解等比数列的概念和性质。
2. 互动提问:在教学过程中,教师应引导学生积极参与课堂讨论,提问等方式来巩固学生对等比数列的理解。
高中数学《等比数列的概念和通项公式》教案一、教学目标:1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。
2. 引导学生掌握等比数列的通项公式,并能灵活运用通项公式解决相关问题。
3. 培养学生的数学思维能力,提高学生分析问题和解决问题的能力。
二、教学内容:1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。
2. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。
3. 等比数列的性质:探讨等比数列的性质,如相邻项之比、公比等。
4. 等比数列的求和公式:介绍等比数列的求和公式,并解释其推导过程。
5. 应用:通过例题展示等比数列通项公式的应用,让学生学会解决实际问题。
三、教学重点与难点:1. 教学重点:等比数列的概念、通项公式、求和公式及其应用。
2. 教学难点:等比数列通项公式的推导和求和公式的理解。
四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究等比数列的性质和公式。
2. 利用多媒体辅助教学,通过动画和图形展示等比数列的特点,增强学生的直观感受。
3. 通过例题和练习题,让学生在实践中掌握等比数列的运用。
五、教学过程:1. 引入:通过生活中的实例,如银行利息计算,引出等比数列的概念。
2. 讲解:详细讲解等比数列的定义、特点和通项公式,引导学生理解并掌握。
3. 互动:学生提问,教师解答,共同探讨等比数列的相关问题。
4. 练习:布置练习题,让学生运用通项公式解决问题,巩固所学知识。
6. 作业:布置作业,让学生进一步巩固等比数列的知识。
六、教学评估:1. 课堂问答:通过提问的方式检查学生对等比数列概念和通项公式的理解程度。
2. 练习题:布置课堂练习题,评估学生运用通项公式解决问题的能力。
3. 作业批改:对学生的作业进行批改,了解学生对所学知识的掌握情况。
七、教学反思:1. 针对学生的反馈,反思教学过程中的不足之处,如讲解不清、学生理解困难等问题。
2. 针对教学方法的适用性,调整教学策略,以提高教学效果。
高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。
2. 引导学生推导等比数列的通项公式,并能灵活运用通项公式解决相关问题。
3. 培养学生的逻辑思维能力、运算能力和解决实际问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。
2. 等比数列的性质:探讨等比数列的性质,如相邻项的比值是常数,公比等。
3. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。
4. 运用通项公式解决实际问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。
5. 拓展与应用:引导学生思考等比数列在实际生活中的应用,如复利、生长速率等。
三、教学重点与难点1. 教学重点:等比数列的概念、性质和通项公式的推导及应用。
2. 教学难点:等比数列通项公式的理解和运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。
2. 用实例讲解等比数列的概念,让学生在实际问题中感受等比数列的应用。
3. 通过小组讨论、合作交流,培养学生的团队协作能力。
4. 利用多媒体课件,生动展示等比数列的性质和通项公式,提高学生的学习兴趣。
五、教学准备1. 多媒体课件:制作等比数列的概念、性质和通项公式的课件。
2. 教学素材:准备一些关于等比数列的实际问题,用于课堂练习。
3. 教学反思:对以往教学等比数列的经验进行总结,以便更好地指导学生学习。
六、教学过程1. 导入新课:通过一个实际问题,如复利计算,引出等比数列的概念。
2. 探究等比数列的性质:让学生通过观察、分析实例,发现等比数列的性质。
3. 推导等比数列的通项公式:引导学生运用已学的数学知识,如代数运算,推导出等比数列的通项公式。
4. 应用通项公式解决问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。
5. 总结与拓展:总结等比数列的概念、性质和通项公式的要点,提出一些拓展问题,激发学生的学习兴趣。
等比数列的通项公式教案一、教学目标知识与技能:1. 理解等比数列的概念;2. 掌握等比数列的通项公式;3. 能够运用通项公式解决实际问题。
过程与方法:1. 通过探究等比数列的性质,引导学生发现通项公式;2. 利用数学归纳法证明等比数列的通项公式;3. 运用通项公式进行等比数列的运算和问题解决。
情感态度价值观:1. 培养学生的逻辑思维能力;2. 培养学生的数学归纳法思想;3. 激发学生对数学的兴趣和好奇心。
二、教学重点与难点重点:1. 等比数列的概念;2. 等比数列的通项公式;3. 等比数列的性质与应用。
难点:1. 等比数列通项公式的发现与证明;2. 运用通项公式解决实际问题。
三、教学准备教师准备:1. 等比数列的相关知识资料;2. 等比数列的实例与问题;3. 教学多媒体设备。
学生准备:1. 掌握等差数列的相关知识;2. 熟练运用数学归纳法。
四、教学过程1. 导入:1.1 复习等差数列的概念和性质;1.2 引入等比数列的概念;1.3 引导学生思考等比数列的通项公式。
2. 探究等比数列的通项公式:2.1 给出等比数列的定义;2.2 引导学生发现等比数列的性质;2.3 引导学生归纳出通项公式。
3. 证明等比数列的通项公式:3.1 引导学生运用数学归纳法证明通项公式;3.2 引导学生理解并掌握数学归纳法的步骤。
4. 运用等比数列的通项公式:4.1 给出等比数列的实际问题;4.2 引导学生运用通项公式解决问题;4.3 引导学生总结等比数列的运算规律。
五、课后作业1. 等比数列的定义与性质;2. 等比数列的通项公式;3. 运用通项公式解决实际问题。
教学反思:本节课通过引导学生探究等比数列的性质,发现并证明通项公式,培养了学生的逻辑思维能力和数学归纳法思想。
在教学过程中,注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。
通过运用通项公式解决实际问题,激发学生对数学的兴趣和好奇心。
六、教学拓展1. 等比数列的求和公式:6.1 引导学生探究等比数列的求和公式;6.2 引导学生运用求和公式进行等比数列的求和运算。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校等比数列及其通项公式(第一课时 教案)教学目标:掌握等比数列的定义,理解等比数列的通项公式及推导;培养学生的发现意识,提高学生创新意识,提高学生分析问题、解决问题以及归纳类比的能力,增强学生的应用意识. 教学重点:等比数列的定义及通项公式. 教学难点:灵活应用等比数列的定义式及通项公式解决一些相关问题. 教学过程: 一.复习回顾 前面几节课,我们共同探讨了等差数列,现在我们再来回顾一下等差数列的主要内容。
二.讲授新课1.等比数列的定义例1、工作多年的赵老师有一笔闲钱,暂时也没有什么特别需要花钱的地方,于是打算拿来投资。
希望同学们帮忙出出主意,想想办法。
现有三种投资方案,这三种投资方案的回报如下:方案1:第一天回报10元,以后每天比前一天多回报10元; 方案2:每天回报40元;方案3:第一天回报0.4元以后每天的回报比前一天翻一番。
下面把这三种方案罗列成一个表格列,看看它们有什么特征?例2、下面我们来看这样两个数列,看看它们又有何共同特点?(1)一个细胞1分钟后分裂成2个,2分钟后分裂成4个,3分钟后分裂成8个,依次类推,得到细胞个数的数列是:1,2,4,8,16,32,64,128,…… (2)我国古代一些学者提出:“一尺之棰,日取其半,万世不竭”,得到木棒长度的数列是: ,641,321,161,81,41,21,1…… 仔细观察这两个数列,看看它们有什么特征?共同特点:从第二项起,第一项与前一项的比都等于同一个常数.也就是说,这些数列从第二项起,每一项与前一项的比都具有“相等”的特点. 1.定义:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:an ∶an -1=q(q ≠0) 与等差数列比较,仅一字之差.对等比数列的定义的理解:(1)每一项与它前一项的比等于同一个常数,具备任意性。
等比数列的概念和通项公式教案第一章:等比数列的概念1.1 引入:通过复习数列的基本概念,引导学生理解数列的定义和性质。
1.2 等比数列的定义:引导学生通过观察和分析一些具体的数列,总结等比数列的定义和特点。
1.3 等比数列的性质:引导学生探究等比数列的性质,如相邻两项的比值是常数,每一项可以表示为前一项与公比的乘积等。
1.4 等比数列的举例:给出一些等比数列的例子,让学生通过计算和分析加深对等比数列的理解。
第二章:等比数列的通项公式2.1 等比数列的通项公式的引入:通过一些具体的等比数列,引导学生观察和分析其通项公式。
2.2 等比数列的通项公式的推导:引导学生利用等比数列的性质和数学归纳法推导出通项公式。
2.3 等比数列的通项公式的应用:给出一些应用等比数列通项公式的例子,让学生通过计算和分析加深对通项公式的理解。
第三章:等比数列的前n项和3.1 等比数列的前n项和的定义:引导学生理解等比数列前n项和的含义和意义。
3.2 等比数列的前n项和的公式:引导学生利用等比数列的性质和数学归纳法推导出前n项和的公式。
3.3 等比数列的前n项和的应用:给出一些应用等比数列前n项和的例子,让学生通过计算和分析加深对前n项和的理解。
第四章:等比数列的性质和运算4.1 等比数列的性质:引导学生探究等比数列的性质,如公比的取值范围,等比数列的单调性等。
4.2 等比数列的运算:引导学生掌握等比数列的运算规则,如加减乘除等。
4.3 等比数列的性质和运算的应用:给出一些应用等比数列的性质和运算的例子,让学生通过计算和分析加深对等比数列的理解。
第五章:等比数列的综合应用5.1 等比数列的实际应用:引导学生将等比数列的概念和公式应用到实际问题中,如经济增长模型,放射性衰变等。
5.2 等比数列的解题策略:引导学生掌握解决等比数列问题的方法和技巧,如利用通项公式和前n项和公式等。
5.3 等比数列的综合练习:给出一些综合性的练习题,让学生通过计算和分析加深对等比数列的综合应用的理解。
教师学科教案[ 20 – 20 学年度第__学期]
任教学科:_____________
任教年级:_____________
任教老师:_____________
xx市实验学校
等比数列及其通项公式(第一课时 教案)
教学目标:
掌握等比数列的定义,理解等比数列的通项公式及推导;培养学生的发现意识,提高学生创新意识,提高学生分析问题、解决问题以及归纳类比的能力,增强学生的应用意识. 教学重点:
等比数列的定义及通项公式. 教学难点:
灵活应用等比数列的定义式及通项公式解决一些相关问题. 教学过程: 一.复习回顾 前面几节课,我们共同探讨了等差数列,现在我们再来回顾一下等差数列的主要内容。
二.讲授新课
1.等比数列的定义
例1、工作多年的赵老师有一笔闲钱,暂时也没有什么特别需要花钱的地方,于是打算拿来投资。
希望同学们帮忙出出主意,想想办法。
现有三种投资方案,这三种投资方案的回报如下:
方案1:第一天回报10元,以后每天比前一天多回报10元; 方案2:每天回报40元;
方案3:第一天回报0.4元以后每天的回报比前一天翻一番。
下面把这三种方案罗列成一个表格
列,看看它们有什么特征?
例2、下面我们来看这样两个数列,看看它们又有何共同特点?
(1)一个细胞1分钟后分裂成2个,2分钟后分裂成4个,3分钟后分裂成8个,依次类推,得到细胞个数的数列是:1,2,4,8,16,32,64,128,…… (2)我国古代一些学者提出:“一尺之棰,日取其半,万世不竭”,得到木棒长度的数列是: ,64
1
,321,161,81,41,21,1…… 仔细观察这两个数列,看看它们有什么特征?
共同特点:从第二项起,第一项与前一项的比都等于同一个常数.
也就是说,这些数列从第二项起,每一项与前一项的比都具有“相等”的特点. 1.定义:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:an ∶an -1=q(q ≠0) 与等差数列比较,仅一字之差.
对等比数列的定义的理解:
(1)每一项与它前一项的比等于同一个常数,具备任意性。
(2)每一项与它前一项的比等于同一个常数,强调的是同一个。
(3)每一项与它前一项的比是有序的,这种顺序决定了q 的值。
(4)有等比数列的定义可知,等比数列中不含0项。
(为什么?) 等比数列的通项公式又如何呢? 2.等比数列的通项公式
请同学们想想等差数列通项公式的推导过程,试着推一下等比数列的通项公式.
解法一:由定义式可得:q a a 12=,2123q a q a a ==,3
134q a q a a ==,
1
11--==n n n q a q a a (0,1≠q a ),n =1时,等式也成立,即对一切n ∈N*成立.
解法二:由定义式得:(n -1)个等式
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===-q a a q
a a q a a n n
1
2
3
12
...... 若将上述n -1个等式相乘,便可得:1
1
3
4
2312--=⋅⋅⋅⋅⋅⋅⋅⋅⋅n n n q a a a a a a a a
1 即:1
1-⋅=n n q a a (n ≥1)
当n =1时,左=1a ,右=1a ,所以等式成立,
∴等比数列通项公式为:1
1-⋅=n n q a a (0,1
≠q a )
说明:(1)在上述方法中,前两种方法采用的是不完全归纳法,严格的说,还需
给出证明.第三种方法没有涉及不完全归纳法,是一个完美的推导过程,不再需要证明.
(2)由等比数列通项公式1
1-⋅=n n q a a 可知,通过q a 和1,可以表示出数列中的任
何一项。
(基本量法)
下面看一些例子:
(抢答):例1、判断下列数列哪些是等比数列,如果是,求出公比和通项公式,如果不是,请说明为什么? 1)1,-1,1,-1,…… 2)0,2,0,2,0,……
例3、(1)等比数列{}n a 中,2,51-==q a ,求n a a 与8。
(2)等比数列{}n a 中,
45
,106431=
+=+a a a a ,求q 的值。
(3)等比数列{}n a 中,120,2063==a a ,求n a
评述:等比数列中的任意两项间的关系:
由m
n m n m
n m n m m n n q a a q a a q a a q a a ----⋅==⇒⎪⎩⎪⎨⎧⋅=⋅=即1
11
1(性质法)
例4、(1)一个等比数列的第3项为9,第5项为81,求它的首项和公比?
(2)一个等比数列的第2项是10,第3项是20,求它首项和第4项?
评述:灵活应用等比数列定义式及通项公式.
三、课堂练习
课本P51 1、 3(1)、(2) 5 评述:注意灵活应用等比数列的定义式和通项公式
四、课堂小结:
本节课主要学习了(1)等比数列的定义,即:从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
定义式为
为非零常数q q a a n
n ,1
=+
(2)等比数列的通项公式:1
1-⋅=n n q a a (0,1≠q a ,q 为常数,n ≥2)及推导过程.
(3)等比数列任意两项间的递推关系式m
n m n
q
a a -⋅=
五、课后作业
必做题:课本P52习题2.4 1(1)、(4)
练习册p78 1、 4、 5、
选作题:
已知:{an}、{bn}是项数相同的等比数列,求证:{an•bn}也是等比数列。