2017-2018学年度最新浙教版七年级数学下册期末考试模拟试题及答案解析精品试卷
- 格式:docx
- 大小:242.67 KB
- 文档页数:9
2017-2018学年浙教版初一数学第二学期期末模拟试卷一.选择题(共10小题,满分20分,每小题2分)1.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩2.新亚商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为()A.2×10﹣5B.5×10﹣6C.5×10﹣5D.2×10﹣63.下列运算结果正确的是()A.a3+a4=a7B.a4÷a3=a C.a3•a2=2a3D.(a3)3=a64.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值其中结论正确的有()A.1个B.2个C.3个D.4个5.若分式的值为0,则x的值等于()A.0 B.±3 C.3 D.﹣36.若是方程组的解,则(a+b)•(a﹣b)的值为()A.﹣B.C.﹣16 D.167.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°8.若甲数为x,乙数为y,则“甲数的3倍比乙数的一半少2”列成方程就是()A.3x+y=2 B.3x﹣y=2 C.y﹣3x=2 D.y+2=3x9.y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,则k的值是()A.0 B.﹣1 C.1 D.410.数学家发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b+1.例如把(3,﹣2)放入其中,就会得到32+(﹣2)+1=8.现将实数对(﹣2,3)放入其中得到实数m,再将实数对(m,1)放入其中后,得到的实数是()A.8 B.55 C.66 D.无法确定二.填空题(共10小题,满分30分,每小题3分)11.分解因式:9abc﹣3ac2=.12.已知x=﹣2,y=1是关于二元一次方程3x+5y﹣k=1的解,则代数式2k﹣1=.13.如图,∠1=83°,∠2=97°,∠3=100°,则∠4=.14.已知等边三角形ABC的边长为6,有从点A出发每秒1个单位且垂直于AC的直线m交三角形的边于P 和Q两点且由A向C平移,点G从点C出发每秒4个单位沿C→B→P→Q→C路线运动,如果直线m和点G同时出发,则点G回到点C的时间为.15.某校对八年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为人.16.已知﹣=5,则=.17.若a m=2,a n=3,则a3m+2n=.18.计算=.19.如图,两个正方形的边长分别为a,b,若a+b=10,ab=20,则四边形ABCD的面积为.20.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是.三.解答题(共6小题,满分50分)21.(8分)(1)计算:(xy)2•(﹣12x2y2)÷(﹣x3y)(2)计算:(π﹣2005)0×2÷+(﹣)﹣2÷2﹣3﹣|8﹣80|22.(8分)解方程(组):(1).(2)23.(8分)因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)24.(8分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.25.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?26.(10分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?四.解答题(共2小题,满分20分,每小题10分)27.(10分)已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.28.(10分)阅读下面解题过程,然后解答问题:解方程:x4﹣x2﹣6=0解:设y=x2,则原方程可化为y2﹣y﹣6=0,解得:y1=3,y2=﹣2当y=3时,;当y=﹣2时,x2=﹣2,原方程无实数根.∴原方程的解为:这种解方程的方法叫“换元法”.仔细体会这种方法的过程步骤,然后按照上述步骤解下列方程:解:设y=,则原方程可化为关于y的方程:解得:请你将后面的过程补充完整:参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:A、某校要对七年级学生的身高进行调查,调查范围小,适合抽样普查,故A错误;B、卖早餐的师傅想了解一锅茶鸡蛋的咸度无法进行普查,适合抽样调查,故B正确;C、班主任了解每位学生的家庭情况,适合普查,故B错误;D、了解九年级一班全体学生立定跳远的成绩适合普查,故D错误;故选:B.2.解:20万分之一=0.000 005=5×10﹣6.故选:B.3.解:∵a3+a4≠a7,∴选项A不符合题意;∵a4÷a3=a,∴选项B符合题意;∵a3•a2=a5,∴选项C不符合题意;∵(a3)3=a9,∴选项D不符合题意.故选:B.4.解:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正确;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②错误;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正确;∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°,故④正确.故选:C.5.解:∵分式的值为0,∴x2﹣9=0且x﹣3≠0,解得:x=﹣3,故选:D.6.解:把x=﹣2,y=1代入原方程组,得,解得.∴(a+b)(a﹣b)=﹣16.故选:C.7.解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.8.解:若甲数为x,乙数为y,可列方程为y﹣3x=2.故选:C.9.解:原式=﹣(4x2+y2﹣4xy+k)=﹣[(2x﹣y)2+k]显然根据平方差公式的特点,两个平方项要异号才能继续分解又由y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,可知第二个数是1则k=﹣1.故选:B.10.解:∵任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b+1.∴实数对(﹣2,3)放入其中得到实数m=4+3+1=8.则再将实数对(8,1)放入其中,得到的实数是64+1+1=66.故选:C.二.填空题(共10小题,满分30分,每小题3分)11.解:原式=3ac(3b﹣c).故答案为:3ac(3b﹣c).12.解:把x=﹣2,y=1代入二元一次方程3x+5y﹣k=1,得﹣6+5﹣k=1,解得k=﹣2,则2k﹣1=﹣4﹣1=﹣5.13.解:∵∠2=97°,∴∠5=∠2=97°,∵∠1=83°,∴∠1+∠5=180°,∴a∥b,∴∠4=∠3,∵∠3=100°,∴∠4=100°,故答案为:100°.14.解:如图:过B作AC的垂线,垂足为D,∵B点在AC上的投影是D点,G点在水平方向上速度4×=2,P点在水平方向速度与Q点相同,都是1,∴G点与P点相遇时,时间为:6÷(2+1)=2s,又∵相遇时,AQ=1×2=2,∴PQ=AQ×=2,∴G点在PQ上从P运动到Q点需要时间是:PQ÷4==s,又∵当运动到Q点时,AQ=1×2+1×=2+∴余下的CQ=AC﹣AQ=6﹣AQ=4﹣,∴G点到达C点所需时间:CQ÷4=(4﹣)÷4=(1﹣)s,所以总的时间是2++(1﹣)=(3+)s故而答案应填:(3+)s15.解:根据题意知该组的人数为1600×0.4=640(人),故答案为:640.16.解:∵﹣==5,∴a﹣b=﹣5ab,则原式===.故答案为:.17.解:∵a m=2,a n=3,∴a3m+2n=(a m)3×(a n)2=23×32=72.故答案为:72.18.解:x4+4=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)=[(x+1)2+1][(x﹣1)2+1],∴原式=.故答案为:.19.解:根据题意可得,四边形ABCD的面积=(a2+b2)﹣﹣b(a+b)=(a2+b2﹣ab)=(a2+b2+2ab﹣3ab)=[(a+b)2﹣3ab];代入a+b=10,ab=20,可得:四边形ABCD的面积=(10×10﹣20×3)÷2=20.故答案为:20.20.解:3=2+1;5=3+2;8=5+3;13=8+5;…可以发现:从第三个数起,每一个数都等于它前面两个数的和.则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=55.故答案为55.三.解答题(共6小题,满分50分)21.解:(1)原式=x2y2•(﹣12x2y2)÷(﹣x3y)=xy3(2)原式=1×2×2+9×8﹣72=422.解:(1)两边都乘以(x+1)(x﹣1),得:x(x﹣1)﹣(x﹣3)=(x+1)(x﹣1),解得:x=2,当x=2时,(x+1)(x﹣1)=3≠0,所以原分式方程的解为x=2;(2)①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,则方程组的解为.23.解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).24.解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案为:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=∠MBE,∠CDN=∠NDE,∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②由①代入②,可得∠F=∠E,即.故答案为:.25.解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.26.解:设甲组单独完成需x天,乙组单独完成需y天,则根据题意,得设a=,b=,则解得所以,即经检验,符合题意.即甲组单独完成需12天,乙组单独完成需24天.再设甲组工作一天应得m元,乙组工作一天应得n元.则,解得经检验,符合题意.所以甲组单独完成需300×12=3600(元),乙组单独完成需140×24=3360(元).故从节约开支角度考虑,应选择乙组单独完成.答:这家店应选择乙组单独完成.四.解答题(共2小题,满分20分,每小题10分)27.解:(1)∠ABE+∠CDE=∠BED.理由:如图1,作EF∥AB,∵直线AB∥CD,∴EF∥CD,∴∠ABE=∠1,∠CDE=∠2,∴∠ABE+∠CDE=∠1+∠2=∠BED,即∠ABE+∠CDE=∠BED.故答案为:∠ABE+∠CDE=∠BED.(2)∠BFD=∠BED.理由:如图2,∵BF,DF分别平分∠ABE,∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠ABF+∠CDF=∠ABE+∠CDE=(∠ABE+∠CDE),由(1),可得∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)∠BED=∠ABE+∠CDE,∴∠BFD=∠BED.(3)2∠BFD+∠BED=360°.理由:如图3,过点E作EG∥CD,,∵AB∥CD,EG∥CD,∴AB∥CD∥EG,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠CDE+∠BED=360°,由(1)知,∠BFD=∠ABF+∠CDF,又∵BF,DF分别平分∠ABE,∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=(∠ABE+∠CDE),∴2∠BFD+∠BED=360°.故答案为:2∠BFD+∠BED=360°.28.解:设y=,将y代入原方程得,﹣2y=1两边同乘y得:1﹣2y2=y,解之得:y=﹣1或y=再将两解代入y=得x有意义.∴y1=﹣1,y2=。
2018学年度七下数学期末培优训练卷注意事项:本卷共26题,满分:120分,考试时间:100分钟.一、精心选一选(本题共10小题,每小题3分,共30分)1.下列计算正确的是()A.(-a2b3)2=-a4b6B.(a-2b)2=a2-4b2C.a3(-a2)=-a5D.8a3÷2a3=42.若多项式除以2x2-3,得到的商式为7x-4,余式为-5x+2,则此多项式为()A.14x3-8x2-26x+14B.14x3-8x2-26x-10C.-10x3+2x2-8x-10D.-10x3+4x2+22x-103.将数3.06×10-5用小数可表示为()A.0.0306B.0.00306C.0.000306D.0.00003064.如果方程组37102(1)5x yax a y+=⎧⎨+⎩-=的解中的x与y的值相等,那么a的值是()A.1B.2C.3D.45.下列因式分解错误的是()A.2a2b3-4ab2=2ab2(ab-2)B.x2-5x+6=(x-2)(x-3)C.a2-(b-c)2=(a+b-c)(a-b+c)D.-2a2+4a-2=-2(a+1)26.如图,将一块含30°的直角三角板的两个顶点放在直尺的对边上,如果∠1=40°,那么∠2的度数为()A.20°B.30°C.40°D.40°A.21x x - B.211x x ++ C.211x x -- D.11x x -+ 8.下列式子中,是最简分式的为( )A.327a b -B.2411x x --C.235b a -D.2223a b ab ab+9.下列调查中,需要用普查的是( )A.了解某市学生的视力情况B.了解某市中学生课外阅读情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练情况10.为了广泛开展阳光健身活动,2013年某中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元,下列扇形统计图和折线统计图分别反映的是2013年投入资金分配和2011年以来购置器材投入资金的年增长率的具体数据.2013年投入资金分配统计图 2011年以来购置器材投入资金年增长率统计图根据以上信息,下列判断:①2013年总投入中购置器材的资金最多;②2012年购置器材投入资金比2013年购置器材投入资金多8%;③若2014年购置器材投入资金的年增长率与2013年购置器材投入资金的年增长率相同,则2014年购置器材的投入是38×38%×(1+32%)万元.其中正确判断的个数是( )A.3个B.2个C.1个D.0个 二、细心填一填(本题共8小题,每小题3分,共24分) 11.分解因式:a 2-b 2+2b -1=_________________________. 12.若4x 2-kx+9是完全平方式,则k =_________________.13.若x+y =1,则式子(x+22xy y x+)÷x yx +的值为____________.15.若M 、N 都表示单项式,且3x(M -5x)=6x 2y 3+N ,则M =_______________,N =_________. 16.如图是一条街道的两个拐角,∠ABC =140°,∠BCD =140°,则街道AB 与CD 的位置关系是________,这是因为______________________________________.第16题图 第17题图 第18题图17.如图所示,将直角三角形ABC 沿AB 方向平移5cm 后得到直角三角形DEF ,DF 与BC 相交于点G ,若BC=8cm ,CG =3cm ,则图中四边形ACGD(阴影部分)的面积是____cm 2. 18.如图,下列判断:①∠A 与∠1是同位角;②∠A 与∠B 是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角;⑤∠2与∠3是对顶角,其中正确的是____________.(只填正确判断的序号)三、解答题(本题共8小题,第19、20每小题各8分;第21、22每小题各6分;第23、24每小题各8分;第25题10分,第26小题12分,共66分) 19.(1)计算:(2x -1)2+(x -2)(x+2)-4x(x -12).(2)先化简,再求值:(222a a a +-+284a -)÷24a a-,其中a 满足a 2+4a+1=0.20.(1)解分式方程:22x x -+-2164x -=1+42x -.(2)已知x 、y 满足方程组2 4 2313 x y x y -=-⎧⎨+=⎩①②,求代数式x -y 的值.21.李老师在一节数学复习课上,利用投影出示了下面一道例题,要求根据例题解答来探究其方法,然后请你依据探究的方法解答后面提出的问题.例题:已知:二次三项式x 2-4x+m 有一个因式是(x+3),求另一个因式及m 的值. 解:设另一个因式为(x+n),由题意,得:x 2-4x+m =(x+3) (x+n)∴343nm n+=-⎧⎨=⎩,解得:m=-21,n=-7,∴另一个因式为(x-7),m的值为-21.提出问题:已知:二次三项式2x2+3x-k有一个因式是(2x-5),求另一个因式及k的值.22.如图,点D、E、F分别在AB、BC、AC上,且DE∥AC,EF∥AB,则∠A+∠B+∠C=180°.完成下面的说理过程:已知DE∥AC,EF∥AB,根据(______________________________________),得∠1=_______,∠3=______,已知EF∥AB,根据(______________________________________),得∠2=________,根据(______________________________________),得∠4=______,∴∠2=______(等式性质),又根据(______________________________________),得∠1+∠2+∠3=180°,∴∠A+∠B+∠C=180°(等式性质).23.在正方形网格中,每个小正方形的边长均为1个单位长度,三角形ABC的三个顶点的位置如图所示,现将三角形ABC平移,使点A平移到点D处变换为D,点E、F分别是B、C的对应点.(1)请画出平移后的三角形DEF,并说出是怎样平移的;(2)若连接BE,CF,则这两条线段之间的关系是什么?(3)求出三角形ABC的面积.24.如图,已知:线段AD与BE相交于点F,E、D、C在一条直线上,且∠1+∠2=180°,∠A=∠C,试说明AB∥EC,并在每个步骤的后面写出根据.25.某校为了解学生阅读课外书籍情况,随机抽取了部分学生阅读情况,并绘制了如下频数统计表.组别频数频率科普常识 a 0.56文学名著32 b漫画丛书30 0.15其它 c d(1)这次随机抽查了_________名学生;频数分布表中a=______,c=______;(2)请你利用表格中的数据绘制扇形统计图;(3)若该校有1800名学生,请你估计该校约有多少名学生阅读文学名著?26.为提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场,现有甲、乙两个工厂都具备精加工能力,公司派出两名管理人员到这两间工厂了解情况,获取了如下信息:根据以上信息解答下列问题:(1)求甲、乙两个工厂每天分别能加工多少件新产品;(2)公司将1200件新产品交甲、乙两个工厂一起加工3天后,根据产品质量和市场需求,决定将剩余产品交乙工厂单独加工,求该公司这批产品的加费用为多少元? 1.甲工厂单独加工完成这批产品比乙工厂单独完成这批产品多用10天;2.乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.3.甲工厂加工一天,乙工厂加工2天共需要加工费11200元,甲工厂加工2天,乙工厂加工3天共需加工费18400元.参考答案一、精心选一选(本题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 D A D B D A B C C A 二、细心填一填(本题共8小题,每小题3分,共24分)13. 1; 14. 2或3;15. 2xy 3,-15x 2; 16. 平行,内错角相等,两直线平行;17. 32.5; 18. ①②③⑤.三、解答题(本题共8小题,第19、20每小题各8分;第21、22每小题各6分;第23、24每小题各8分;第25题10分,第26小题12分,共66分)19.解:(1)原式=4x 2-4x+1+x 2-4-4x 2+2x=x 2-2x -3(2)(222a a a +-+284a -)÷24a a- = ()2(2-+a a a -)2)(2(8-+a a )×)2)(2(-+a a a =)2-)(2()2-(2a a a a +×)2)(2(-+a a a =4412++a a ,由a 2+4a+1=0得 a 2+4a =-1,∴原式=114-+=31. 20.解:(1)把方程两边都乘以(x+2)(x -2)得:(x -2)2-16=(x+2)(x -2)+4(x+2),去括号,得:x 2-4x+4-16=x 2-4+4x+8,移项,合并同类项得:-8x =16,解得:x =-2,检验:当x =-2时,(x+2)(x -2)=0,∴x =-2是原分式方程的增根,∴原方程无解.(2)由①得:x =2y -4 ③把③代入②得:2(2y -4)+3y=13,解得:y =3,把y =3代入③得:x =2×3-4=2,∴x -y =2-3=18.21.解:设另一个因式为(x+a),根据题意,得:2x 2+3x -k =(2x -5)(x+a),则2x 2+3x -k =2x 2+(2a -5)x -5a ,∵⎩⎨⎧==-ak a 5352,解得:a =4,k =20, ∴另一个因式为(x+4),k 的值为20.22.已知 DE ∥AC ,EF ∥AB ,根据(两直线平行,内错角相等),得∠1=∠C ,∠3=∠B ,已知EF ∥AB ,根据(两直线平行,内错角相等),得∠2=∠4,已知DE ∥AC ,根据(两直线平行,同位角相等),得∠4=∠A ,∴∠2=∠A (等式性质),又根据(平角定义),得∠1+∠2+∠3=180°,∴∠A+∠B+∠C =180°(等式性质).23.解:(1)画图如图①,把三角形ABC 向下平移两个单位,再向左平移5个单位即可得到三角形DEF ;(2)BE ∥CF ,且BE =CF ;(3)如图②,三角形ABC 的面积=3×3-12×1×2-12×2×3-12×1×3=3.5.24.证明:∵线段AD 与BE 相交于点F (已知),∴∠BFD =∠1(对顶角相等),∵∠1+∠2=180°(已知),∴∠BFD+∠2=180°(等式性质),∴AD ∥BC (同旁内角互补,两直线平行),∴∠ADE =∠C (两直线平行,同位角相等)又∵∠A =∠C (已知),∴∠ADE =∠A (等量代换),∴AB ∥EC (内错角相等,两直线平行).25.解:(1)30÷0.15 =200(名),a =200×0.56=112,c =200-112-32-30=36,答:这次随机抽查了200名学生;a ,c 的值分别为112,36.(2)b =32÷200=0.16,d =36÷200=0.13,(3)1800×0.16=288(名)答:估计该校约有288名学生阅读文学名著.26.解:(1)设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品, 由题意,得:x 1200-x.511200=10, 解得:x =40,经检验x =40是原分式方程的解,∴1.5x =60,答:甲工厂每天能加工40件新产品,则乙工厂每天能加工60件新产品.(2)设甲工厂单独加工每天需要费用a 元,乙工厂单独加工每天需要费用b 元,由题意,得:⎩⎨⎧=+=+1840032112002b a b a , 解得:⎩⎨⎧==40003200b a , 加工3天后的时间为:6060403-1200)(+=15(天), 3×3200+(15+3)×4000=81600(元),答:该公司这批产品的加工费用为81600元.。
2017-2018学年浙江省丽水市七年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算:a•a5=()A.a B.5a2C.a5D.a62.将0.00129用科学记数法表示正确的是()A.1.29×10﹣3B.1.29×10﹣5C.129×105D.12.9×10﹣23.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.130°B.110°C.80°D.70°4.分式可变形为()A.B.C.﹣D.﹣5.下列各因式分解正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+2x﹣1=(x﹣1)2C.4x2﹣4x+1=(2x﹣1)2D.x2﹣4x=2(x+2)(x﹣2)6.将数据83,85,87,89,84,85,86,88,87,90分组,86.5~88.5这一组的频率是()A.0.1B.0.2C.0.3D.0.47.若a+b=3,ab=1,则(a﹣b)2=()A.4B.5C.6D.78.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣9.甲、乙两人每小时一共做35个电器零件,两人同时开始工作,当甲做了90个零件时乙做了120个零件,设甲每小时能做x个零件,根据题意可列分式方程为()A.B.C.D.10.如图,在四边形纸片ABCD中,∠B+∠D=n°,现将∠A向内折出三角形EAF,使EA′∥CD,F A′∥BC,则∠A的度数是()A.n°B.()°C.(180﹣)°D.(90+)°二、填空题(本题有6小题,每小题3分,共18分)11.因式分解:m2﹣m=.12.若分式=0,则x=.13.如图的折线统计图分别表示我市A县和B县在4月份的日平均气温的情况,记该月A县和B县日平均气温是12℃的天数分别为a天和b天,则a+b=.14.若(x+1)(x+a)展开是一个二次二项式,则a=15.把两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到C方向平移到三角形DEF 的位置,AB=9,DH=3,平移距离为4,则阴影部分的面积是.16.已知一列数:a1=2,a2=a1+4,a3=a2+6,……,a n=a n﹣1+2n(n为正整数,n≥2),(1)a4的值是;(2)当n=2018时,则a n﹣37n+324的值是.三、解答题(本题有8小题,共52分)17.(1)计算:(﹣3a)2÷a(2)化简:(2a﹣3)(2a+3)+918.解方程(组)(1)(2)19.先化简,再求值:,其中x=﹣2.20.如图,在正方形网格中有一个三角形ABC,图中每一个小正方形边长为1,按要求完成下列各题:(1)将三角形ABC向右平移2格,再向上平移3格后得到三角形DEF,画出三角形DEF;(2)求三角形DEF的面积.21.已知:如图,BD∥CE,AC⊥BD于点G.(1)求∠ACE的度数;(2)若∠B=∠DCE,请问AB与CD是否平行?并说明理由.22.某校为了解480名七年级学生拓展课程选课情况(每位学生限选一门课程),随机抽查了a名学生,并将抽查结果绘制成两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:选择知识类课程的人数统计表课程名称课程代码选课人数《美文欣赏》A20《数学思维》B15《英语阅读》C B《科学奥秘》D10《社会思辨》E25(1)求a,b的值;(2)统计图中阴影部分表示未选择知识类课程学生所占的比例,请计算该比例;(3)学校计划为选择参加知识类课程的学生每人准备一个资料袋,请你根据样本数据估计学校要准备的资料袋数量.23.某商店甲、乙两种商品三天销售情况的账目记录如下表:日期卖出甲商品的数量(个)卖出乙商品的数量(个)收入(元)第一天3921321第二天2614204第三天3925345(1)财务主管在核查时发现:第一天的账目正确,但其它两天的账目有一天有误,请你判断第几天的账目有误,并说明理由;(2)求甲、乙商品的单价.24.如图,在长方形ABCD中,在边AB,BC上分别取点E,F,使得BE=3AE,CF=2BF,CE与DF 交于点O,设AB=a,BC=b,三角形FOC的面积为x(1)请用含a,b,x的代数式表示三角形COD的面积;(2)连结OA,OB,若三角形AOB的面积为10,三角形COD的面积为8时,求长方形ABCD的面积;(3)当AB=4,BC=9时,求x的值.2017-2018学年浙江省丽水市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.【解答】解:a•a5=a6.故选:D.2.【解答】解:0.00129=1.29×10﹣3,故选:A.3.【解答】解:∵a∥b,∴∠3=∠1=70°,∴∠2=180°﹣∠3=110°.故选:B.4.【解答】解:=﹣,故选:D.5.【解答】解:A、原式=﹣x(x﹣4),不符合题意;B、原式不能分解,不符合题意;C、原式=(2x﹣1)2,符合题意;D、原式=x(x﹣4),不符合题意,故选:C.6.【解答】解:86.5~88.5有87,88,87,所以这一组的频率是3÷10=0.3,故选:C.7.【解答】解:∵a+b=3,ab=1,∴原式=(a+b)2﹣4ab=9﹣4=5,故选:B.8.【解答】解:,①+②得:2x=14k,即x=7k,将x=7k代入①得:7k+y=5k,即y=﹣2k,将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,解得:k=.故选:B.9.【解答】解:设甲每小时能做x个零件,根据题意可得:,故选:A.10.【解答】解:∵EA′∥CD,F A′∥BC,∴∠AEA′=∠D,∠AF A′=∠B,由折叠可得∠AEF=∠AEA′,∠AFE=∠AF A′,∴∠AEF+∠AFE=(∠B+∠D)=n°,∴∠A=(180﹣n)°.故选:C.二、填空题(本题有6小题,每小题3分,共18分)11.【解答】解:m2﹣m=m(m﹣1)故答案是:m(m﹣1).12.【解答】解:由题意可得x2﹣9=0且x+3≠0,解得x=3.故答案为3.13.【解答】解:根据图表可得:a=7,b=5,则a+b=7+5=12.故答案为:12.14.【解答】解:原式=x2+(a+1)x+a,由结果为关于x的二次三项式,得到a+1=0或a=0,则a=﹣1或a=0.故答案为:﹣1或0.15.【解答】解:∵△ABC沿着点B到点C的方向平移到△DEF的位置,∴△ABC≌△DEF,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=4,∵AB=9,DH=3,∴HE=DE﹣DH=9﹣3=6,∴阴影部分的面积=×(6+9)×4=30.故答案为:30.16.【解答】解:(1)观察规律可知,a n比a n﹣1多2n.则a4的=2+4+6+8=20(2)由已知n=2018时,a2018=2+4+6+……+2×2018=2×(1+2+3+……+2018)=2×=2019×2018∴a2018﹣37×2018+324=2019×2018﹣37×2018+324=4000000故答案为:(1)20,(2)4000000三、解答题(本题有8小题,共52分)17.【解答】解:(1)原式=9a2÷a=9a;(2)原式=4a2﹣9+9=4a2.18.【解答】解:(1),①﹣②×2,得:x=﹣5,将x=﹣5代入②,得:﹣5+y=7,解得:y=12,所以方程组的解为;(2)两边都乘以x﹣1,得:x﹣2(x﹣1)=2,解得:x=0,检验:x=0时,x﹣1=﹣1≠0,∴分式方程的解为x=0.19.【解答】解:原式=÷(+)=÷=•=x,当x=﹣2时,原式=﹣2.20.【解答】解:(1)如图所示:△DEF即为所求;(2)△DEF的面积为:×2×3=3.21.【解答】解:(1)∵AC⊥BD,∴∠AGD=90°,∵BD∥CE,∴∠ACE=∠AGD=90°;(2)AB∥CD,理由如下:∵BD∥CE,∴∠D=∠DCE,∵∠B=∠DCE,∴∠B=∠D,∴AB∥CD.22.【解答】解:(1)a=20÷20%=100、b=100×10%=10;(2)未选择知识类课程学生所占的比例为×100%=20%;(3)480×(1﹣20%)=384,答:根据样本数据估计学校要准备的资料袋数量为384个.23.【解答】解:(1)第二天的账目有误,理由如下:设甲、乙商品的单价分别为x,y元,可得:第一天:39x+21y=321①;第二天:26x+14y=204②;第三天:39x+25y=345③,由①÷3,得:13x+7y=107,由②÷2,得:13x+7y=102,∵第一天的账目正确,∴第二天的账目错误;(2)由(1)得:第二天的账目错误,∴,③﹣①得:y=6,把y=6代入①得:x=5,所以方程组的解为:,答:甲、乙商品的单价分别为5元,6元.24.【解答】解:(1)∵AB=a,∴CD=a,∵BC=b,CF=2BF,∴CF=,∴三角形COD的面积=三角形CDF的面积﹣三角形COF的面积=ab﹣x;(2)解:如图,过点O作GH∥AB交AD于G,交BC于H,∵AB∥CD,∴GH∥CD,∴四边形ABHG和四边形HCDG都是长方形,∴长方形ABHG的面积=2×10=20,长方形HCDG的面积=2×8=16,∴长方形ABCD的面积=20+16=36;(3)解:设△AOE的面积为y,则△BOE的面积=3y,△AOB的面积=4y,∴S△BOC=x,S△FCD=××9×4=12,S△CBE=××4×9=,∴S△COD=12﹣x,∵S△BOE=S△CBE﹣S△BOC,∴﹣x=3y①,∵S△AOB+S△COD=S长方形ABCD,∴4y+12﹣x=18②,解①②构成的方程组,得x=4.。
2017-2018学年七年级(下)期末数学试题班级_____________姓名____________学号______________得分_____________ 一、选择题(每小题3分,共30分)1.若1x y k =⎧⎨=⎩,是二元一次方程23x y -=的一个解,则k 的值是( )A .-1B .0C .1D .22.如图,已知∠1=70°,要使AB ∥CD ,则须具备另一个条件( )A .∠2=70°B .∠2=100°C .∠2=110°D .∠3=70°[来源:学。
科。
网]3.若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x yx4.因式分解(x -1)2-9的结果是( )A. (x +8)(x +1)B. (x +2)(x -4)C. (x -2)(x +4)D. (x -10)(x +8)5.下面是小马虎同学在一次数学测验中的计算摘录,其中正确的是( )A .()()23a a a -=-÷- B .()523a a =C .()532623xxx -=-⋅D .()623ab ab =6.若分式1x 2x x 2+--的值为零,那么x 的值为( )A .x =-1或x =2B .x =0C .x =2D .x =-17.图是某校初中各年级人数占初中总人数的比例统计图,已知八年级有学生360人,那么七年级有学生数 ( )A .900人 B. 315人 C .225人 D. 360人 8.下列各式计算正确的是( )A.222a ab b a b b a -+=--;B.2232()x xy y x y x y ++=++ C.23546x x y y ⎛⎫= ⎪⎝⎭; D.11x y x y -=-+-9.如图,AB ∥CD ∥EF ,若∠ABC =50°,∠CEF =150°,则∠BCE =( ) A.60° B.50° C.30° D.20°F EDCB AG 1FEDCBA(第9题) (第13题) (第18题) 10.若分式方程a x ax =-+1无解,则a 的值是 ( ) A.-1 B. 1 C. ±1 D.-2 二、填空题(每小题3分,共30分) 11.计算:534515a b c a b -÷=12.因式分解:=+-m mx mx 2422;13.如图,AB ⊥EF ,CD ⊥EF ,∠1=∠F =45°,那么与∠FCD 相等的角有___个,它们分别是____。
绝密★启用前2017-2018学年度第二学期 浙教版七年级期末考试数学备考试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.做题时,要平心静气,书写要工整 一、单选题(计30分)1.(本题3分)如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=120°,第二次拐角∠B=150°.第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 为( )A. 120°B. 130°C. 140°D. 150° 2.(本题3分)下列运动属于平移的是( ) A. 荡秋千 B. 急刹车时,汽车在地面上的滑动 C. 地球绕着太阳转 D. 风筝在空中随风飘动 3.(本题3分)如图,已知AB 、CD 、EF 互相平行,且∠ABE =70°,∠ECD = 150°,则∠BEC 是( )A. 30°B. 40°C. 50°D. 60° 4.(本题3分)下列各式中,是二元一次方程的是 ( ) A.B.C. x-21D.5.(本题3分)方程组的解是( )A. B. C. D. 6.(本题3分)(2017届广东省深大附中等五校九年级下学期第一次联考数学试卷)为了开展阳光体育活动,丰富同学们的课余生活,体育委员欧阳锋到体育用品商店购羽元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得A. B.C. D.7.(本题3分)下列计算正确的是 ( )A. a3+a2=2a5B. a6÷a2=a3C. (a-b)2=a2-b2D. (-2a3)2=4a68.(本题3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分剪下,拼成右边的矩形,由图形①到图形②的变化过程能够验证的一个等式是()A. a(a+b)=a2+abB. a2﹣b2=(a+b)(a﹣b)C. (a+b)2=a2+2ab+b2D. a(a﹣b)=a2﹣ab9.(本题3分)下列调查中,适宜采用抽样调查的是()A. 了解重庆市中学生的课余爱好B. 检查“神舟”飞船的各零部件C. 调查某校九年级一班的同学收看“最强大脑”的情况D. 调查七年级一班做家务的时间10.(本题3分)某工厂现在平均每天比原计划每天多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同,设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. B. C. D.二、填空题(计32分)11.(本题4分)如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到∆DEF的位置,AB=12cm,DH=4cm,平移的距离是8cm,则阴影面积是________.12.(本题4分)如图,已知AB∥CD,若∠E=15º∠C=55º,则∠A的度数为_____________13.(本题4分)若方程组的解适合x+y=2,则k 的值为_____. 14.(本题4分)若多项式x 2﹣(k+1)x+9是完全平方式,则k=______. 15.(本题4分)分解因式:x y2+8xy+16x=______________________.16.(本题4分)解分式方程:,则方程的解是___________________.17.(本题4分)为了了解全校七年级300名学生的视力情况,王老师从中抽查了50名学生的视力情况.样本是______________________. 18.(本题4分)用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则x 2+y 2=_______三、解答题(计58分)19.(本题8分)分解因式: (1)x 4﹣2x 2y 2+y 4; (2) .20.(本题8分)解下列二元一次方程组(1) (2) (3)21.(本题8分)如图,在平面直角坐标系中,A (-1,5),B (-1,0),C (-4,3).(1)求ΔABC 的面积;(2)在图中画出ΔABC 向右平移3个单位,再向下平移2个单位的图形△A 1B 1C 1; (3)写出点A 1,B 1,C 1的坐标.22.(本题8分)如图,直线AB 、CD 相交于点O ,OE 把∠BOD 分成两部分; (1)直接写出图中∠AOD 的对顶角为 ,∠BOD 的邻补角为 ; (2)若∠BOE=28°,且,求的度数.23.(本题8分)如图,在方格纸中,每个小正方形的边长均为1个单位长度,有一个,它的三个顶点均与小正方形的顶点重合.(1)将△ABC 向左平移4个单位长度,得到△DEF (A 与D ,B 与E ,C 与F 对应),请在方格纸中画出△DEF ;(2)在(1)的条件下,连接AE 和AF ,请计算△AEF 的面积S.24.(本题9分)某校初三学生组织甲、乙两个旅行团去某景点旅游,已知甲团人数少于50人,乙团人数不超过100人.下面是小明与其他两位同学交流的情况.根据他们的对话,组织者算了一下,若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元.(1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?25.(本题9分)每年的4月23日是“世界读书日”,今年其主题是“今天你读了吗”,某学校为了解八年纺学生的课外阅读情况,随机抽查部分学生,并对其4月份的课外阅读量进行统计分析,绘制成如图所示的统计图数据不完整.根据图示信息,解答下列问题:求被抽查学生的人数及课外阅读量的众数; 在扇形统计图中填写和的值,并将条形统计图补充完整;若规定:4月份阅读3本以上含3本课外书籍者为完成阅读任务,据此估计该校八年级600名学生中,完成4月份课外阅读任务的约有多少人?参考答案1.D【解析】分析:首先过B作BE∥AM,根据AM∥CN,可得AM∥BE∥CN,进而得到∠A=∠1,∠2+∠C=180°,然后可求出∠C的度数.详解:过B作BE∥AM,∵AM∥CN,∴AM∥BE∥CN,∴∠A=∠1,∠2+∠C=180°,∵∠A=120°,∴∠1=120°,∵∠ABC=150°,∴∠2=150°﹣120°=30°,∴∠C=180°﹣30°=150°.故选:D.点睛:此题主要考查了平行线的判定与性质,添加辅助线,构造平行线,利用两直线平行,内错角相等和两直线平行,同旁内角互补是解题关键.2.B【解析】分析:根据平移的定义,对选项进行一一分析,排除错误答案.详解:A. 荡秋千是旋转,故此选项错误;B. 急刹车时,汽车在地面上的滑动,符合平移定义,属于平移,故本选项正确;C. 地球绕着太阳转,不属于平移,故本选项错误.D. 风筝在空中随风飘动,不属于平移,故此选项错误;故选:B.点睛:考查平移的定义,熟记平移的定义是解题的关键.3.B【解析】分析:根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差即可.详解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°.故选B.点睛:本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.4.A【解析】分析:二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.详解:A. 是二元一次方程,故此选项正确;B. 只含有一个未知数,不是二元一次方程,故此选项错误;C. 不是方程,故此选项错误;D. xy是二次,不是二元一次方程,故此选项错误;故选:A.点睛:考查二元一次方程的定义,熟记定义是解题的关键.5.B【解析】分析:先用加减消元法求出x的值,再用代入消元法求出y的值即可.详解:,①+②得,2x=12,解得x=6;把x=6代入②得,6-y=2,解得y=4.故此方程组的解为.故选B.点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.6.A【解析】根据题意可知:两个等量关系,若购1副羽毛球拍和1副乒乓球拍共需50元,欧阳锋一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,然后可列方程组为:.故选A.7.D【解析】分析:根据合并同类项法则,同底数幂相除,完全平方公式,积的乘方的性质逐一判断即可.详解:由于a3和a2不是同类项,不能计算,故不正确;根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;根据完全平方公式,可知C. (a-b)2=a2-2ab+b2,故不正确;根据积的乘方,等于各个因式分别乘方,可知(-2a3)2=4a6,故正确.故选:D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.8.B【解析】分析:用含“a、b”的式子分别表达出图①中阴影部分的面积和图②的面积,两者进行对比即可得到结论.详解:由图形①可知剪掉后剩下的图形面积是:a2-b2,由题意可得:图形②的长为(a+b),宽为(a﹣b),∴图形②的面积是:(a+b)(a﹣b),又∵由题意可知,图形①中剩下部分的面积和图形②的面积相等,∴a2-b2 =(a+b)(a﹣b)故选B.点睛:明白图①中阴影部分的面积和图②的面积相等是解答本题的关键.9.A【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解重庆市中学生的课余爱好,不宜采用全面调查,易抽样调查,故本选项正确.B、检查“神舟”飞船各零部件的质量,需作全面调查,不宜采用抽样调查,故本选项错误;C、调查某校九年级一班的同学收看“最强大脑”的情况,比较容易做到,需作全面调查,不宜采用抽样调查,故本选项错误;D、调查七年级一班做家务的时间,需作全面调查,不宜采用抽样调查,故本选项错误.故选A.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.A【解析】分析:根据题意可知现在每天生产(x+50)台机器,而现在生产800台所需时间和原计划生产600台机器所用时间相等,从而列出方程即可.详解:依题意,原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,由现在生产800台机器所需时间与原计划生产600台机器所需时间相同得:.故选A.点睛:本题考查了列分式方程应用,利用本题中“现在平均每天比原计划每天多生产50台机器”这一条件,继而列出方程是解本题的关键.11.80cm2【解析】分析:根据平移的性质可知:AB=DE,BE=CF;由此可求出EH和CF的长.由于CH∥DF,可得出△ECH∽△EFD,根据相似三角形的对应边成比例,可求出EC的长.由EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可求出阴影部分的面积.详解:根据题意得:DE=AB=12;BE=CF=8;CH∥DF,∴EH=12﹣4=8;EH:HD=EC:CF,即8:4=EC:8,∴EC=16,∴S△EFD=×12×(16+8)=144;S△ECH=×16×8=64,∴S阴影部分=144﹣64=80(cm2).故答案为:80cm2.点睛:本题考查了平移的性质、相似三角形的判定与性质及有关图形的面积计算,有一定的综合性.12.40°【解析】分析:根据两直线平行,同位角相等可得∠1=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.详解:如图,∵AB∥CD,∴∠1=∠C=55°,∴∠A=∠1−∠E=55°−15°=40°.故答案为:40°.点睛:本题考查了平行线的性质,三角形的外角性质.13.3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.14.5或﹣7.【解析】分析:利用完全平方公式的结构特征判断即可.详解:∵多项式x2﹣(k+1)x+9是完全平方式,∴k+1=±6,解得:k=5或﹣7.故答案为:5或﹣7.点睛:本题考查了完全平方式,熟练掌握完全平方公式是解答本题的关键.15.x(y+4)2【解析】分析:此多项式有公因式,应先提取公因式,再对余下的多项式进行观察发现是完全平方公式.详解:+8xy+16x=+8y+16)=x(y+4)².故答案为:x(y+4)2.点睛:本题考查了提公因式法与公式法的综合运用.16.x= - 1【解析】分析:找出各分母的最简公分母,去分母后,去括号,移项合并,将x系数化为1,求出x的值,将x的值代入最简公分母中检验,即可得到原分式方程的解.详解:方程两边乘(x﹣2),得:2x=x﹣2+1,解得:x=﹣1,检验:当x=﹣1时,x﹣2≠0,所以原分式方程的解为x=﹣1.点睛:本题考查了解分式方程,熟悉分式方程的解法、分式的除法法则是解题的关键.17.50名学生的视力情况【解析】分析:样本是总体中所抽取的一部分个体,据定义即可求解.详解:本题考查的对象是某校七年级300名学生的视力情况,这个问题中的样本是所抽取的50名学生的视力情况,故答案为所抽取的50名学生的视力情况.点睛:本题主要考查了样本的定义,研究中实际观测或调查的一部分个体称为样本,我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,比较简单.18.20【解析】分析:大正方形的面积为36①,小正方形的面积为4②,则①+②得:2(x2+y2)=40.即可求解.详解:由题意可得:,由①+②可得:2(x2+y2)=40.即:x2+y2=20.点睛:本题考查了二元一次方程组的应用.19.(1)(x﹣y)2(x+y)2;(2)【解析】分析:(1)先用完全平方公式,再用平方差公式即可.(2)先提取公因式,再用完全平方公式即可.详解:(1)原式=.(2)原式=.点睛:(1)考查了完全平方公式、平方差公式;(2)考查了提取公因式法、完全平方公式.20.(1)(2)(3)【解析】分析:(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可;(3)方程组利用加减消元法求解即可.详解:(1)把①代入②得:解得:x=2,把x=2代入①得:则原方程组的解为(2)①+②得:4x=12,解得x=3,把x=3代入①得:解得:y=−1,则原方程组的解为(3)①+②得:5x=−5,即x=−1,把x=−1代入①得:解得:y=2,则原方程组的解为点睛:本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法.21.(1)7.5;(2)如图见解析;(3)A1(2,3),B1(2,-2),C1(-1,1).【解析】分析:(1)根据△ABC的面积等于底边AB乘以AB边上的高列式计算即可;(2)根据平移规律,找到A、B、C平移后的位置,然后连结即可;(3)根据网格结构得出A1,B1,C1的坐标.详解:(1)S△ABC=×5×3=7.5;(2)如图所示:(3)由图可知,A1(2,3),B1(2,-2),C1(-1,1).点睛:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22.(1)∠BOC,∠BOE;(2)138°【解析】分析:(1)利用对顶角、邻补角的定义直接回答即可;(2)根据对顶角相等和∠AOC:∠DOE=5:3,得到∠BOD:∠DOE=5:3,设∠BOD=5x,则∠DOE=3x,∠BOE=2x.求出x的值,即可得到结论.详解:(1)∠AOD的对顶角为∠BOC,∠AOE的邻补角为∠BOE;(2)∵∠AOC=∠BOD,∠AOC:∠DOE=5:3,∴∠BOD:∠DOE=5:3.设∠BOD=5x,则∠DOE=3x,∴∠BOE=∠BOD-∠DOE=5x-3x=2x.∵∠BOE=28°,∴2x=28°,∴x=14°,∴∠DOE=3x=3×14°=42°.∵∠DOE+∠COE=180°,∴∠COE=180°-∠DOE=180°-42°=138°.点睛:本题主要考查了对顶角,邻补角的定义,利用对顶角相等的性质和互为邻补角的两个角的和等于180°求解.23.(1)作图见解析;(2)22【解析】分析:(1)根据图形平移的性质画出平移后的三角形即可;(2)利用正方形的面积减去三个直角三角形的面积即可.详解:(1)如图所示,AEF就是平移得到的三角形;(2)在图中连接AE,AF.点睛:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.24.(1)见解析;(2)见解析.【解析】分析:(1)根据题意可知:甲团人数少于50人,乙团人数不超过100人,100×13=1300<1392,所以乙团的人数不少于50人,不超过100人.(2)利用本题中的相等关系是“两团共计应付门票费1392元”和“总计应付门票费1080元”,列方程组求解即可.详解:(1)假设乙团的人数为50人,因为甲旅行团人数少于50人,所以可得甲乙分别购票所需的钱数小于1300.又∵分别购票,两旅行团共计应付门票费1392元,∴可得出乙团的人数大于50人;(2)设甲团人数为x,乙团人数为y,由题意得:①当甲乙两团总人数在51~100人时,,解得:x=156(不合题意舍去),②当甲乙两团总人数在100人以上时,,解得:.答:甲旅行团有36人,乙旅行团有84人.点睛:本题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.25.(1)50;3;(2)补图见解析;(3)432人.【解析】分析:(1)根据读2本的人数与所占的百分比列式计算即可求出被调查的学生人数;求出阅读量为4本的人数,可以看出阅读量为3本的最多,再根据众数的定义即可得解;(2)根据各部分的百分比等于各部分的人数除以总人数的方计算求出a的值,再求出读4本的人数,然后根据百分比的求解方法列式计算即可求出b的值;(3)根据(2)的计算补全统计图即可;(4)根据完成阅读任务的人数所占的百分比,乘以总人数600,计算即可.详解:人,即被抽查的学生有50人.人.从统计图中的信息可知,阅读量为1本、2本、3本、4本、5本的人数分别为4人、10人、16人、14人、6人.所以,阅读量的众数为3本.答:被抽查的学生有50人,课外阅读量的众数是3本.(2)∵,,统计图补充图如下:(3)(人).答:完成4月份课外阅读任务的学生约有432人.点睛:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.。
2017-2018学年浙教版七年级下学期数学期末模拟试卷(3)一、选择题1.下列计算正确的是()A、(-x2)3=x5B、x8 ÷x4=x2C、x3+3x3=3x6D、(-x2)3=-x6+2.下列各式从左到右的变形中,是因式分解的为(??)A、x(a﹣b)=ax﹣bxB、x2﹣1+y2=(x﹣1)(x+1)+y2C、x2﹣1=(x+1)(x﹣1)D、ax+bx+c=x(a+b)+c+3.已知ΔABC中,∠A∶∠B∶∠C=3∶7∶8,则ΔABC的形状是()A、钝角三角形B、直角三角形C、锐角三角形D、都有可能+4.当x=3时,下列各式中值为零的分式是()A、B、C、D、+5.在多项式x2+9中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是()A、xB、3xC、6xD、9x+6.如图,已知a∥b,∠1=65°,则∠2的度数为()A、65°B、125°C、115°D、25°+7.绿化队原来用浸灌方式浇绿地,a天用水m吨,现在改用喷灌方式,可使这些水多用3天,那么现在比原来每天节约用水的吨数为()A、B、C、D、+8.多项式(x+2)(2x﹣1)﹣2(x+2)可以因式分解成(x+m)(2x+n),则m﹣n的值是()A、2B、﹣2C、4D、5+9.如图,AB∥EF∥CD,EG∥DB,则图中与∠1相等的角(∠1除外)共有(??)A、6个B、5个C、4个D、3个+10.若4x2﹣2(k﹣1)x+9是完全平方式,则k的值为(??)A、±2B、±5C、7或﹣5D、﹣7或5+二、填空题11.若方程组的解x、y互为相反数,则a= .+12.简便计算:= .+13.如表是某校八年级(8)班共50位同学身高情况的频数分布表,则表中的组距是,身高最大值与最小值的差至多是cm.组别(cm)频数(人)145.5~152..5 152.5~159.5 159.5~166.5 166.5~173.5 9 19 14 8+14.已知分式,当x=2时,分式无意义,则a=;当a为a<6的一个整数时,使分式无意义的x的值共有个.+15.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:(写出一个即可).+16.观察下列图形:已知a∥b,在第一个图中,可得∠1+∠2=180°,则按照以上规律,∠1+∠2+∠P1+…+∠P n= 度.+三、综合题17.计算:(1)、(-2xy2)2÷ xy(2)、(x+2)2+2(x+2)(x-4)-(x+3)(x-3)+18.计算(1)、计算:(2)、解方程:.+19.商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7000元.(1)、求该童装4月份的销售单价;(2)、若4月份销售这种童装获利8000元,6月全月商场进行“六一儿童节”促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?+20.综合题(1)、如图a示,AB∥CD,且点E在射线AB与CD之间,请说明∠AEC=∠A+∠C的理由.(2)、现在如图b示,仍有AB∥CD,但点E在AB与CD的上方,①请尝试探索∠1, ∠2,∠E三者的数量关系.②请说明理由.+21.某中学组织全体学生参加了“服务社会献爱心”的活动,为了了解九年级学生参加活动情况,从九年级学生中随机抽取部分学生进行调查,统计了该天他们打扫街道,去敬老院服务和到社区文艺演出的人数,并绘制了如下不完整的条形统计图和扇形统计图,其中到社区文艺演出的人数占所调查的九年级学生人数的,请根据两幅统计图中的信息,回答下列问题:(1)、本次调查共抽取了多少名九年级学生?(2)、补全条形统计图.(3)、若该中学九年级共有1400名学生,请你估计该中学九年级去敬老院的学生有多少名?+22.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)、若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(2)、该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<a<136,试求在这一天加工两种纸盒时,a的所有可能值.+。
2017-2018学年七年级(下)期末数学试卷一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的( )2•已知:如图,直线a , b 被直线c 所截,且a // b ,若/仁70°则/2的度数 是()D.D. 调查一架隐形战机的各零部件的质量情况8. 甲、乙两班学生植树造林,已知甲班每天比乙班多植所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据题意列出方程是() A 孔叫 B _ 'C 詆 ⑴D 山:U I5 9.已知x - =2,则代数式5X 2+ - 3的值为( ) 宣 xA . 27 B. 7C. 17 D . 2 10 .用如图①中的长方形和正方形纸板作侧面和底面, 做成如图②的竖式和横式 的两种无盖纸盒.现在仓库里有 m 张正方形纸板和n 张长方形纸板,如果做两 种纸盒若干个,恰好使库存的纸板用完,则m+n 的值可能是()A . 2013B . 2014 C. 2015 D . 2016二、填空题(每小题3分,共30分)11 .用科学记数法表示:0.00000706=—.12 .当x=—时,分式的值为0 .13 .如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC 的条件:—(一个即可). 7. A . 一儿一[i=2 1次方程组:「的解是() 5棵树,甲班植80棵树B .C - •&314 .某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是16•若多项式x2- kx+9是一个完全平方式,则常数k的值是_ .r“3&+2b a17 •计算: _ _ - -r~二=_____ •a a -b18. 若多项式x2- mx+n (m、n是常数)分解因式后,有一个因式是x- 2,则2m - n的值为___ •19. 已知:如图放置的长方形ABCD和等腰直角三角形EFG中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点F、G、D、C 在同一直线上,点G 和点D重合,现将△ EFG沿射线FC向右平移,当点F和点D重合时停止移动,若△ EFG与长方形重叠部分的面积是4cm2,则△ EFG向右平移了②若a=3,则b+c=9;③若C M0,则(1 - a) (1 - b) = +—a④若c=5,则a2+b2=15.其中正确的是____ (把所有正确结论的序号都填上)___ cm.,c满足a+b=ab=c,有下列结论:a^3ab+b =①若、解答题(共50 分)21 •计算下列各题(1)(-3) 1 2+ ( n+ 了)—2(2)(2x- 1) 2-(x- 1) (4x+3)(1)22 •解方程(组)3x+y=-2(2) ^― - : =2.' 72x-l l-2x23. 分解因式(1)2X2- 8(2)3灼-6xy2+3y3.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.1 本次接收随机抽样调查的男生人数为人,扇形统计图中良好”所对应的圆心角的度数为____________ ;2 补全条形统计图中优秀”的空缺部分;25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图2两幅不完整的统计图,请根据图中信息回答下列问题:合格 20% 不合格优秀30%(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到良好的人数.26. 为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A, B, C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套) 乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1) 问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元?(2) 求a, b的值.四、附加题(每小题10分,共20分)27. 已知:直线a// b,点A, B分别是a, b上的点,APB是a, b之间的一条折备用图备用图(1) ______________________________ 若/ 仁33°, / APB=74,则/2= 度.(2)若/ Q的一边与PA平行,另一边与PB平行,请探究/ Q,Z 1, 2间满足的数量关系并说明理由.(3)若/ Q的一边与PA垂直,另一边与PB平行,请直接写出/ Q,Z 1 , 2之间满足的数量关系.28•教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= ___ .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.参考答案与试题解析一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的()【考点】利用平移设计图案.【分析】根据平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等可得答案.【解答】解:根据平移可得B是平移可得到图形中的图案,故选:B.2•已知:如图,直线a,b被直线c所截,且a// b,若/仁70°则/2的度数是()A. 130°B. 110°C. 80°D. 70°【考点】平行线的性质.【分析】由a/b,根据两直线平行,同位角相等,即可求得/ 3的度数,又由邻补角的定义即可求得/ 2的度数.【解答】解:I a/ b,.•./ 3=Z 仁70°,vZ 2+Z 3=180°,•••/ 2=110°.3•分式打一有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 1【考点】分式有意义的条件.【分析】分母不为零,分式有意义,依此求解.【解答】解:由题意得X-1M0,解得X M 1.故选A.4. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a【考点】同底数幕的除法;同底数幕的乘法;幕的乘方与积的乘方.【分析】根据同底数幕的乘法、除法,积的乘方,幕的乘方,即可解答.【解答】解:A、a3x a4=a7,故本选项错误;B、a5* a=a\故本选项错误;C (ab2)3=a3b6,故本选项错误;D、正确;故选:D.5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y) =ax+ayB. x - 4x+4= (x- 2)C. 2a- 4b+2=2 (a-2b)D. x2- 16+3x= (x-4) (x+4) +3x【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据定义即可判断.【解答】解:A、结果不是整式的乘积的形式,不是因式分解,选项错误;B、是因式分解,选项正确;C 2a-4b+2=2 (a-2b+1),选项错误;D、结果不是整式的乘积的形式,不是因式分解,选项错误.故选B.6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查D. 调查一架隐形战机的各零部件的质量情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的杀伤半径,适合抽查,选项错误;B、了解全国中学生的身高情况,适合抽查,选项错误;C、对市场上某种饮料质量情况的调查,适合抽查,选项错误;D、调查一架隐形战机的各零部件的质量情况,适合全面调查,选项正确. 故选D.【考点】解二元一次方程组.【分析】方程组利用代入消元法求出解即可.7.A .fx+2y=10,尸2葢的解是(D. *y=2['、尸2\ 7=4 C.把②代入①得:x+4x=10,即x=2, 把x=2代入②得:y=4, 则方程组的解为: 故选A .8.甲、乙两班学生植树造林,已知甲班每天比乙班多植 5棵树,甲班植80棵树 所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据 题意列出方程是( )A 80B 80 _ 70C 80 JOD 80^ 70.乂:.二 二 1 .工 ” £ 工.工 乙 1【考点】由实际问题抽象出分式方程.【分析】设甲班每天植树x 棵,则乙班每天植树(x -5)棵,根据甲班植80棵 树所用的天数与乙班植70棵树所用的天数相等,列方程即可.【解答】解:设甲班每天植树x 棵,则乙班每天植树(x - 5)棵, +日石亠何 80 70由题意得, = .x 故选D .1 o 59.已知x - =2,则代数式5x 2+ - 3的值为( )A . 27 B. 7C. 17 D . 2【考点】完全平方公式.【分析】原式前两项提取5,利用完全平方公式变形,将已知等式代入计算即可 求出值.【解答】解:I x-—=2,•••原式=5 (只+丁)- 3=5[ (x - ) 2+2] - 3=30-3=27,故选A【解答】解:{囂笄10 .用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒•现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是()A. 2013B. 2014C. 2015D. 2016【考点】二元一次方程组的应用.【分析】设做竖式和横式的两种无盖纸盒分别为x个、y个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x、y的系数表示出m+n并判断m+n为5的倍数,然后选择答案即可.【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得丄+〉:一I x+2y=in,两式相加得,m+n=5 (x+y),••• x、y都是正整数,••• m+n是5的倍数,••• 2013、2014、2015、2016四个数中只有2015是5的倍数,• m+n的值可能是2015.故选C.、填空题(每小题3分,共30 分)11.用科学记数法表示:0.00000706= 7.06X 10「6【考点】科学记数法一表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a x 10「n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000706=7.06X 10「6,故答案为:7.06X 10「6.12•当x=】时,分式1的值为0.—3—x+2【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零进行判断.【解答】解:•••分式」一的值为0,x+z••• 3x-仁0,且x+2工0,解得 , X M- 2,即x=.故答案为:—13. 如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC的【考点】平行线的判定.【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【解答】解:T AD和BC被BE所截,•当/ EADN B 时,AD / BC.故答案为:/ EADN B.14. 某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是0.4 .【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率二频数宁数据总和计算出成绩在90.5〜95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20) =50人,其中在90.5〜95.5这一分数段有20人,则成绩在90.5〜95.5这一分数段的频率是.=0.4.50故本题答案为:0.4.15. 计算:(6a2- 10ab+4a)*( 2a) = 3a-5b+2 .【考点】整式的除法.【分析】根据多项式除以单项式的运算方法求解即可.【解答】解:(6a2- 10ab+4a)-( 2a)=(6a2)*( 2a)-( 10ab)*( 2a) + (4a)*( 2a)=3a- 5b+2故答案为:3a- 5b+2.16. 若多项式x2- kx+9是一个完全平方式,则常数k的值是土6 .【考点】完全平方式.【分析】先根据两平方项项确定出这两个数是x和3,再根据完全平方公式求解即可. 【解答】解:••• x2- kx+9=W- kx+32,解得k=± 6. 故答案为:土 6.17.计算:3a+2b a 2【考点】分式的加减法.【分析】根据同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,求解即可.2(a+b) (a+b) (a-b) =2 a-b .故答案为:18. 若多项式x 2- mx+n (m 、n 是常数)分解因式后,有一个因式是 x - 2,则 2m - n 的值为 4.【考点】因式分解的意义.【分析】设另一个因式为x -a ,因为整式乘法是因式分解的逆运算,所以将两 个因式相乘后结果得x 2- mx+ n ,根据各项系数相等列式,计算可得 2m - n=4 .【解答】解:设另一个因式为x -a ,由①得:a=m - 2③,把③代入②得:n=2 ( m - 2), 2m - n=4, 故答案为:4 .19.已知:如图放置的长方形 A BCD 和等腰直角三角形EFG 中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点 F 、G 、D 、C 在同一直线上,点 G 和点 D【解答】 解:贝卩 x 2- mx+n= (x - 2) (x - a )=« - ax - 2x+2a=x^ -(a+2) x+2a , 了且+21>-且重合,现将△ EFG 沿射线FC 向右平移,当点F 和点D 重合时停止移动,若△ EFG 与长方形重叠部分的面积是4cm 2,则厶EFG 向右平移了 3 cm .【分析】首先判断出平移厶EFG 经过长方形ABCD 对角线的交点时,重叠面积是 长方形的面积的一半即面积为 4cm 2,然后求出平移的距离. 【解答】解:•••长方形AB=2cm, AD=4cm, •••长方形的面积为8cm 2,•••△ EFG 与长方形重叠部分的面积是 4cm 2,• △ EFG 边DE 经过长方形ABCD 对角线的交点, ••• FG=4 CD=2 •;( FG+CD ) =3,• △ EFG 向右平移了 3cm , 故答案为3.20. 已知实数a ,b ,c 满足a+b=ab=c,有下列结论:② 若 a=3,则 b+c=9;③ 若 C M 0,贝U( 1-a ) (1 - b ) = + ; ④ 若 c=5,则 a 2+b 2=15. 其中正确的是 ①③④(把所有正确结论的序号都填上).【考点】分式的混合运算;实数的运算.【分析】①由题意可知:a+b=ab=cM 0,将原式变形后将a+b 整体代入即可求出 答案.②由题意可知:a+b=ab=3,联立方程后,可得出一个一元二次方程,由于△< 0,所以a 、b 无解,①若0,2a+7 ab+2b 2; ■; 等腰直角三角形.③分别计算(1 - a)(1 - b)和一+a E>④由于a+b=ab=5,联立方程可知△> 0,所以由完全平方公式即可求出a2+b2的值.【解答】解:①T甘0,--ab M 0•'a+b_3比 _此£ 乩__2rb 2a+b=ab,•原式=—円性—= 士?5!= 三巳匕=—上朋2(a+b)+7ab 2ab+7ab 9ab 9 故①正确;②••• c=3,二ab=3,••• a+b=3,化简可得:b2- 3b+3=0,•/△< 0,•该方程无解,c=3时,a、b无解,故②错误;③••• C M 0,--ab M 0,a+b=ab•( 1 - a) (1 - b) =1 - b- a+ab=1,一==1二卜吕. ,•( 1 - a) (1 - b) = +| ,故③正确;④••• c=5,• a+b=ab=5,化简可得:b2- 5b+5=0,a2+b2= (a+b) 2- 2ab=15,故④正确故答案为:①③④三、解答题(共50分)21 •计算下列各题(1)(—3) 2+ ( n+ 匚)°—(—=) 2(2)(2x—1) 2—(X—1) (4x+3)【考点】多项式乘多项式;实数的运算;完全平方公式;零指数幕;负整数指数幕. 【分析】(1)原式利用乘方的意义,零指数幕、负整数指数幕法则计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=9+1 —4=6;(2)原式=4x2—4x+1 —4x2—3x+4x+3= —3x+4.22 •解方程(组)f2x+7y=5(1)I -(2)" —「严・【考点】解分式方程;解二兀一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1) ②X 7 —①得:19x=— 19, 即卩x=- 1,把x=—1代入①得:y=1,则方程组的解为;y=l(2)去分母得:x+2=4x—2,解得:x=.,经检验X=f是分式方程的解.23•分解因式(1)2X2- 8(2)3灼-6xy2+3y3.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式2,进而利用平方差公式分解因式得出答案;(2)首先提取公因式3y,进而利用完全平方公式分解因式得出答案.【解答】解:(1) 2x2- 8=2 (x2- 4)=2 (x+2) (x- 2);(2) 3灼-6xy2+3y3=3y (x2- 2xy+y2)=3y (x-y) 2.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.【考点】平行线的判定与性质;垂线.【分析】(1)先根据AD丄BE, BC丄BE得出AD// BC,故可得出/ ADE=Z C,再由/ A=Z C得出/ADE=Z A,故可得出结论;(2)由AB//CD得出/C的度数,再由直角三角形的性质可得出结论.【解答】解:(1) AB// CD.理由:••• AD丄BE, BC丄BE,••• AD// BC,•••/ ADEN C.vZ A=Z C,•••/ ADE=Z A ,••• AB// CD;(2)v AB// CD,Z ABC=120,•••Z C=180 - 120°60°,•••Z BEC=90- 60°=30o .25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图 2两幅不完整的统计图,请根据图中信息回答下列问题: (1) 本次接收随机抽样调查的男生人数为 40人,扇形统计图中 良好”所对 应的圆心角的度数为 162° ;(2) 补全条形统计图中 优秀”的空缺部分;(3) 若该校七年级共有男生480人,请估计全年级男生体质健康状况达到 良好” 的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)合格人数除以所占的百分比即可得出所调查的男生总人数, 用良好 的人数除以总人数再乘以360°即可得出 良好”所对应的圆心角的度数;合格 20% 不吕格优秀 30%(2)用40 - 2 -8 - 18 即可;(3)用480乘以良好所占的百分比即可.【解答】解:(1)8- 20%=40(人),18-40X 360°=162°(2)优秀”的人数=40- 2-8 - 18=12, 如图,(3)良好”的男生人数:話X480=216 (人),答:全年级男生体质健康状况达到良好”的人数为216人.26.为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A,B,C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套)乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1)问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元? (2)求a,b的值.【考点】二元一次方程组的应用.【分析】(1 )设甲型垃圾桶的单价是x元/套,乙型垃圾桶的单价是y元/套.根据图表中的甲型、乙型垃圾桶的数量和它们的总价列出方程组并解答.(2)根据图表中的数据列出关于 a b 的二元一次方程,结合 a b 的取值范围 来求它们的值即可.【解答】解:(1 )设甲型垃圾桶的单价是x 元/套,乙型垃圾桶的单价是y 元/套. |y=240 答:甲型垃圾桶的单价是140元/套,乙型垃圾桶的单价是240元/套. (2)由题意得:140a+240b=2580, 整理,得 7a+12b=129, 因为a 、b 都是正整数, 所以或(a=15 . b=9 b~2 四、附加题(每小题10分,共20分) 27.已知:直线a // b ,点A ,B 分别是a ,b 上的点,APB 是a ,b 之间的一条折 弦,且/ APN<90° Q 是a ,b 之间且在折线APB 左侧的一点,如图.(1) 若/ 仁33°, / APB=74,则/2= 41 度.(2) 若/ Q 的一边与PA 平行,另一边与PB 平行,请探究/ Q ,Z 1, 2间满足 的数量关系并说明理由.(3) 若/ Q 的一边与PA 垂直,另一边与PB 平行,请直接写出/ Q ,Z 1 , 2之 间满足的数量关系.【考点】平行线的性质.【分析】(1)图1,过P 作PC//直线a ,根据平行线的性质得到/ 仁/APC, / 2=Z BPC 于是得到结论;依题意得:10x+8y=33205x+9y=2860 x=140 解得* 备用图 葺■甲图(2)如图2,由已知条件得到四边形MQNP是平行四边形,根据平行四边形的性质得到/ MQN=Z P=Z 1 + Z2,根据平角的定义即可得到结论;(3)由垂直的定义得到/ QEP=90,由平行线的性质得到/ QFE=/ P,根据平角的定义得到结论.【解答】解:(1)图1,过P作PC//直线a,••• PC// b,•••/ 1=/ APC / 2=/BPC•••/ 2=/ APB- / 1=41°故答案为:41;(2)如图2,v QM // PB, QN// PA•••四边形MQNP是平行四边形,•••/ MQN=/ P=/ 1 + /2,•••/ EQN=180-/ MQM=180 -/ 1 -/ 2;即/ Q=/ 1 + / 2=180°-/ 1 -/ 2;(3):QE丄AP,•••/ QEP=90,••• QF// PB,•••/ QFE=/ P,•••/ EQF=90-/ QFE=90-/ 1 -/ 2,•••/ EQG=18°—/ EQF=90+/ 1+/2 .A7 a28 .教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= (m+1) (m - 5) .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.【考点】因式分解的应用;非负数的性质:偶次方.【分析】(1)根据阅读材料,先将m2- 4m-5变形为m2- 4m+4- 9,再根据完全平方公式写成(m- 2) 2-9,然后利用平方差公式分解即可;(2)利用配方法将多项式a2+b2- 4a+6b+18转化为(a- 2) 2+ (b+3) 2+5,然后利用非负数的性质进行解答;(3)利用配方法将多项式a2- 2ab+2b2- 2a-4b+27转化为(a- b- 1) 2+(b-3)2+17,然后利用非负数的性质进行解答.【解答】解:(1)m2- 4m - 52=m - 4m+4- 9=(m- 2)2- 9=(m- 2+3)(m- 2- 3)=(m+1)(m- 5).故答案为(m+1)(m- 5);(2)v a F+b2- 4a+6b+18= (a-2) 2+ (b+3) 2+5,•••当a=2, b=- 3 时,多项式a2+b2- 4a+6b+18 有最小值5;(3)v a2- 2ab+2b2-2a- 4b+27=a2- 2a(b+1) +(b+1) 2+(b- 3) 2+17=( a- b- 1 ) 2+( b- 3) 2+17,•••当a=4, b=3 时,多项式a2- 2ab+2b2- 2a- 4b+27 有最小值17.2017年4月18日A. 130°B. 110°C. 80°D. 70°33. 分式——有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 14. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y)=ax+ayB. X - 4X+4=(x- 2)C. 2a- 4b+2=2 (a- 2b)D. X*2-16+3X=(X- 4)(X+4)+3X6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查。
绝密★启用前2017---2018学年度第二学期浙教版七年级期末考试数学试卷考试时间:100分钟;满分120分一、单选题(计30分)1.(本题3分)如图,在同一平面内,直线l 1∥l 2,将含有60°角的三角尺ABC 的直角顶点C 放在直线l 1上,另一个顶点A 恰好落在直线l 2上,若∠2=40°,则∠1的度数是( )A. 20°B. 30°C. 40°D. 50° 2.(本题3分)如图,分别过矩形ABCD 的顶点A 、D 作直线l 1、l 2,使l 1∥l 2,l 2与边BC 交于点P ,若∠1=38°,则∠BPD 为( )A. 162°B. 152°C. 142°D. 128° 3.(本题3分)方程组的解是( )A. B. C. D. 4.(本题3分)小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组( ) A. 2030110{10585x y x y +=+= B. 2010110{ 30585x y x y +=+=C. 205110{301085x y x y +=+= D. 520110{ 103085x y x y +=+=5.(本题3分)用乘法公式进行简单的计算(a +2b)(a -2b)的结果是( ) A. a 2-4b 2 B. a 2-2b 2 C. a 2+4b 2 D. -a 2+4b 2A. B.C.D.7.(本题3分)若分式的值为0,则的值是( ) A. 2或-2 B. 2 C. -2 D. 08.(本题3分)分式方程的解为( )A.B.C.D. 无解9.(本题3分)某校管乐队购进一批小号和长笛,小号的单价比长笛的单价多100元,用6000元购买小号的数量与用5000元购买长笛的数量恰好相同,设小号的单价为x 元,则下列方程正确的是( )A. 60005000100x x =- B.60005000100x x =-C. 60005000100xx =+ D.60005000100x x=+10.(本题3分)2018年1~4月我国新能源乘用车的月销售情况如图所示,则下列说法错误..的是( )A. 1月份销售为2.2万辆B. 从2月到3月的月销售增长最快C. 4月份销售比3月份增加了1万辆D. 1~4月新能源乘用车销售逐月增加 二、填空题(计32分)11.(本题4分)如图,将周长为15cm 的△ABC 沿射线BC 方向平移2cm 后得到△DEF ,则四边形ABFD 的周长为_____cm .12.(本题4分)将一把直尺与一块三角板如图放置,若∠1=41°,则∠2的度数为_____.13.(本题4分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为__________尺,竿子长为__________尺. 14.(本题4分)如果,那么的结果是______.15.(本题4分)分解因式:________.16.(本题4分)已知ab =10,a +b =7,则a 2b +ab 2=__________. 17.(本题4分)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:__________. 18.(本题4分)中华文化,源远流长.在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:(1) 本次调查一共抽取了______名学生;扇形统计图中“1部”所在扇形的圆心角为______度(2) 若该中学有1000名学生,请估计至少阅读3部四大古典名著的学生有多少名? (3) 没有读过四大名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为_________ 三、解答题(计58分)19.(本题7分)解方程组: 5{ 2311x y x y +=+=20.(本题7分)计算:(1)(﹣2018)0+(﹣2)2+8.(2)(a+b )2﹣2b (a ﹣b ). 21.(本题7分)因式分解(1)﹣2a 3+12a 2﹣18a (2)9a 2(x ﹣y )+4b 2(y ﹣x )22.(本题7分)解分式方程: 2311xx x x +=--.23.(本题7分)先化简,再求值: 221x y x y x y⎛⎫-÷ ⎪--⎝⎭,其中x 2,y =112-⎛⎫⎪⎝⎭.24.(本题7分)如图,已知AD ⊥BC ,EF ⊥BC 于F ,∠E=∠1,问AD 平分∠BAC 吗?请说明理由.25.(本题8分)学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?26.(本题8分)灌云教育局为了解今年九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)(1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是_____________; (3)扇形统计图中A 级所在的扇形的圆心角度数是_____________;(4)若该县九年级有8000名学生,请你用此样本估计体育测试中A 级和B 级的学生人数之和.参考答案1.A【解析】∵l1∥l2,∴∠1+30°+∠2+90°=180°,∵∠2=40°,∴∠1+30°+40°+90°=180°,解得∠1=20°,故选A.2.C【解析】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵矩形ABCD的对边平行,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°,故选C.3.A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.4.B【解析】解:设每支铅笔x元,每本笔记本y元,根据题意得:2010110{30585x yx y+=+=.故选B.点睛:本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.5.A【解析】分析:通过观察,可发现该式符合平方差公式,直接利用平方差公式计算即可.详解:(a+2b)(a-2b)=a2-4b2.故选:A.点睛:此题主要考查了平方差公式的应用,熟记平方差公式是解题关键.6.C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.7.A【解析】【分析】分式值为零的条件是:分子为零,分母不为零.【解答】根据分式有意义的条件得:解得:故选A.【点评】考查分式值为零的条件,分式值为零的条件是:分子为零,分母不为零.8.D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.9.A【解析】设小号的单价为x元,则长笛的单价为(x﹣100)元,由题意得:60005000100x x=-,故选A.10.D【解析】【分析】观察折线统计图,一一判断即可.【解答】观察图象可知:A. 1月份销售为2.2万辆,正确.B. 从2月到3月的月销售增长最快,正确.C., 4月份销售比3月份增加了1万辆,正确.D. 1~4月新能源乘用车销售先减少后增大.故错误.故选D.【点评】考查折线统计图,解题的关键是看懂图象.11.19【解析】分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.详解:根据题意,将周长为15cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=15cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=19cm.故答案为:19.点睛:本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.12.131°【解析】分析:根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.详解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+41°=131°,∵直尺的两边互相平行,∴∠2=∠3=131°.故答案为:131°.点睛:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13.2015【解析】【分析】设索长为尺,竿子长为尺.根据题目中的等量关系列方程组求解即可.【解答】设索长为尺,竿子长为尺.根据题意得:解得:故答案为:20,15.【点评】考查二元一次方程组的应用,解题的关键是找到题目中的等量关系.14.6【解析】分析:先由可得,然后将式子化简整理,再代值计算即可.详解:∵,∴,∴====.故答案为:6.点睛:熟悉“完全平方公式和平方差公式”,并能由此把化简整理为是正确解答本题的关键.15.【解析】【分析】用提取公因式法即可得到结果.【解答】原式=.故答案为:【点评】考查提取公因式法因式分解,解题的关键是找到公因式.16.70【解析】分析:首先将原式进行因式分解,然后利用整体代入的思想进行求解得出答案.详解:原式=ab(a+b)=10×7=70.点睛:本题主要考查的是利用因式分解的性质进行求解,属于基础题型.解决这个问题的关键就是将原式进行因式分解.17.【解析】【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:.故答案为:【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.18.(1)40, 126; (2)350;(3)【解析】分析:(1)由统计条形图知2部有10人,占比25%,所以抽样总体为,中因为1部抽样占比为,故对应的扇形圆形角为;(2)根据至少阅读3部四大古典名著的学生占20%+即可;(3)由树状图知第一个同学可以选4本书中的任意一本书,有4种可能;而当第一个同学每选一本书时,第二个同学都又可以选4本中的任意一本,故总的可能情形有16种,其中两人选同一本书的情形有4种,故所求事件概率为。
2017-2018学年七年级(下)期末数学试卷
一、选择题:本题有10小题,每小题3分,共30分.
1.下列各式从左到右的变形中,是因式分解的为()
A.x(a﹣b)=ax﹣bx B.
C.x2+4x+4=(x+2)2D.ax+bx+c=x(a+b)+c
2.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()
A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°
3.下列运算正确的是()
A.a6÷a2=a3B.(a2b3)2=a4b6C.a3a2=a6D.a﹣2=﹣
4.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可
以判断,下列说法错误的是()
A.男生在13岁时身高增长速度最快
B.女生在10岁以后身高增长速度放慢
C.11岁时男女生身高增长速度基本相同
D.女生身高增长的速度总比男生慢
5.计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()
A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+4
6.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()
第1页(共22页)。
浙教版2017-2018学年第二学期期末模拟试题
七年级数学试卷
考生须知:
1.本试卷分试题卷和答题卡两部分.满分100分,考试时间90分钟。
2.答题前,必须在答题卡填写校名、班级、姓名,学号,考场号。
3.不允许使用计算器进行计算,凡题目中没有要求取精确值的,结果中应保留根号或π。
一.选择题(共10小题,每题3分,共30分) 1. 若分式
4
x
x -有意义,则x 应满足的条件是() A .4x ≠ B .0x ≠ C .4x >
D .4x =
2.要反映嘉兴市一天内气温的变化情况宜采用( ) A .条形统计图 B .扇形统计图 C .折线统计图 D .频数分布直方图 3、在右图中,是同旁内角的是( ) A 、∠1与∠2 B 、∠3与∠2 C 、∠1与∠4 D 、∠3与∠4
4. 在①2
4
a a ∙ ②23
()a - ③12
2a
a ÷ ④23a a ∙ ⑤33a a +中,计算结果为6a 的个数是
( ) A. 1个
B. 2个
C. 3个
D. 4个
5. 芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00000201kg ,用科学记数法表示10粒芝麻的重量为( )
A. 62.0110kg -⨯
B. 52.0110kg -⨯
C. 720.110kg -⨯
D. 620.110kg -⨯
6. 下列多项式能分解因式的是 ( ) A. 22x y + B. 22x y -- C. 222xy x y -- D. 22
2
1y xy x +
- 7.化简分式
2b
ab b +的结果为( )
A .1a b +
B .11a b +
C .2
1a b + D .1ab b
+ 8. 如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.
2
1
E
D C B A
432
1如果∠1=20°,那么∠2的度数是( ) A .30°
B.25°
C.20°
D.15°
9、如图,将⊿ABC 沿水平向右的方向平移,得到⊿EAF ,若AB=5,BC=3,AC=4,则平移的距离是( ) A 、3 B 、4 C 、5 D 、10
10.若|3x+y+5|+|2x -2y -2|=0,则2x 2-3xy 的值是( ) A 、14 B 、-4
C 、-12
D 、12
二.填空题(共10小题,每题3分,共30分) 11. 因式分解:
3
mn mn -=__________________.
12.我校九年级(1)班数学单元测试,全班所有学生成绩的频数直方图如所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是__________________.
13.已知二元一次方程21x y -=,则用x 的代数式表示y=_________________ . 14.已知25
24
x y x y +=⎧⎨
+=⎩,则x y +=_________________.
15.将梯形面积公式1
()2
S a b h =
+变形成已知,,S a b ,求h 的形式,则h =__________. 16.若30x y -=,则分式22
223x xy y x y
-++的值为_________________. 17. 如右图所示,点E 在AC 的延长线上,如果添一个条件_________________可以使AC BD //(只要添一种条件即可) 18.若关于x 的方程
1
101
m x ++=-有增根,则m 的值为_________________ 19.杭州到北京的铁路长1 487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/
C
B
A
F
E
时,由杭州到北京的行驶时间缩短了3小时,则可列方程为
_________________
20.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为_________________.
三.解答题(共6小题,21、22、23、24每题6分,25、26每题8分,共40分)21.计算(每小题3分):
(1)
2
2
1
)1
3
(
3
-
⎪
⎭
⎫
⎝
⎛
+
-
-
-(2))
2
)(
2(
)
2(2b
a
b
a
b
a+
-
-
-
22.解方程(组)
(1)
20
327
x y
x y
+=
⎧
⎨
-=
⎩
(2) 1
3
1
3
2
=
-
+
-
-
x
x
x
23.先化简:
24
()
22
x x x
x x x
-
+⋅
-+
,再从2,—2,0,1中选一个合适的数代入求值.
24.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),图6-3-7是根据调查结果绘制的两幅不完整的统计图.
图6-3-7
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了____名同学;
(2)条形统计图中,m=____,n=__;
(3)扇形统计图中,艺术类读物所对扇形的圆心角是____度;
(4)学校计划购买课外读物6 000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
25、将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起:(其中
∠A=60°,∠D=30°,∠B=∠E=45°,)
(1)若∠DCE=45°,则∠ACE的度数为;
(2)若AD∥CB,则∠ACE的度数为;
(3)当∠ACE<180°,且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所以可能的值(并写明此时哪两边平行,但不必说明理由);若不存在,请说明理由。
21教育网
26.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产。
他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材。
如图甲所示,(单位:cm)
(1)列出方程(组),求出图甲中a 与b 的值。
(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,做成图乙的竖式与横式两种无盖..礼品盒。
①两种裁法共产生A 型板材张,B 型板材张;②设做成的竖式无盖..礼品盒x 个,横式无盖..
礼品盒的y 个,根据题意完成表格:
竖式无盖(个) 横式无盖(个) x y A 型(张) 4x 3y
B 型(张) x
图甲
③做成的竖式和横式两种无盖礼品盒总数..最多是个;此时,横式..无盖礼品盒可以做个(在横线上直接写出答案,无需书写过程)
参考答案
一、选择题(10小题,每小题3分,共30分)
1 2 3 4 5 6 7 8 9 10
A C D A
B
C A B C B
二、填空题(10小题,每小题3分,共30分)
11、mn(1+n)(1-n) 12、0.4
13、y=2x-1 14、 3
15、2s/a+b 16、1/10
17、<3= <4 18、m=-1
19、1487/x-1487/x+70=3 20、13
21.计算(每小题3分):
(1)6 (2)-4ab+2bô22.解方程(组) (每小题3分)
(1)x=1 y=-2 (2)x=2
23.原式=2x x=1时原式=2
24.(1) __200__名;(2)m=__40__,n=_60_;
(3)__ 72 _°;
(4) 900
25.(1)45 ;
(2) 30 ;
(3)30 45 135 165 26.(1)a=60 b=40
2)①A 型板材64张,B 型板材38张;
②2y
③总数..最多是18个;此时,横式..
无盖礼品盒可以做8个。