2018-2019学年上期九年级期中联考试题及答案
- 格式:doc
- 大小:267.00 KB
- 文档页数:12
2018--2019学年度九年级语⽂上学期期中检测(附答案)2018--2019学年度上学期期中检测九年级语⽂试题考试时间:120分钟总分:150分⼀、选择(20分)1.下列词语中加点字的读⾳完全正确的⼀项是( )(4分)A.喑哑(àn)感慨(kǎi)尴尬(gà)鲜为⼈知(xiǎn) B.扶掖(yè)拮据(jù)佝偻(gōu)鞠躬尽瘁(cuì) C.阴霾(mái)豢养(huàn)归省(xǐng)忍俊不禁(jīn) D.宽宥(yòu)襁褓(qiǎng)宽恕(shù)咬⽂嚼字(jué)2.下列词语中没有错别字的⼀项是( )(4分)A.谛造挡箭牌⼈才倍出左右逢源B.抉择订书机李代桃僵⽮志不渝C.安详侯车室鸠占鹊巢相辅相承D.布署震慑⼒⽬不遐接厉⾏节约3. 下列句⼦没有语病的⼀项是( )(4分)A.驻济⾼校开展、筹备、策划的“我为峰会添光彩”活动,得到⼴⼤师⽣的热烈响应。
B.以互联⽹、⼤数据、⼈⼯智能为代表的新⼀代信息技术,给⼈民⽣活带来深远的影响。
C.我国⾼铁建设已取得丰硕成果,但因市场规模巨⼤,还不能完全满⾜载客、物流货运。
D.在“经典咏流传”吟诵活动中,同学们提⾼了学习古诗词的热情,也增长了知识⾯。
4.下列句⼦中加点成语使⽤恰当的⼀项是( )(4分)A.对于戏剧⼈物的评论,他洋洋洒洒、鸿篇巨制⼏千字,令⼈敬佩。
B.⽼⼀辈科学家苦⼼孤诣获得的科研成果,⾜以作为我们的前车之鉴。
C.⼩林滔滔不绝、倚马万⾔的演讲赢得了阵阵掌声。
D.中华民族伟⼤复兴梦想的实现,不是⼀蹴⽽就的,还需要亿万中华⼉⼥长期艰苦奋⽃。
5.下列关于名著的表述,不正确的⼀项是( )(4分)A.《草房⼦》中桑桑在重病伤愈后带领妺妹爬上了城墙,实现了⾃⼰的愿望。
B.《三国演义》中著名的三次以少胜多的战役是官渡之战、⾚壁之战、夷陵之战。
C.《简·爱》是⼀部具有⾃传⾊彩的作品,运⽤了⼤量⼼理描写。
2018-2019学年度上学期期中考试 九年级数学试题 (满分120分,时间120分钟)卷一(请将正确选项涂在答题卡上)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四1. 下列图形中,旋转60°后可以和原图形重合的是( ) A .正六边形 B .正五边形 C .正方形 D .正三角形 2.二次函数y =12x 2-4x +3的顶点坐标和对称轴分别是( )A .(1,2),x =1B .(-1,2), x =-1C .(-4,-5),x =-4D .(4,-5),x =43.抛物线y =x 2-2x +1与x 轴的交点个数是( ) A .0 B .1 C .2 D .34.将y =(2x -1)(x +2)+1化成y =a(x +m)2+n 的形式为( ) A .y =2(x +34)2-2516 B .y =2(x -34)2-178C .y =2(x +34)2-178D .y =2(x +34)2+1785.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位长度,再向上平移3个单位长度B .先向左平移2个单位长度,再向下平移3个单位长度C .先向右平移2个单位长度,再向下平移3个单位长度D .先向右平移2个单位长度,再向上平移3个单位长度6.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 27.如图所示的桥拱是抛物线形,其函数的解析式为y =-14x 2,当水位线在AB 位置时,水面宽12 m ,这时水面离桥顶的高度为( )A .3 mB .2 6 mC .4 3 mD .9 m,(第8题图)),(第10题图))8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c<0;②a -b +c>1;③abc>0;④4a -2b +c<0;⑤c -a>1.其中所有正确结论的序号是( ) A .①② B .①③④ C .①②③⑤ D .①②③④⑤9.下列方程采用配方法求解较简便的是( ) A .3x 2+x -1=0 B .4x 2-4x -8=0 C .x 2-7x =0 D.()x -32=4x 210.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) A .x =10,y =14 B .x =14,y =10 C .x =12,y =15 D .x =12,y =1211. 二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <112. 如图,O 是等边三角形的旋转中心,∠EOF =120°,∠EOF 绕点O 进行旋转,在旋转过程中,OE 与OF 与△ABC 的边构成的图形的面积( )A .等于△ABC 面积的13B .等于△ABC 面积的12 C .等于△ABC 面积的14 D .不能确定13. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A.y 3>y 2>y 1B.y 3>y 1=y 2C.y 1>y 2>y 3D.y 1=y 2>y 314. 如图,△ABC 是等边三角形,四边形BDEF 是菱形,其中线段DF 的长与DB 相等,将菱形BDEF 绕点B 按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论. 甲:线段AF 与线段CD 的长度总相等;乙:直线AF 和直线CD 所夹的锐角的度数不变. 那么,你认为( )A .甲、乙都对B .乙对甲不对C .甲对乙不对D .甲、乙都不对15. 如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为( ).A . (-b ,a) B. (b ,a) C. (-b ,-a) D. (b ,-a)16. 平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y =-16x 2+13x +32,绳子甩到最高处时刚好通过站在点(2,0)处跳绳的学生小明的头顶,则小明的身高为( )m .A.1.6B.1.5C.1.4 D1.314题图 15题图12题图2018-2019学年度上学期期中考试九年级数学试题卷二2分.把答案写在题中横线上)17.如图,把抛物线y=12x2平移得到抛物线m. 抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.(第17题图) (第19题图)18.在二次函数y=2则m的值为.19.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为,∠APB=.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. (本题8分)(1)用公式法解方程x2-3x-7=0.(2)解方程:4x(2x-1)=3(2x-1)21. (本题7分)如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.22.(本题8分)如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.23. (9分)如图,一个二次函数的图象经过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.24. (10分)已知关于x的函数y=ax2+x+1(a为常数).(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.25. (本题12分)感知:如图①,在△ABC 中,∠C =90°,AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合).连接AD ,将AD 绕着点D 逆时针旋转90°,得到DE ,连接BE ,过点D 作DF ∥AC 交AB 于点F ,可知△ADF ≌△EDB ,则∠ABE 的大小为________.并说明理由.探究:如图②,在△ABC 中,∠C =α(0°<α<90°),AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合),连接AD ,将AD 绕着点D 逆时针旋转α,得到DE ,连接BE ,求证:∠ABE =α. 应用:设图②中的α=60°,AC =2.当△ABE 是直角三角形时,AE =________.并说明理由.26. (本题12分)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,种植花卉的利润y 2与投资成本x 的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户计划用8万元资金投入种植花卉和树木,设他投入种植花卉金额m 万元,种植花卉和树木共获利润w 万元,求出w 与m 之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的范围.。
2018-2019学年第一学期九年级期中联考九年级物理参考答案第Ⅰ卷(选择题共30分)一、本大题包括10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
第Ⅱ卷(非选择题共70分)二、填空题(本大题包括7小题,每小题2分,共14分)11.小内能12.做功机械13.10 1014.串10 15.2:1 1:1 16.10 0.9 17.60三、作图、实验与探究题18. (4分)19.(每空均为2分,共8分)(1)质量(2)吸收热量(3)升高的温度(4)水20.(每空均为2分,共10分)(1)(2)导体两端电压一定的情况下,通过导体的电流与导体的电阻成反比 (3)A 2 (4)C21.(每空均为2分,共12分)(1)B (2)定值电阻断路 (3)9(4)实验误差大 (5)< (6)灯丝的电阻受温度的影响 22.(2+4=6分)1、 闭合S ,,断开S 1,读出电流表示数I 1;2、 同时闭合S,、S 1,读出电流表示数I 2。
表达式:121I I RI R X -=合理即可四、计算题23.(2+4=6分)解:(1)在一个标准大气压下,水沸腾时的温度t=100℃, 水吸收的热量: Q 吸=cm (t-t 0)=4.2×103J/(kg •℃)×3kg ×(100℃-20℃)=1.008×106J 。
(2)J10×1.68%6010008.166=⨯==JQ Q η吸放由Q 放=Vq 得,烧开这壶水需要天然气的体积:32-76m108.4/105.31068.1q ⨯=⨯⨯==kg J J Q V 放24、(4+6=10分)解::(1)由图示电路图可知,当滑片在b 端时只有R 1接入电路,此时电路电流最大, 由U-I 图象可知,电路最大电流为0.6A ,电源电压:U=U 1=IR 1=0.6A ×10Ω=6V ;(2)由图示电路图可知,滑片在a 端时,滑动变阻器阻值全部接入电路,由U-I 图象可知,此时电路电流I /=0.2A ,滑动变阻器两端电压U 滑=4V ,滑动变阻器最大阻值:Ω===202.04/22A VI U R U2滑片在ab 中点时,Ω=Ω==1022022/2R R电路电流:I ″=A V R R U 3.010106/21=Ω+Ω=+可知,电压表示数:U2′=I ″×R /2=0.3A ×10Ω=3V答:(1)电源电压是6V 。
九年级上册期中参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.三、解答题:16.(1)解:3x (x -2)=x -2,移项得:3x (x -2)-(x -2)=0 整理得:(x -2)(3x -1)=0 x -2=0或3x -1=0 解得:x 1=2或x 2=1………………………………………………………………5分18.证明:延长AD 交⊙O 于E ,…………………2分 ∵OC ⊥AD ,∴⌒AE =2⌒AC ,AE=2AD ,………………………………4分 ∵⌒AB =2⌒AC , ∴⌒AE =⌒AB, ∴AB=AE ,∴AB=2AD . ………………………………………………………………………9分 19.解:设人行通道的宽度为x 米,依据题意得:……………………………1分 (30-3x )•(24-2x )=480,………………………………………………………4分 整理得:x 2-22x +40=0,解得:x1=2,x2=20,………………………………………………………………7分当x=20时,30-3x=-30,24-2x=-16,不符合题意,………………………8分答:人行通道的宽度为2米.………………………………………………………9分20.解:(1)当S取得最大值时,飞机停下来,则S=60t-1.5t2=-1.5(t-20)2+600,此时t=20因此t的取值范围是0≤t≤20;…………………3分(2)函数图象如图,S=60t-1.5t2=-1.5(t-20)2+600.飞机着陆后滑行600米才能停下来.…………6分(3)因为t=20,飞机着陆后滑行600米才能停下来.当t=14时,s=546,所以600-546=54(米).AD于M,∴旋转角α=360°-60°=300°.综上当α为60°或者300°时,GC=GB.…………………………………………………………10分。
九年级(上)期中数学试卷一.选择题(本大题共12小题,每小题3分,共36分)1.下列函数中,是二次函数的是()A.B.y=(x+2)(x﹣2)﹣x2C.D.2.方程(x+3)(x﹣2)=0的解是()A.x1=3,x2=2 B.x1=﹣3,x2=2 C.x1=3,x2=﹣2 D.x1=﹣3,x2=﹣23.如果2是一元二次方程x2=c的一个根,那么常数c是()A.2 B.﹣2 C.4 D.﹣44.一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac满足的条件是()A.b2﹣4ac=0 B.b2﹣4ac>0 C.b2﹣4ac<0 D.b2﹣4ac≥05.是关于x的一元二次方程,则m的值应为()A.m=2 B. C. D.无法确定6.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C.D.﹣27.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.48.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共6小题,每小题3分,共18分)13.一元二次方程3x2+2x﹣5=0的一次项系数是.14.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.15.根据图中的抛物线可以判断:当x 时,y随x的增大而减小;当x= 时,y有最小值.16.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是.17.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是(填序号).18.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4④2AB=3AC.其中正确结论是.三、解答题(本大题共7小题,共66分)19.解方程:x2﹣2x=x﹣2.20.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.21.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.22.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.23.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?24.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.25.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B 的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.参考答案与试题解析一.选择题(本大题共12小题,每小题3分,共36分)1.下列函数中,是二次函数的是()A.B.y=(x+2)(x﹣2)﹣x2C. D.【考点】二次函数的定义.【分析】整理一般形式后,根据二次函数的定义判定即可.【解答】解:A、函数式整理为y=x2﹣x,是二次函数,正确;B、函数式整理为y=﹣4,不是二次函数,错误;C、是正比例函数,错误;D、是反比例函数,错误.故选A.【点评】本题考查二次函数的定义.2.方程(x+3)(x﹣2)=0的解是()A.x1=3,x2=2 B.x1=﹣3,x2=2 C.x1=3,x2=﹣2 D.x1=﹣3,x2=﹣2【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先观察再确定方法解方程.根据左边乘积为0的特点应用因式分解法.【解答】解:根据题意可知:x+3=0或x﹣2=0;即x1=﹣3,x2=2.故选B.【点评】此题较简单,只要同学们明白有理数的乘法法则即可,即两数相乘等于0,那么其中一个数必然等于0.3.如果2是一元二次方程x2=c的一个根,那么常数c是()A.2 B.﹣2 C.4 D.﹣4【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=2代入方程x2=c可得c=4,故本题选C.【点评】本题考查的是一元二次方程的根即方程的解的定义.4.一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac满足的条件是()A.b2﹣4ac=0 B.b2﹣4ac>0 C.b2﹣4ac<0 D.b2﹣4ac≥0【考点】根的判别式.【分析】已知一元二次方程的根的情况,就可知根的判别式△=b2﹣4ac值的符号.【解答】解:∵一元二次方程有两个不相等的实数根,∴△=b2﹣4ac>0.故选:B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.是关于x的一元二次方程,则m的值应为()A.m=2 B. C. D.无法确定【考点】一元二次方程的定义.【专题】计算题.【分析】根据一元二次方程的定义,令2m﹣1=2,求出m的值即可.【解答】解:∵是关于x的一元二次方程,∴2m﹣1=2,∴m=,故选C.【点评】本题考查了一元二次方程的概念.要知道,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程.6.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C.D.﹣2【考点】二次函数图象上点的坐标特征.【专题】压轴题;数形结合.【分析】根据图象开口向下可知a<0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a的一元二次方程即可.【解答】解:由图可知,函数图象开口向下,∴a<0,又∵函数图象经过坐标原点(0,0),∴a2﹣2=0,解得a1=(舍去),a2=﹣.故选C.【点评】本题考查了二次函数图象上点的坐标特征,观察图象判断出a是负数且经过坐标原点是解题的关键.7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】根据二次函数的性质对各小题分析判断即可得解.【解答】解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.【点评】本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.8.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF【考点】旋转的性质.【分析】旋转后任意一对对应点与旋转中心的连线所成的角都是旋转角.【解答】解:∵点B与点E是一对对应点,点C与点F是一对对应点.∴旋转角为∠BAE或∠CAF.故选:A.【点评】本题主要考查的是旋转角的定义,掌握旋转角的定义是解题的关键.9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等【考点】旋转的性质.【分析】根据旋转的性质对各选项进行判断.【解答】解:A、旋转不改变图形的大小和形状,所以A选项错误;B、旋转中,图形的每个点移动的距离不一定相同,所以B选项错误;C、经过旋转,图形的对应线段、对应角分别相等,所以C选项正确;D、经过旋转,图形的对应点的连线不一定平行或相等,所以D选项错误.故选C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】先根据旋转的性质得到点A的对应点为点D,点B的对应点为点E,再根据旋转的性质得到旋转中心在线段AD的垂直平分线,也在线段BE的垂直平分线,即两垂直平分线的交点为旋转中心,而易得线段BE的垂直平分线为直线x=1,线段AD的垂直平分线为以AD为对角线的正方形的另一条对角线所在的直线.【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,∴点A的对应点为点D,点B的对应点为点E,作线段AD和BE的垂直平分线,它们的交点为P(1,﹣1),∴旋转中心的坐标为(1,﹣1).故选C.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°【考点】旋转的性质.【分析】由∠B=∠D′=90°,可知:∠2+∠D′AB=180°,从而可求得∠D′AB=70°,∠α=∠DAD′=90°﹣∠D′AB.【解答】解:如图所示:∵∠B=∠D′=90°,∴∠2+∠D′AB=180°.∴∠D′AB=180°﹣∠2=180°﹣110°=70°.∵∠α=∠DAD′,∴∠α=90°﹣∠D′AB=90°﹣70°=20°.故选:B.【点评】本题主要考查的是旋转的性质、四边形的内角和是360°,求得∠BAD′=70°是解题的关键.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④【考点】二次函数图象与系数的关系.【专题】压轴题;数形结合.【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.【点评】此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.二、填空题(本大题共6小题,每小题3分,共18分)13.一元二次方程3x2+2x﹣5=0的一次项系数是 2 .【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),其中a,b,c分别叫二次项系数,一次项系数,常数项.根据定义即可求解.【解答】解:一元二次方程3x2+2x﹣5=0的一次项系数是:2.故答案为:2.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.14.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【考点】关于原点对称的点的坐标.【专题】数形结合.【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点评】本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.15.根据图中的抛物线可以判断:当x <1 时,y随x的增大而减小;当x= 1 时,y有最小值.【考点】二次函数的性质.【分析】要确定抛物线的单调性首先要知道其对称轴,然后根据对称轴来确定x的取值范围.【解答】解:根据图象可知对称轴为x=(﹣1+3)÷2=1,所以当x<1时,y随x的增大而减小;当x=1时,y有最小值.故填空答案:<1;=1.【点评】此题主要考查了函数的单调性与对称性.16.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是﹣2 .【考点】一元二次方程的一般形式.【分析】根据题意可得m2﹣4=0,且m﹣2≠0,再解即可.【解答】解:由题意得:m2﹣4=0,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.【点评】此题主要考查了一元二次方程的一般形式,关键是注意不要漏掉二次项系数不能等于0这一条件.17.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是①③(填序号).【考点】根的判别式;一元一次方程的解.【专题】分类讨论.【分析】分别讨论m=0和m≠0时方程mx2+x﹣m+1=0根的情况,进而填空.【解答】解:当m=0时,x=﹣1,方程只有一个解,①正确;当m≠0时,方程mx2+x﹣m+1=0是一元二次方程,△=1﹣4m(1﹣m)=1﹣4m+4m2=(2m﹣1)2≥0,方程有两个实数解,②错误;把mx2+x﹣m+1=0分解为(x+1)(mx﹣m+1)=0,当x=﹣1时,m﹣1﹣m+1=0,即x=﹣1是方程mx2+x﹣m+1=0的根,③正确;故答案为①③.【点评】本题主要考查了根的判别式以及一元一次方程的解的知识,解答本题的关键是掌握根的判别式的意义以及分类讨论的思想.18.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4④2AB=3AC.其中正确结论是①④.【考点】二次函数综合题.【分析】根据与y2=(x﹣3)2+1的图象在x轴上方即可得出y2的取值范围;把A(1,3)代入抛物线y1=a(x+2)2﹣3即可得出a的值;由抛物线与y轴的交点求出y2﹣y1的值;根据两函数的解析式直接得出AB与AC的关系即可.【解答】解:①∵抛物线y2=(x﹣3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本小题正确;②把A(1,3)代入,抛物线y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=,故本小题错误;③由两函数图象可知,抛物线y1=a(x+2)2﹣3解析式为y1=(x+2)2﹣3,当x=0时,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,故y2﹣y1=+=,故本小题错误;④∵物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3)∴AB=6,AC=4,∴2AB=3AC,故本小题正确.故答案为:①④.【点评】本题考查的是二次函数综合题,涉及到二次函数的性质,根据题意利用数形结合进行解答是解答此题的关键,同时要熟悉二次函数图象上点的坐标特征.三、解答题(本大题共7小题,共66分)19.解方程:x2﹣2x=x﹣2.【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.20.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【考点】解一元二次方程-因式分解法;根与系数的关系.【专题】计算题;证明题.【分析】若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=﹣1,求得k的值后,解方程即可求得另一个根.【解答】证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.【点评】本题是对根的判别式与根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.并且本题考查了一元二次方程的解的定义,已知方程的一个根求方程的另一根与未知系数是常见的题型.21.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.【考点】旋转的性质.【分析】①将正方形绕顶点B旋转,故旋转中心为B点;②由正方形的性质可知∠ABD=45°,由旋转角为45°可知∠ABA′=45°,从而可知点B、A′、D三点在一条直线上,先利用勾股定理求得BD的长,从而可求得A′D的长,在Rt△A′DF中利用勾股定理可求得DF的长度.【解答】解:①旋转中心为B点.②如图所示:∵旋转角为45°,∴∠ABA′=45°.∵四边形ABCD为正方形,∴∠ABD=45°,∠A′DF=45°.∴∠ABA′=∠ABD.∴点B、A′、D三点在一条直线上.在Rt△ABD中,BD===2.∵A′D=BD﹣BA′,∴A′D=2﹣2.在Rt△A′DF中,DF==4﹣2.【点评】本题主要考查的是正方形的性质、旋转的性质、勾股定理的应用,依据正方形的性质和旋转的性质证得点B、A′、D三点在一条直线上,从而求得A′D的长度是解题的关键.22.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.【考点】二次函数的性质.【分析】(1)由当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大,可知m+3<0,进一步求得m的取值范围即可;(2)二次函数有最小值,说明抛物线开口向上,即2m﹣1>0,进一步求得m的取值范围即可;(3)两个抛物线的形状相同,说明二次项系数相同,即m+2=﹣,求得m的数值即可.【解答】解:(1)∵函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大,∴m+3<0,解得m<﹣3;(2)∵函数y=(2m﹣1)x2有最小值,∴2m﹣1>0,解得:m>;(3)∵抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同,∴m+2=﹣,解得:m=﹣.【点评】本题考查了二次函数的性质,能根据解析式推知函数图象是解题的关键,另外要能准确判断出函数的对称轴.23.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?【考点】二次函数的应用.【专题】计算题.【分析】根据题意列出二次函数,将函数化简为顶点式,便可知当x=14时,所获得的利润最大.【解答】解:设销售单价定为x元(x≥10),每天所获利润为y元,则y=[100﹣10(x﹣10)]•(x﹣8)=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360所以将销售定价定为14元时,每天所获销售利润最大,且最大利润是360元【点评】本题主要考查了二次函数的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键,属于中档题.24.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【考点】坐标与图形变化-旋转;全等三角形的判定;正方形的性质;扇形面积的计算.【专题】综合题;压轴题.【分析】(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.【解答】解:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=(∠AOC﹣∠MON)=(90°﹣45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°﹣22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.【点评】本题用到的知识点是:扇形面积=,求一些线段的长度或角的度数,总要整理到已知线段的长度上或已知角的度数上.25.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B 的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)将y=mx2﹣2mx﹣3m化为交点式,即可得到A、B两点的坐标;(2)先用待定系数法得到抛物线C1的解析式,过点P作PQ∥y轴,交BC于Q,用待定系数法得到直线BC的解析式,再根据三角形的面积公式和配方法得到△PBC面积的最大值;(3)先表示出DM2,BD2,MB2,再分两种情况:①DM2+BD2=MB2时;②DM2+MB2=BD2时,讨论即可求得m 的值.【解答】解:(1)y=mx2﹣2mx﹣3m=m(x﹣3)(x+1),∵m≠0,∴当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:,解得,故C1:y=x2﹣x﹣.如图:过点P作PQ∥y轴,交BC于Q,由B、C的坐标可得直线BC的解析式为:y=x﹣,设P(x, x2﹣x﹣),则Q(x, x﹣),PQ=x﹣﹣(x2﹣x﹣)=﹣x2+x,S△PBC=S△PCQ+S△PBQ=PQ•OB=×(﹣x2+x)×3=﹣(x﹣)2+,当x=时,S△PBC有最大值,Smax=,×()2﹣﹣=﹣,P(,﹣);(3)y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,顶点M坐标(1,﹣4m),当x=0时,y=﹣3m,∴D(0,﹣3m),B(3,0),∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,MB2=(3﹣1)2+(0+4m)2=16m2+4,BD2=(3﹣0)2+(0+3m)2=9m2+9,当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2.①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,解得m=﹣1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,解得m=﹣(m=舍去).综上,m=﹣1或﹣时,△BDM为直角三角形.【点评】考查了二次函数综合题,涉及的知识点有:抛物线的交点式,待定系数法求抛物线的解析式,待定系数法求直线的解析式,三角形的面积公式,配方法的应用,勾股定理,分类思想的运用,综合性较强,有一定的难度.。
山西省太原市2018-2019学年九年级(上)期中道德与法治试卷一、选择题(下列各题只有一个最符合题意的答案,请将其字母标号填入下表相应题号下的空格内.每小题3分,共45分)1.(3分)()是强国之路,是决定当代中国命运的关键一招,也是决定实现中华民族伟大复兴的关键一招。
A.对外开放B.共同富裕C.改革开放D.党的基本路线2.(3分)2018年8月11日至10月11日,“庆祝改革开放40周年时尚回响大型实物展”在太原美术馆开展。
从洗衣盆到全自动洗衣机,从传呼机到智能手机,从煤糕到天然气……展品涵盖40年百姓生活的诸多方面,近3000件老物件,蕴含着不同时代的时尚元素,也串连起太原这座城市40年的时代变迁。
对此,认识正确的是()①伴随着经济社会的迅猛发展,百姓有了更多的获得感和幸福感②改革开放,极大地解放和发展了社会生产力,中国已经实现了共同富裕③国富才能民强,改革开放带来的经济腾飞为人民群众的安居乐业莫定了坚实的物质基础④改革开放不仅改变了中国,也深刻地影响了世界A.①②B.③④C.①③D.②④3.(3分)在学习有关“创新”的内容时,九年级(一)班的几位同学谈到了各自对创新的理解和认识。
其中,正确的是()甲:创新是非常高端的,在科技工作者身上才能体现出创新精神乙:科技领域的创新才最有价值,最具代表性,其它领域很难有创新性的成果丙:创新可以体现在生活的方方面面,小到一个板报创意,大到一项技术发明丁:党的十八大提出了“创新驱动发展”战略,经过近几年的发展,我国的科技创新能力已经达到世界领先水平戊:作为一名当代中学生,我们应当努力学习,为培养创新精神打好基础A.甲和乙B.丙和戊C.乙和丁D.丙和丁4.(3分)我国在尖端技术的创新方面打下坚实基础,在一些重要领域已走在世界前列。
下列材料能够印证这一观点的有()①我国在酒泉卫星发射中心用长征二号丁运载火箭成功将世界首颗量子科学实验卫星“墨子号”发射升空②截止2017年底,我国的铁路营业里程达到12.7万公里,其中高铁2.5万公里,占世界高铁总量的66.3%③我国自主研发的“蛟龙号”可以到达水下7000米的区域,是目前世界上下潜最深的作业型载人潜水器④我国的“天眼”FAST是目前全世界最大的,也是性能最先进的射电望远镜A.②③④B.①②③C.①②④D.①③④5.(3分)下列有关民主的认识,正确的是()A.协商民主是我国社会主义民主政治的特有形式和独特优势B.一个国家选择什么样的民主道路,取决于它所确立的国家制度C.民主在价值上要求多数人当家作主,因此民主都是真实的、广泛的D.1949年新中国的成立,标志着社会主义民主在中国大地上得以真正确立6.(3分)下列图片所反映的内容,能直接体现保障人民当家作主的基本政治制度的有()A.①②③B.②③④C.①③D.②④7.(3分)2017年12月15日,太原市召开了客运出租车运价调整听证会。
2018—2019第一学期期中九年级数学参考答案1.C 2.A 3.B 4.B 5.C 6.D 7.D 8.A 9.B 10.C10题解析:①x = 1时,y 1 = a + b + c ,y 1>0,∴a + b + c >0 ②a = b 时,x =12但不知a 的正负性无法判断y 1与y 2 ③y 1 = a + b + c ,y 2 = 4a + 2b + c ∴2130y y a b -=+> 又a + b <0 ∴2a >0 ∴a >0 ④ ()2213y ax a x a =+-+-∴x = 1时,y 1 =2130a a a +-+-> ∴a >1,开口向上 对称轴 x 2111122a a a-=-=-+>-且x <0 又()222313y ax ax x a a x x =+-+-=+-- ∴恒过(-1,-2) 又对称轴x >-1 ∴顶点的纵坐标小于-2 ∴顶点在第三象限11.4 12.-1 13.()2720018450x += 14.(-5,4) 15.416.16题解析:取AC 的中点M 设MD = a ∴AB = 2a由题可知:AB + AE = EC 设AE = b EC = 2a + b ∴AE =2a + 2b ∴AM = MC = a + b ∴EM = a ∴ED ⊥DF ∴MF = a ∴CF = b 又AC ⇒CF ⇒b ∴EF = 5b作AG ⊥BC 于G ,BG =52bAC ⇒b ,GC =5·5b ∴BC = 8b = 8 ∴b = 1 ∴12S BCAG =⨯⨯=182⨯17.解:(3)(1)0x x -+= 4分 30x -=或 10x += 6分13x =,21x =-8分 (其他方法按步骤给分)18.解:设每个支干长出的小分支数目为xx 2 + x + 1=91 4分 解得x 1 = 9,x 2 = -10 6分又∵x >0 ∴x = 9 7分答:每个支干长出的小分支数目为9。
()22222513.02251---------12255125()-24216533()---------24165---------34455x x x x x x x x --=∴-=∴-+=+∴-=∴-=±分分分()12(1).x+1(23)0---------231,---------42x x x -=∴=-=分分()212(2).x+13(1)0---------2(1)(13)0---------31,2---------4x x x x x -+=∴++-=∴=-=分分分2019~2019年(上)九年级数学期中数学试卷参考答案(仅供参考,其它方法酌情给分)一、选择题:1.B2.C3.A4. B5.B6.B7.B8.C 二、填空题9. 4 ;362 10. x ≥-1 11. 0或2 ; 12.4 13. 5和6. 14. .316.(答案不唯一)范围不写扣1分) 三、计算题:(()17.1=-=分每个化简对均得1分分 (()3233( -a b 223b ----3b2a a ⎫=⋅⋅⎪⎪⎭=-分每个化简对均得1分分四、解方程:18 解:19.解(1) ∵043614)6(422≥-=⨯⨯--=-k k ac b ---------1分 ∴k ≤9 ---------2分(2) ∵k 是符合条件的最大整数且k ≤9 ∴k=9 ---------3分当k=9时,方程x 2-6x +9=0的根为x 1=x 2=3; ---------4分把x=3代入方程x 2+mx -1=0得9+3m-1=0 ---------5分∴m= 38----------6分 20. 解:x 1+x 2=ab-=4;x 1x 2=a c =-1---------2分(1)(x 1+1)(x 2+1) (2)2112x x x x + =x 1x 2+x 1+x 2+1---------3分 =221221x x x x +=-1+4+1 21212212)(x x x x x x -+=---------5分= 4 ---------4分 = -18 ---------6分21. 证明:(1)∵AB ∥DC ∴∠ABE=∠CEB ---------2分 又∵BE 平分∠ABC∴∠ABE=∠CBE --------4分∴∠CBE=∠CEB---------5分 ∴CB=CE---------6分 又∵CO 平分∠BCE∴∠BCO=∠ECO∴OB=OE ---------8分()2⎛ ⎝=分分22. 证明(1)∵E 是AC 的中点∴EC=12AC---------1分 又∵DB=12AC∴DB= EC---------2分 又∵DB ∥AC∴四边形DBEA 是平行四边形---------3分 ∴BC=DE ;(2)△ABC 添加BA=BC证明:同上可证四边形DBEA 是平行四边形---------4分又∵BA=BC ;BC=DE ∴AB=DE---------5分∴四边形DBEA 是矩形---------6分 (3)∠C= 45 0 ---------8分23.思考发现:四边形ABEF 为矩形-------1分;四边形ABEF 的面积是c b a )(21+-------2分实践探究:作图-------3分作图------4分联想拓展:(1)如图4过点E 作PE ∥AB 交BC 与P 交AD 的延长线于Q ,则有S 梯形ABCD =S □ ABPQ = AB ×EF =5×4=20 -------5分(2)作图-------7分取AB 的中点F ,BC 的中点G ,作直线FG 分别交AE ,CD 于点P ,Q , 则可拼成一平行四边形PQDE ------8分24.解:(1)当点P 与点N 重合时,由x 2x 24+=2,得12x 4x 6==-、(舍去)所以x 4=时点P 与点N 重合 ·························································· 2分 (2) 当点Q 与点M 重合时,由x+3x=24,得x=6----------3分此时2DN=x 3624=≥,不符合题意. 故点Q 与点M 不能重合.------ ----4分 (2)由(1)知,点Q 只能在点M 的左侧, ① 当点P 在点N 的左侧时,由224x 3x 242x+x -+=-()(),解得120()2x x ==舍去,.当x =2时四边形PQMN 是平行四边形. ········································· 6分② 当点P 在点N 的右侧时,由224x+3x)(2)24x x -=+-(,解得1233x x =-=-.当x时四边形NQMP 是平行四边形. ····································· 8分 综上:当x =2或x时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.ABDCP QMN。
学校 班级 姓名 考号 ………………………………………密……………………………………封……………………………………线………………………………………2018-2019学年第一学期期中检测试卷九年级 数学一、选择题(每小题3分,共30分)1.下面四个标志是中心对称图形的是( )2.在下列方程中,一元二次方程是( )A .x 2﹣2xy +y 2=0B .x (x +3)=x 2﹣1C .x 2﹣2x =3D .x +=0 3.方程02=+x x 的解是( ) A .x =±1B .x =0C .1x 0x 21-==,D .x =14.抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 5. 把一元二次方程2x 2-3x +1=0转化为 (x +a )2=b 的形式,正确的是( )A . 23162x ⎛⎫-= ⎪⎝⎭ B .2312416x ⎛⎫-= ⎪⎝⎭ C . 231416x ⎛⎫-= ⎪⎝⎭ D .以上都不对 6.不解方程判断下列方程中无实数根的是( )A .-x 2=2x -1 B .4x 2+4x +54=0 C 20x -= D .(x +2)(x -3)=-57. 关于x 的方程ax 2-3x +3=0是一元二次方程,则a 的取值范围是( ) A .a>0 B .a ≠0 C .a =1 D .a ≥08.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每 月增长率为x,则由题意列方程应为( )A .200(1+x )2=1000B .200+200×2x =1000C .200+200×3x =1000D .200[1+(1+x )+(1+x )2]=1000 9.已知一个直角三角形的两条直角边的长恰好是方程07822=+-x x 的两个根,则这个直角三角形的斜边长是( )A B .3 C .6 D .910.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.把一元二次方(x -3)2 = 4化为一般形式是________________,其中二次项为______,一次项系数为______,常数项为_____.12.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后的抛物线解析式为 。
2018-2019学年第一学期期中联考九年级数学试卷考生须知:1.本试卷满分120分,考试时间100分钟。
2. 答题前,在答题纸上写姓名和准考证号。
3. 必须在答题纸的对应答题位置上答题,写在其他地方无效。
答题方式详见答题纸上的说 明。
4. 考试结束后,试题卷和答题纸一并上交。
一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中 ,只有一个是正确的。
注意可以用多种不同的方法来选 取正确答案。
1.下列函数中属于二次函数的是(A.y =2x -1C . y =2(x -1)2 -2x 224.已知二次函数 y 二ax bx c (a = 0)的最大值为0,则(▲)5. 下列命题中,假命题的个数为(▲)2 .B . y = ax -13.在a 2口 4a □ 4空格□中,任意填上 概率是(▲)1A . 1B .2 能构成完全平方式的1D .42A . a 0 , b - 4ac 二 02B. a 0, b -4ac :: 0C. a : 0, b 2 -4ac 二 0D.a :0,b -4ac 0(▲)“+'或“一”,在所得到的所有代数式中,(1) “ a 是任意实数,a -5 0 ”是必然事件;(2)抛物线y = (2x ・1)2的对称轴是直线 x=-1;1(3)若某运动员投篮 2次,投中1次,则该运动员投 1次篮,投中的概率为;(4)某件事情2发生的概率是1,则它一定发生;(5)某彩票的中奖率为 10%,则买100张彩票一定有1张会中 奖;(6)函数y - -9(x - 2014)2亠一.2015与x 轴必有两个交点.8 .用列表法画二次函数 y = x 2 + bx + c 的图象时先列一个表,当表中对自变量 x 的值以相等间隔的值增加时,函数 y 所对应的值依次为: 20、56、110、182、274、380、506、650,其中有一个值 不正确,这个不正确的值是( ▲) A . 506B . 380C . 274D . 1829.已知二次函数 y =x 2 -X ,a ( a >0),当自变量x 取m 时,其相应的函数值小于 0,那么当 自变量x 取m-1时,下列结论中正确的是(▲)10.关于x 的方程2x 2 ax ^0有两个不相等的实数根,且较小的根为 2,则下列结论:①2a b :: 0 :②ab ::: 0 ;③关于x 的方程2x 2 ax b0有两个不相等的实数根;④抛物线y =2x 2 • ax • b -2的顶点在第四象限。
第4题图 第5题图 第6题图 第7题图O C A B · C A D B ' B ' 1 D' B C O D A 2018-2019学年上学期期中考试九年级数学试卷 本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题。
注意事项:1.答卷前将密封线左侧的项目填写清楚。
2.答案须用蓝色、黑色钢笔或圆珠笔书写。
卷I (选择题,共42分)一、选择题(本大题共16个小题,1~10题,每小题3分;11~16小题,每小题2分, 共42分,在每小题给出的四个选项中,只有一项符合题目要求的)1.用配方法解方程x 2-23x -1=0时,应将其变形为( ) A .(x -13)2=89 B .(x+13)2=109 C .(x -23)2=0 D .(x -13)2=109 2.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计,窗棂上 雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构 的图案中,是中心对称图形但不是轴对称图形的是( ) A . B . C . D . 3.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是180° D .抛一枚硬币,落地后正面朝上 4.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α< 90°).若∠1=112°,则∠α的大小是( ) A .68° B .20° C .28° D .22° 5.如图,BC 是⊙O 的弦,OA ⊥BC ,∠AOB=70°,则∠ADC 的度数是( ) A .70° B .35° C .45° D .60° 6.如图,在△ABC 中,∠C=90°,AB=4,以C 点为圆心,2为半径作⊙C ,则AB 的中 点O 与⊙C 的位置关系是( ) A .点O 在⊙C 外 B .点O 在⊙C 上 C .点O 在⊙C 内 D .不能确定 7.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始 至结束所走过的路径长度为( )A .32πB .43πC .4D .2+32π第9题图第10题图第12题图ABC10203040506070 80 90100110120130140150160170180CDA BE ·第14题图第15题图第16题图8.定义运算“※”为:a※b=⎩⎨⎧)(-)(≤bab>bab22,如:1※(-2)=-1×(-2)2=-4.则函数y=2※x)9.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为88°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°10.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为()A.8cm B.12cm C.16cm D.20cm11.已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.30πcm2B.50πcm2C.60πcm2D.391πcm2 12.如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是()A.127B.19C.16D.1313.河北省某市2018年现有森林和人工绿化面积为20万亩,为了响应十九大的“绿水青山就是金山银山”,现计划在两年后将本市的绿化面积提高到24.2万亩,设每年平均增长率为x,则列方程为()A.20(1+x)×2=24.2 B.20(1+x)2=24.2×2C.20+20(1+x)+20(1+x)2=24.2 D.20(1+x)2=24.214.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°15.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>-1 时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个16.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=2,则阴影部分面积为()A.23πB.23π-1 C.43π+1 D.43π第18题图卷II (非选择题,共78分)二、填空题(本大题共3个小题;共12分。
2018-2019学年度第一学期九年级期中数学试卷(满分120分,考试时间120分钟)一.选择题(本大题共6小题,每小题2分,共12分) 1.一元二次方程 x 2= x 的根是A .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=x 2=0D .x 1=x 2=12.用配方法解方程x 2-2x -5=0时,原方程应变形为A .(x +1)2=6B .(x +2)2=9C .(x -1)2=6D .(x -2)2=93. 下列说法正确的是 A .甲组数据的方差S 甲2 =0.28,乙组数据的方差S 乙2=0.25,则甲组数据比乙组数据稳定 B . 从1,2,3,4,5,中随机抽取一个数,是偶数的可能性比较大 C . 数据3,5,4,1,﹣2的中位数是3 D .若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖4. 关于x 的一元二次方程(k +1)x 2+2x =0有两个不相等的实数根,则k 的取值范围为A .k >-1B .k <-1C .k ≠-1D .k <0且k ≠-15. 如图,点A 、B 、C 、D 、E 都是⊙O 上的点,AC ⌒ =AE ⌒,∠D =128°,则∠B 的度数为A .128°B .126°C .118°D .116°6. 如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连结CD .若点D 与圆心O 不重合,∠BAC =26°,则∠DCA 的度数为A .36°B .38°C .40°D .42°(第5题)(第6题)二、填空题(本大题共10小题,每小题2分,共20分)7. 关于x 的一元二次方程(x +3)2=a -1有实数根,则a 的取值范围是 ▲ .8. 在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为 ▲ . 9.小明等五位同学以各自的年龄为一组数据,计算出这组数据的方差是0.5,则10年后小 明等五位同学年龄的方差 ▲ (填“不变”“增大”或“减小”).10. 如图,在⊙O 中,直径EF ⊥CD ,垂足为M ,若CD =2,EM =5,则⊙O 的半径为 ▲ .11. 关于x 的一元二次方程x 2-3x +m =0的一个根为2 ,则另一个根为 ▲ ,m 的值为 ▲ 12. 现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为 ▲ cm .13. 如图,连接正十边形的对角线AC 与BD 交于点E ,则∠AED = ▲ °. 14. ⊙O 是△ABC 的外接圆,连接OB ,∠ABO =38°,则∠C 的度数为 ▲ .15. 如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,若AC =2 2 ,则∠BAC 的度数为 ▲ .16. 如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线OF 绕O 点旋转时,CD 的最小值为 ▲ .(第16题)ABO (第15题)ECOM DF(第10题)CE(第13题)ADB三、解答题(共11题,共88分)17.(8分)解下列方程(1)2x2-5x-1=0;(2)(x+2)2=3x+6.18.(8分)某班准备选一名学生参加数学史知识竞赛,现统计了两名选手本学期的五次测试成绩:甲:83,80,90,87,85;乙:78,92,82,89,84.(1)请根据上面的数据完成下表:极差平均数方差甲10 ▲ ▲乙▲ 85 24.8(2)请你推选出一名参赛选手,并用所学的统计知识说明理由.19.(8分)(1)在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,请通过列表或树状图求2次摸出的球都是白球的概率;(2)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘3次,指针3次都指向白色区域的概率为▲ .20.(7分)已知关于x 的方程x 2+ax +a -1=0.(1)若方程有一个根为1,求a 的值及该方程的另一个根; (2)求证:不论a 取何实数,该方程都有实数根.21.(7分)某企业2016年盈利1500万元,2018年盈利2160万元.求该企业每年盈利的年平均增长率.若该企业盈利的年增长率继续保持不变,预计2019年盈利多少万元?22.(8分)如图,△ABC 中,⊙O 经过A 、B 两点,且交AC 于点D ,连接BD ,∠DBC =∠BAC .(1)证明BC 与⊙O 相切;(2)若⊙O 的半径为6,∠BAC =30°,求图中阴影部分的面积.23. (8分)某商店将进价为10元的商品按每件15元售出,每天可售出460件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售 量就减少20件.(1)若售价提价1元,此时单件利润为 ▲ 元,销售量为 ▲ 件; (2)应将每件售价定为多少元时,才能使每天利润为2720元?OC B AD24.(8分)请用配方法解关于x的一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0).25.(8分)如图,四边形ABCD是⊙O的内接四边形,BD是∠ABC的角平分线,过点D分别作DE⊥AB,DF⊥BC,垂足分别为E、F.(1)求证△AED≌△CFD;(2)若AB=10,BC=8,∠ABC=60°,求BD的长度.26.(8分)如图,已知直角△ABC ,∠C =90°,BC =3,AC =4.⊙C 的半径长为1,已知点P 是△ABC 边上一动点(可以与顶点重合).(1)若点P 到⊙C 的切线长为3,则AP 的长度为 ▲ ;(2)若点P 到⊙C 的切线长为m ,求点P 的位置有几个?(直接写出结果)27. (10分) 如图,已知等腰△ABC ,AB =AC ,⊙O 是△ABC 的外接圆,点D 是AC ⌒上一动点,连接CD 并延长至点E ,使得AE =AD . (1)求证:①∠DAE =∠BAC ;②EC =BD ; (2)若EC ∥AB ,判断AE 与⊙O 的位置关系; (3) 若∠CAB =30°,BC =6,点D 从点A 运动到点C 处,则点E 运动路径的长为 ▲ .2018-2019学年度第一学期九年级期中数学试卷(答案)一.选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. a ≥1 8. 45 9. 不变10. 2.6 11. 5,﹣1012. 2 13. 126° 14.52°128° 15.15°或105°16. 2 -1三、解答题(共11题,共88分) 18. (8分)解下列方程(1)2x 2-5x -1=0; 解:∵a =2,b =-5,c =-1,∴b 2-4ac =33x =-b ±b 2-4ac 2a =5±33 4 , ....................................................................2分∴x 1=5+33 4 ,x 2=5-334 ..................................................................................4分(配方正确2分,答案各1分)(2)(x +2)2=3x +6.解:(x +2)2=3(x +2) (x +2)2-3(x +2)=0 (x +2)[(x +2)-3]=0∴x +2=0或(x +2)-3=0, ..........................................................................................2分 ∴x 1=-2或x =1 . ..........................................................................................4分 (配方正确2分,答案各1分;代入公式正确2分,答案2分) 18.(8分)(1) 85、11.6、14 .......................................................................3分 (2)选择甲参加比赛 ...............................................................................5分 理由两者的平均数一样,两者水平相当,但是甲的极差比乙的极差小,甲的方差也比乙的方差小,则甲比乙稳定。
2018——2019学年第一学期期中考试 一、选择题:1.C ;2.B ;3.B ;4.C ;5.A ; 6.A ; 7.B ; 8.D ; 9.B ; 10.D .二、填空题:11.(3,2)P ';12.2018; 13.y =-x 2+2x (答案不唯一);14815.84º;16. 三、解答题17.12x x ==.……………………………………………………………………………… 6分 18.令y =0,得2023x x =+-,解得,121,3x x ==- ∴抛物线与x 轴交点坐标为(1,0),(-3,0).…………………………………………………………… 2分 令x =0,得y =-3∴抛物线与y 轴交点坐标为(0,-3).……………………………………………………………………… 4分 又2223(1)4y x x x =+-=+-,∴抛物线顶点坐标为(-1,-4). …………………………………… 6分19.(1)由题知: △=2(3)410k --⨯⨯>解得:k <94…………………………………………………………………………………………………… 3分 (2)由(1)知:k <94,取k =-4得方程2340x x --=,解得:121,4x x =-=.……………………… 7分20.设每年比上一年利润增长的百分率为x .依题意,列方程得:200(1+x )2=242 ……………………………………………………………………… 3分 解得:120.110%, 2.1x x ===-(不合题意,舍去)∴x =10% …………………………………………………………………………………………………… 6分 ∴该企业2019年预计利润是242×(1+10%)=266.2(万元). …………………………………………… 7分21.(1)设所求的函数解析式为:y =kx +b由题知:65556060k b k b =+⎧⎨=+⎩,解得1120k b =-⎧⎨=⎩∴y =-x +120 ……………………………………………………………………………………………… 3分(2) W =(50-x ) (-x +120)=-(x -85)2+1225 …………………………………………………………… 5分 ∵a =-1<0,∴当x <85时,W 随x 增大而增大. ……………………………………………………6分 由题知:50≤x ≤80 …………………………………………………………………………………………7分 ∴当x =80时,W 有最大值,且最大值为1200.………………………………………………………… 8分 即当试销单价定为80元时,该商店可获得最大利润,最大利润是1200元.22.(1)略……………………………………………………………………… 3分(2) 由(1)得2222P P PA P A ''=+=又2210P B PD '==,28PB =∴22210P B PB P P ''=+=…………………………………………………… 6分∴△BP P '是直角三角形,且∠BP P '=90º∴∠BPQ =180º-90º-45º=135º.………………………………………… 8分 23.(1)证明:连AD ,AC .∵∠ADC +∠AEC =∠AEC +∠CKF =180º∴∠CKF =∠ADC ………………………………………………………… 2分又∵CD ⊥直径AB ,∴⌒AC =⌒AD ,∴∠ACD =∠ADC …………………… 3分又∵∠AKD =∠ACD ∴∠AKD =∠CKF ………………………………………………………… 4分(2)连OD .则OD =5,DE =3 ……………………………………………… 5分∴OE 4=,∴AE =OE +OA =9.………………………… 8分(第22题图) (第23题图) E24.(1)△=222(5)4625(3)16m m m m m -+=-+=-+…………………………………………… 2分 ∵2(3)m -≥0∴△>0……………………………………………………………………………………………………3分 ∴不论m 为何值时,该方程总有两个不相等的实数根.……………………………………………4分(2)由题知:x 1, x 2是方程x 2-(m -5) x -m = 0的两根∴x 1+x 2=m -5,x 1x 2=-m ……………………………………………………………………………6分∴AB =12x x -===8分 ∴当m =3时,AB 存在最小值,最小值为AB =4.……………………………………………………10分25.(1)证明: ∵点A 在x 轴上,令y =0,得20ax bx c ++=∵b =a +c ,∴2()0ax a c x c +++=即(1)()0x ax c ++= 解得121,c x x a=-=-∴该抛物线过x 轴上的定点A (-1,0).…………………………………………………………………4分(2)解:①当点C 在点A 右侧时,如图1所示.∵四边形P ACQ 平行四边形,∴点C 恰好与点B 重合.由已知得P (0,∴Q (0设抛物线解析式为y =2ax +把A (-1,0)代入,得a∴y =28分②当点C 在点A 左侧时,如图2所示.∵四边形P ACQ 平行四边形,∴P A =CQ由抛物线对称性,得CQ =AQ∴P A =AQ∴点A 在PQ 的垂直平分线上.∴PQ =2OA =2,∴Q (-2.设抛物线解析式为y =2(2)a x +把A (-1,0)代入,得a∴y 22)x +12分综上,存在符合要求的抛物线,其解析式为y =2y 22)x +。
2018-2019学年第一学期期中联考九年级数学试卷一、选择题(本题有10 小题,每小题4 分,共40 分)1.下列图形中,既是轴对称图形,又是中心对称图形的是(▲)A .B.C.D.2.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是(▲)A. 点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法判断3.已知一元二次方程x2+kx-3=0有一个根为1,则另一根为(▲)A .-3B.-2C.2D.34.如图,A,B,C是⊙O上的三点,∠ABO=25°,∠ACO=30°,则∠BOC的度数为(▲)A.100°B.110°C.125°D.130°5.随着台州市打造“和合圣地”的推进,某企业推出以“和合文化”为载体的产品,2017年盈利50万元,计划到2019年盈利84.5万元,则该产品的年平均增长率为(▲)A.20% B.30% C.34.5% D.69%6. 二次函数y=x2-4x+3,当0≤x≤5时,y的取值范围为(▲)A. 3≤y≤8B. 0≤y≤8C. 1≤y≤3D.-1≤y≤87.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE =3,则AE的长为(▲)A.34B.5C.8D.48.如图,AB为⊙O的直径,AB=6,点C为半圆AB上一动点,以BC为边向⊙O外作正△BCD(点D在直线AB的上方),连接OD,则线段OD的长(▲)A. 随点C的运动而变化,最大值为33B.随点C的运动而变化,最小值为3C. 随点C的运动而变化,最大值为6D. 随点C的运动而变化,但无最值9.已知函数y=ax2+2ax﹣1(a是常数,a≠0),下列结论正确的是(▲)A. 当a=1时,函数图象过点(﹣1,1)B. 当a=﹣2时,函数图象与x轴没有交点C. 若a>0,则当x≥-1时,y随x的增大而减小D. 若a<0,则当x≤-1时,y随x的增大而增大10.(课本第41页第8题拓展)如图,在△ABC中,∠B=90°,∠C=30°,AB=6cm,动点P从点B开始沿边BA、AC向点C以3cm/s的速度移动,动点Q从点B开始沿边BC向点C以3cm/s的速度移动,设△BPQ的面积为y(cm2). 运动时间为x(s),则下列图象能反映y与x之间关系的是(▲)A .B.C.D.二、填空题(本题有6 小题,每小题5 分,共30 分)11.已(第4题)(第7题)(第8 题)EMBED Equation.DSMT4 22y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是▲ 13. 如图,在△ABC 中,∠A =70°,AC =BC ,以点B 为旋转中心把△ABC 按顺时针方向旋转得到△A ′BC ′ ,点A ′恰好落在边A C 上,连接C C ′,则∠A C C ′=▲ 14. 已知关于x 的方程 E M B E D E q u a t i o n .D S M T 4 210ax bx ++=的两根为1和2,则方程E M B E D E q u15. 如图,⊙O 是△ABC 的外接圆,BC 为直径,BC =4,点E 是△ABC 的内心,连接AE 并延长交⊙O 于点D ,则D E = ▲ 16. (2018台州市中考第16题变式)如图,在正方形ABCD 中,AB =3,点E ,F 分别在CD ,AD 上,CE =DF ,B E ,C F 相交于点G ,连接D G .点E 从点C 运动到点D 的过程中,D G 的最小值为▲ 三、解答题(本题有 8 小题,第 17~20 题每题 8 分,第 21 题 10分,第 22、23 题每题 12 分,第 24 题 14 分,共 80 分) 17. 解方程:(1)01242=--x x ; (2)2210x x --=. 18. 已知,如图,AD =BC . 求证:AB =CD . 19. 判断关于x 的方程(a -2)x 2-ax +1=0的根的情况,并说明理由. 20.某农户承包荒山种植某产品种蜜柚.已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量y (千克)与销售单价x (元/千克)之间的函数关系如图所示. (1)求y 与x 的函数关系式,并写出x 的取值范围; (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大? 最大利润是多少? 21. 如图,在△ABC 中,已知∠ABC =120°,AC =4. (1)用直尺和圆规作出△ABC 的外接圆⊙O ; (不写作法,保留作图痕迹) (2)求∠AOC 的度数; (3)求 ⊙O 的半径. 阅读下列材料:求函数22320.25x x y x x +=++的最大值. (第13题) (第18题) (第16题) (第15题)解:将原函数转化成关于x 的一元二次方程,得21(3)(2)04y x y x y -+-+=.当3y ≠时,∵x 为实数,∴△=21(2)4(3)4y y y---⨯=4y -+≥0.∴4y ≤且3y ≠;当3y =时,21(3)(2)04y x y x y -+-+=即为304x +=,方程有解(x 的值存在);∴4y ≤.因此,y 的最大值为4.根据材料给你的启示,求函数223221x x y x x ++=++的最小值. 22. 如图,函数2y x =的图象与函数23y ax =- (0a ≠)的图象相交于点P (3,k ),Q 两点. (1)a = ▲ ,k = ▲ ;(2)当x 在什么范围内取值时,2x >23ax -;(3)解关于x 的不等式:23ax ->1.23. 已知矩形ABCD ,AB =6,AD =8,将矩形ABCD 绕点A 顺时针旋转a (0°<a <360°),得到矩形AEFG .(1)如图1,当点E 在BD 上时.求证:FD =CD ; (2)当a 为何值时,GC =GB ?画出图形,并说明理由;(3)将矩形ABCD 绕点A 顺时针旋转90°的过程中,求CD 扫过的面积GFEDCB(图1)DCB A(备用图)参考答案一、选择题(本题有10题,每小题4分,共40分)二、填空题(本题有6题,每小题5分,共30分)11.1 12.2212y (x )=-+ 13.110° 14.2、3 15.22 16.23-53三、解答题(本题共有8小题,第17-20题每题8分,第21题10分,第22,23题每 题12分,第24题14分,共80分) 17. (1) 16x =,22x =- (4分) (2) 112x =-,21x = (4分) 18. 证明过程略19. 当a=2时,方程 -2x+1=0, 有一个实数根12x =(3分) 当a ≠2时,方程为一元二次方程(a -2)x 2-ax +1=0 222424824a (a )a a (a )∆=--=-+=-+ > 0 (7分)此时,方程有两个不相等的实数根 (8分) 20. (1)设函数关系式为)0(≠+=k b kx y分别把点(10,200)、(15,150)代入解析式,得 y =-10x +300(8≤x <30). (4分) (2)设每天获得的利润为w ,则:w =y (x -8)=(-10x +300)(x -8)=-10(x -19)2+1210.∴当蜜柚定价为19元/千克时,每天获得的利润最大,是1210元. (4分) 21.(1)画图略 (4分)(2)∠AOC=120 ° (3分) (3)334 (3分) 22. 将原函数转化得2(3)(21)(2)0y x y x y -+-+-= ( 3分) 当3y ≠时,∵x 为实数,∴△=2(21)4(3)(2)0y y y ----==16230y -≥;∴2316y ≥且3y ≠; (4分) 当3y =时,2(3)(21)(2)0y x y x y -+-+-=即为510x +=,方程有解(x 的值存在); (3分) ∴2316y ≥.因此,y 的最小值为2316. (1分)23.(1)k =6,a =3; (2分) (2) x x 232=-13x =,21x =- (2分) ∴ 结合图象 -1<x <3 (2分) (3) 令132=-x , 12x =,22x =- (2分)令13-2=+x , 32x =,42x =(2分)∴如图,当x <-2 或 2-<x 2或x >2时(2分)24.(1)证明略 (4分)(2)a=60° (2分) 对应图形 (1分) a=300° (2分) 对应图形 (1分) (3)9π (4分)。
2018-2019学年九年级数学上学期期中联考试题注意事项:1.本次考试时间为120分钟,卷面总分为150分.考试形式为闭卷.2.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分. 3.答题前,务必将姓名、考试编号用0.5毫米黑色签字笔填写在试卷及答题卡上.一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.)1. 下列方程中,是一元二次方程的是 ················· 【 ▲ 】A .x +2y =1B .x 2-2xy =0C .x 2+x1=3 D .x 2-2x +3=02. 下列图形中,不是中心对称图形的是 ················ 【 ▲ 】A .正方形B .正五边形C .正六边形D .正八边形 3. 已知⊙O 的半径为5cm ,点A 到圆心O 的距离OA =5cm ,则点A 与⊙O 的位置关系为【 ▲ 】 A .点A 在圆上 B .点A 在圆内 C .点A 在圆外 D .无法确定 4. 已知直角三角形的两条直角边长分别为6和8,它的内切圆半径是 ··· 【 ▲ 】 A .2B .2.4C .5D .65. 已知关于x 的一元二次方程22(2)34m x x m -++-=0有一个解为0,则m 的值为································ 【 ▲ 】 A .2B .2-C .2±D .06. 如图,点A 、B 、C 、D 都在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠ADC 的度数为 ························ 【 ▲ 】 A .30° B .45°C .60°D .90°二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上.)7. 一元二次方程x 2=2x 的解为 ▲ . 8. 数据2,3,4,4,5的众数为 ▲ .9. 圆内接正六边形的一条边所对的圆心角的度数为 ▲ .10.一只自由飞行的小鸟,如果随意落在如图所示的方格地面上(每个小方格形状完全相同),那么小鸟落在阴影方格地面上的概率是 ▲ .11.若a 是方程x 2-x -1=0的一个根,则2a 2-2a +5= ▲ .12.某药品原价为每盒25元,经过两次连续降价后,售价为每盒16元.若该药品平均每次降价的百分数是x ,则可列方程为 ▲ .13.如图,正方形ABCD 的边长为4,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆(第6题图) CDABO(第10题图) (第13题图)C DAB (第15题图)CDE ABOP(第16题图)CDAB心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是 ▲ .(结果保留π) 14.某种蔬菜按品质分成三个等级销售,销售情况如下表:等级 单价(元/千克)销售量(千克)一等 5.0 20 二等 4.5 40 三等4.040则售出蔬菜的平均单价为 ▲ 元/千克.15.如图,从⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B ,若PA =8cm ,C 是AB 上的一个动点(点C 与A 、B 两点不重合),过点C 作⊙O 的切线,分别交PA 、PB 于点D 、E ,则△PED 的周长是 ▲ cm .16.如图,四边形ABCD 中,AB =AD ,连接对角线AC 、BD ,若AC =AD ,∠CAD =76°,则∠CBD =________°. 三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明,推理过程或计算步骤.) 17.(本题满分6分)解方程:241x x -+=0.(用配方法)18.(本题满分7分)某公司招聘一名部门经理,对A 、B 、C 三位候选人进行了三项测试,成绩如下(单位:分): 候选人语言表达 微机操作 商品知识 A60 80 70 B 50 70 80 C608065如果语言表达、微机操作和商品知识的成绩按3∶3∶4计算,那么谁将会被录取?19.(本题满分7分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的 底面圆的半径r =2 cm ,扇形的圆心角θ=120°. (1)求该圆锥的母线长l ; (2)求该圆锥的侧面积.20.(本题满分8分)一个不透明的口袋中装有2个红球(记为红1、红2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用画树状图或列表法求两次都摸到红球的概率.(第19题图)lrθ21.(本题满分8分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5. (1)根据以上数据完成下表:平均数 中位数 方差 甲 8 8 ▲ 乙 8 8 2.2 丙 6▲3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.22.(本题满分8分)已知△ABC 中,∠A =25°,∠B =40°.(1)求作:⊙O ,使⊙O 经过A 、C 两点,且圆心落在AB 边上;(要求:尺规作图,保留作图痕迹,不写作法.) (2)求证:BC 是(1)中所作⊙O 的切线.23.(本题满分10分)已知关于x 的一元二次方程x 2-2x -m 2=0. (1)求证:该方程有两个不相等的实数根;(2)若该方程有两个实数根为x 1,x 2,且x 1=2x 2+5,求m 的值.(第22题图)CAB24.(本题满分10分)如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.(第24题图)CD E FA BO25.(本题满分12分)小颖妈妈的网店加盟了“小神龙”童装销售,有一款童装的进价为60元/件,售价为100元/件,因为刚加盟,为了增加销量,准备对大客户制定如下促销优惠方案:若一次购买数量超过10件,则每增加一件,所有这一款童装的售价降低1元/件.例如:一次购买11件时,这11件的售价都为99元/件.请解答下列问题:(1)一次购买20件这款童装的售价为▲元/件,所获利润为▲元;(2)促销优惠方案中,一次购买多少件这款童装,所获利润为625元?26.(本题满分12分)如图,在扇形AOB中,OA、OB是半径,且OA=4,∠AOB=120°.点P是弧AB上的一个动点,连接AP、BP,分别作OC⊥PA,OD⊥PB,垂足分别为C、D,连接CD.(1)如图①,在点P的移动过程中,线段CD的长是否会发生变化?若不发生变化,请求出线段CD的长;若会发生变化,请说明理由;(2)如图②,若点M、N为AB的三等分点,点I为△DOC的外心.当点P从点M运动到N点时,点I所经过的路径长为__________.(直接写出结果)27.(本题满分14分)图①DABOPC图②DABINOPMC(第26题图)如图,AB 是⊙O 的直径,点C ,D 分别在两个半圆上(不与点A 、B 重合),AD 、BD 的长分别是关于x 的方程221102(10225)4x x m m -+-+=0的两个实数根.(1)求m 的值;(2)连接CD ,试探索:AC 、BC 、CD 三者之间的等量关系,并说明理由; (3)若CD =72,求AC 、BC 的长.(第27题图)CDABO2018-2019学年第一学期期中质量检测 九年级数学参考答案及评分标准一、选择题(每小题3分,共18分)题号 1 2 3 4 5 6 答案DBAABC二、填空题(每小题3分,共30分) 7. x 1=0,x 2=2. 8. 4. 9. 60°. 10.14. 11.7. 12.25(1-x )2=16. 13.π2. 14.4.4.15.16. 16.38°.三、解答题17.(本题满分6分)解:24x x -=1-.244x x -+=14-+. ························· 2分2(2)x -=3. ····························· 3分 2x -=7. ······························ 4分∴1x =23+,2x =23-. ······················ 6分 (说明:根写对一个给1分) 18.(本题满分7分)解:A 的成绩=603803704334⨯+⨯+⨯++=70(分); ············· 2分B 的成绩=503703804334⨯+⨯+⨯++=68(分); ··············· 4分C 的成绩=603803654334⨯+⨯+⨯++=68(分). ··············· 6分∵A 的成绩最高,∴A 将会被录取. ··························· 7分 19.(本题满分7分)解:(1)由题意,得2πr =120π180l. ··················· 3分 ∴l =3r =6(cm ). ························· 4分 (2)S 侧=2120π6360⨯=12π(cm 2). ··················· 7分20.(本题满分8分)解:(1)12. ···························· 3分 (2)用表格列出所有可能出现的结果: ·················· 6分 红1红2白球黑球红1(红1,红球2) (红1,白球) (红1,黑球)红2 (红2,红球1)(红2,白球) (红2,黑球)白球 (白球,红1) (白球,红2)(白球,黑球)黑球(黑球,红1) (黑球,红2) (黑球,白球)由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能. ······························ 7分 ∴P (两次都摸到红球)=212=16. ··················· 8分 21.(本题满分8分)(1)甲的方差为2; ·························· 3分 丙的中位数为6. ··························· 6分 (2)∵甲的方差<乙的方差<丙的方差,而方差越小,数据波动越小, ···· 7分 ∴甲的成绩最稳定. ·························· 8分 22.(本题满分8分)(1)解:如答图所示,⊙O 就是所要求作的圆. ············ 4分(2)证明:连接O C .∵∠BOC =2∠A =50°,∠B =40°,∴∠BOC =90°. ··························· 6分 ∴OC ⊥B C . ······························ 7分 ∴BC 是(1)中所作⊙O 的切线. ···················· 8分 23.(本题满分10分)(1)证明:∵b 2-4ac =(-2)2-4(-m 2)=4+4m 2. ············· 2分 ∵2m ≥0,(第22题答图)CABO∴4+4m2>0.∴b2-4ac>0.∴该方程有两个不相等的实数根.····················4分(2)解:由题意,得x1+x2=2,x1x2=-m2.···············5分又∵x1=2x2+5,∴x1=3,x2=-1.··························7分∴-m2=-3,即m2=3.±.····························8分解得m=324.(本题满分10分)(1)证明:连结O D.∵OB=OD,∴∠ABC=∠OD B.∵AB=AC,∴∠ABC=∠AC B.∴∠ODB=∠AC B.∴OD∥A C.······························3分∵DF是⊙O的切线,∴DF⊥O D.∴DF⊥A C.······························5分(2)连结OE.∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°.∴∠BAC=45°.···························7分∵OA=OE,∴∠AOE=90°.∴⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8.·······················9分∴S阴影=S扇形AOE-S△AOE=π4-8.···················10分25.(本题满分12分)解:(1)售价为90;··························3分利润为600.·····························6分(2)设一次购买x件这款童装,所获利润为625元.根据题意,得[100(10)60]x x ---=625. ······················· 9分解得x 1=x 2=25.…………………………………………………………………………11分 答:一次购买25件这款童装,所获利润为625元. ··········· 12分 26.(本题满分12分)解:(1)线段CD 的长不会发生变化. ·················· 2分 连接AB ,过O 作OH ⊥AB 于H . ∵OC ⊥PA ,OD ⊥PB , ∴AC =PC ,BD =P D . ∴CD =12A B . 4分 ∵OA =OB ,OH ⊥AB , ∴AH =BH =12AB ,∠AOH =12∠AOB =60°. ··············· 5分 在Rt △AOH 中,∵∠OAH =30°, ∴OH =OA 21=2. ························ 6分 ∴在Rt △AOH ,由勾股定理得AH =2242-=23.········· 8分 ∴AB =43.∴CD =23. ·························· 9分(2)4π9. ····························· 12分27.(本题满分14分)解:(1)由题意,得 b 2-4ac ≥0.∴221(102)41(10225)4m m --⨯⨯-+≥0.化简整理,得 21025m m -+-≥0. ··················· 2分 ∴21025m m -+≤0,即2(5)m -≤0. ·················· 3分 又∵2(5)m -≥0,∴m =5. ······························ 4分 (2)AC +BC =2C D . ······················· 6分理由是:如图,由(1),得 当m =5时,b 2-4ac 0=.∴ AD =B D . ····························· 7分 ∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°.DABOPC(第26题答图)HCDABE将△ADC绕点D逆时针旋转90°后,得△BDE.∴△ADC≌△BDE.∴∠DAC=∠DBE.∵∠DAC+∠DBC=180°,∴∠DBE+∠DBC=180°.∴点C、B、E三点共线.∴△CDE为等腰直角三角形.······················9分∴CE=2C D.即AC+BC=2C D.······················· 10分=.(3)由(1),得当m=5时,b2-4ac0∴AD=BD=52.∵∠ACB=∠ADB=90°,∴AB=10.11分∴AC2+BC2=102=100.①····················11分由(2)得,AC+BC=2CD=2⨯72=14.②··········12分由①②解得AC=6,BC=8或AC=8,BC=6.··············14分。
2018—2019学年九年级(上)期中数学试卷一、选择题1.(3分)顺次连接菱形各边中点所得的四边形一定是()A.等腰梯形B.正方形C.平行四边形D.矩形2.(3分)若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为()A.3 B.﹣3 C.1 D.﹣13.(3分)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.94.(3分)如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且=,若△AEF 的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.185.(3分)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.6.(3分)某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()A.5.3米B.4.8米C.4.0米D.2.7米7.(3分)若双曲线位于第二、四象限,则k的取值范围是()A.k<1 B.k≥1 C.k>1 D.k≠18.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.9.(3分)李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A.=20 B.n(n﹣1)=20 C.=20 D.n(n+1)=2010.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D.+1二、填空题11.(3分)已知关于x的方程kx2﹣4x+2=0有两个实数根,则k的取值范围是.12.(3分)若==,则=.13.(3分)如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.14.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为㎡.15.(3分)如图,反比例函数y=的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于个面积单位.三、解答题16.画几何体的三种视图(注意符合三视图原则)17.解方程:(1)x2﹣4x﹣5=0(2)x2﹣5x+1=0.18.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.19.“泥兴陶,是钦州的一张文化名片.钦州市某妮兴陶公司以每只60元的价格销售一种成本价为40元的文化纪念杯,每星期可售出100只.后来经过市场调查发现,每只杯子的售价每降低1元,则平均何星期可多买出10只.若该公司销售这种文化纪念杯要想平均每星期获利2240元,请回答:(1)每只杯应降价多少元?(2)在平均每星期获利不变的情况下,为尽可能让利于顾客,赢得市场,该公司应该按原售价的几折出售?20.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.21.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.22.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,,求线段DC的长;(2)求证:EF•GB=BF•G E.23.如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒(1)当t=4时,求线段PQ的长度(2)当t为何值时,△PCQ是等腰三角形?(4)当t为何值时,△PCQ的面积等于16cm2?(4)当t为何值时,△PCQ∽△ACB.参考答案与试题解析一、选择题1.(3分)顺次连接菱形各边中点所得的四边形一定是()A.等腰梯形B.正方形C.平行四边形D.矩形【解答】解:如图:菱形ABCD中,E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EH=FG=BD;EF∥HG∥AC,EF=HG=AC,故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°∴边形EFGH是矩形.故选:D.2.(3分)若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为()A.3 B.﹣3 C.1 D.﹣1【解答】解:把x=2代入x2﹣ax+2=0,得22﹣2a+2=0,解得a=3.故选:A.3.(3分)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9【解答】解:用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,是在大量重复实验中得到的概率的近似值,故A、B、C错误,D正确,故选:D.4.(3分)如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且=,若△AEF 的面积为2,则四边形EBCF的面积为()A.4B.6 C.16 D.18【解答】解:∵=,∴=,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵△AEF的面积为2,∴S△ABC=18,则S四边形EBCF=S△ABC﹣S△AEF=18﹣2=16.故选:C.5.(3分)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.6.(3分)某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()A.5.3米B.4.8米C.4.0米D.2.7米【解答】解:设这棵树的高度为x.∵在同一时刻同一地点任何物体的高与其影子长比值是相同的.∴∴x==4.8∴这棵树的高度为4.8米.故选:B.7.(3分)若双曲线位于第二、四象限,则k的取值范围是()A.k<1 B.k≥1 C.k>1 D.k≠1【解答】解:∵双曲线位于第二、四象限,∴k﹣1<0,∴k<1.故选:A.8.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.9.(3分)李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A.=20 B.n(n﹣1)=20 C.=20 D.n(n+1)=20【解答】解:设有n人参加聚会,则每人送出(n﹣1)件礼物,由题意得,n(n﹣1)=20.故选:B.10.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D.+1【解答】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°﹣∠A=180°﹣120°=60°,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sinB=2×=.故选:B.二、填空题11.(3分)已知关于x的方程kx2﹣4x+2=0有两个实数根,则k的取值范围是k≤2且k ≠0..【解答】解:∵关于x的方程kx2﹣4x+2=0有两个实数根,∴,解得:k≤2且k≠0.故答案为:k≤2且k≠0..12.(3分)若==,则=.【解答】解:设===k,∴x=3k,y=4k,z=6k,∴==,故答案为.[来源:学+科+网]13.(3分)如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是 4.8.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD==10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.14.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为0.81π㎡.【解答】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴△OBC∽△OAD∴,∵OD=3米,CD=1米,∴OC=OD﹣CD=3﹣1=2(米),BC=×1.2=0.6(米),∴,∴AD=0.9 S⊙D=π×0.92=0.81πm2,这样地面上阴影部分的面积为0.81πm2.故答案为:0.81π.15.(3分)如图,反比例函数y=的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于4个面积单位.【解答】解:设A的坐标是:(a,b),则ab=2,B的坐标是:(﹣a,﹣b),∴AC=2b,BC=2a,则△ABC的面积是:AC•BC=×2a•2b=2ab=2×2=4.故答案为4三、解答题16.画几何体的三种视图(注意符合三视图原则)【解答】解:.17.解方程:(1)x2﹣4x﹣5=0(2)x2﹣5x+1=0.【解答】解:(1)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1;(2)△=(﹣5)2﹣4×1=21,x=,所以x1=,x2=.18.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个数字的积为奇数的4种情况,∴两个数字的积为奇数的概率为:=.19.“泥兴陶,是钦州的一张文化名片.钦州市某妮兴陶公司以每只60元的价格销售一种成本价为40元的文化纪念杯,每星期可售出100只.后来经过市场调查发现,每只杯子的售价每降低1元,则平均何星期可多买出10只.若该公司销售这种文化纪念杯要想平均每星期获利2240元,请回答:(1)每只杯应降价多少元?(2)在平均每星期获利不变的情况下,为尽可能让利于顾客,赢得市场,该公司应该按原售价的几折出售?【解答】解(1)设每只杯子降价x元,根据题意,可列方程:(100+10x)(20﹣x)=2240,整理得到:x2﹣10x+24=0,解得x1=4,x2=6.所以每只杯子应降价4元或6元.(2)因为要保持每星期获利不变,且尽可能利于顾客,因为该公司应使价格尽量低,因此应降价6元.所以有,所以应按原价的九折出售.20.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.【解答】(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.21.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【解答】解:(1)∵已知反比例函数经过点A(1,﹣k+4),∴,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当反比例函数的值大于一次函数的值时,x的取值范围是x<﹣2或0<x<1.22.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,,求线段DC的长;(2)求证:EF•GB=BF•GE.【解答】解:(1)∵AD∥BC,∴△DEF∽△CBF,∴==,∴FC=3FD=6,∴DC=FC﹣FD=4;(2)证明:∵AD∥BC,∴△DEF∽△CBF,△AEG∽△CBG,∴=,=,∵点E是边AD的中点,∴AE=DE,∴=,∴EF•GB=BF•GE.23.如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒(1)当t=4时,求线段PQ的长度(2)当t为何值时,△PCQ是等腰三角形?(4)当t为何值时,△PCQ的面积等于16cm2?(4)当t为何值时,△PCQ∽△ACB.【解答】解:(1)当t=4时,由运动知,AP=4cm,PC=AC﹣AP=6cm、CQ=2×4=8cm,∴PQ==10cm;(2)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∵△PCQ是等腰三角形,∴PC=CQ,∴10﹣2t=2t,∴t=2.5(3)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∴S△PQC=PC×CQ=t(10﹣t)=16,∴t1=2,t2=8,当t=8时,CQ=2t=16>15,∴舍去,∴当t=2时,△PQC的面积等于16cm2;(4)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∵△PCQ∽△ACB,∴,∵AC=10,B C=15,∴,∴t=.。
学校:___________姓名:________班级:________考场:_ 座号:_______…○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2018-2019学年上期九年级期中联考试题数学命题人:郑州市回民中学 李晓燕题 号 一二三总分1-78-151617181920 2122 23得 分评卷人 得 分一.选择题(每小题3分,共21分)1.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ,直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 相交于点G ,且AG=2,GB=1,BC=5,则的值为( )A .B .2C .D .(第1题图) 2.下面关于x 的方程中:①ax 2+bx +c=0;②3(x ﹣9)2﹣(x +1)2=1③x 2++5=0;④x 2﹣2+5x 3﹣6=0;⑤3x 2=3(x ﹣2)2;⑥12x ﹣10=0是一元二次方程的个数是( ) A .1 B .2 C .3 D .43.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC=8,BD=6,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH 等于( )A .2B .C .D .(第3题图)4.布袋中有除颜色外完全相同的5个红球,2个黄球,3个白球,从布袋中同时随机摸出两个球都是红球的概率为( )A.B.C.D.5.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.100(1+x)2=280 B.100(1+x)+100(1+x)2=280C.100(1﹣x)2=280 D.100+100(1+x)+100(1+x)2=2806.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:25(第6题图)7.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH=BC,③OD=BF,④∠CHF=45°.正确结论的个数为()A.4个B.3个C.2个D.1个(第7题图)评卷人得分二.填空题(每小题3分,共24分)8.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.(第8题图)9.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是.10.一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有个.11.如图任意四边形ABCD中,点E、F、G、H分别是AD、BC、BD、AC的中点,当四边形ABCD满足条件时,四边形EGFH是菱形.(填一个使结论成立的条件)学校:___________姓名:________班级:________考场:_ 座号:_______…○…………内…………○…………装…………○…………订…………○…………线…………○…………(第11题图) (第12题图) (第13题图)12.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 上一点,且AB=BE ,∠1=15°,则∠2= .13.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是 .14.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8.把△ABC 绕AB 边上的点D 顺时针旋转90°得到△A′B′C′,A′C′交AB 于点E .若AD=BE ,则△A′DE 的面积是 .(第14题图) (第15题图)15.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O .AC=8cm ,BD=6cm ,点P 为AC 上一动点,点P 以1cm/的速度从点A 出发沿AC 向点C 运动.设运动时间为ts ,当t= s 时,△PAB 为等腰三角形.评卷人 得 分三.解答题(共8小题,共75分)16.(8分)解方程:(1)2x 2﹣4x +1=0. (2)3x (2x +1)=2(2x +1)17.(9分)如图,菱形ABCD的周长为16,∠DAB=60°,对角线AC上有两点E和F,且AE <AC,AE=CF.(1)求证:四边形DEBF是菱形;(2)求AC的长.(3)当AE的长为时,四边形DEBF是正方形(不必证明).18.(9分)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.19.(9分)如图,在10×10网格中,每个小方格的边长看做单位1,每个小方格的顶点叫做格点,△ABC的顶点都在格点上.(1)请在网格中画出△ABC的一个位似图形△A1B1C1,使两个图形以点C为位似中心,且所画图形与△ABC的位似比为2:1;(2)将△A1B1C1绕着点C1顺时针旋转90°得△A2B2C2,画出图形,并分别写出△A2B2C2三个顶点的坐标.学校:___________姓名:________班级:________考场:_ 座号:_______…○…………内…………○…………装…………○…………订…………○…………线…………○…………20.(9分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x 元,则商场日销售量增加 件,每件商品,盈利 元(用含x 的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?21. (9分)如图,小华在晚上由路灯A 走向路灯B .当他走到点P 时,发现他身后影子的顶部刚好接触到路灯A 的底部;当他向前再步行12m 到达点Q 时,发现他身前影子的顶部刚好接触到路灯B 的底部.已知小华的身高是1.6m ,两个路灯的高度都是9.6m ,且AP=QB . (1)求两个路灯之间的距离.(2)当小华走到路灯B 的底部时,他在路灯A 下的影长是多少?22.(10分)(1)某学校“智慧方园”数学社团遇到这样一个题目: 如图1,在△ABC 中,点O 在线段BC 上,∠BAO=30°,∠OAC=75°,AO=,BO :CO=1:3,求AB 的长.经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.23.(12分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)2018-2019学年上期九年级期中联考试题数学参考答案一.选择题(每小题3分,共21分)1.D 2. A 3.D4.A 5.B 6.B 7.B 二.填空题(每小题3分,共24分)8.3.9.a≥1且a≠5.10.15.11.AB=CD.12.30°.13.1614.6.15.5或8或.三.解答题(共8小题,共75分)16.(8分)解方程:(1)(1)2x2﹣4x+1=0.解:a=2,b=﹣4,c=1,b2﹣4ac=16﹣8=8>0,x=;∴x1=,x2=.(2)3x(2x+1)=2(2x+1)解:移项得3x(2x+1)﹣2(2x+1)=0,提公因式得(2x+1)(3x﹣2)=0,解得x1=﹣,x2=.17. (9分)【解答】(1)证明:连接BD,交AC于O,如图所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵AE=CF,∴OE=OF,∴四边形DEBF是平行四边形,∵EF⊥BD,∴四边形DEBF是菱形;(2)解:在菱形ABCD中,菱形ABCD的周长为16,∠DAB=60°,则AD=4,∠DAO=30°,AC⊥BD且AC=2OA,在直角△AOD中,OA=AD•cos30°=4×=2,故AC=2OA=4;(3)解:当AE=2﹣2时,四边形DEBF是正方形.理由如下:由(1)知,四边形DEBF是菱形.当OD=OE时,四边形DEBF是正方形.∵在直角△AOD中,∠DAO=30°,AD=4,∴OD=AD=2,OA=2,∴AE=OA﹣OD=2﹣2.故答案是:2﹣2.18.(9分)【解答】(1)证明:∵△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即△>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2.19. (9分)【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示,A2(7,0),B2(7,6),C2(3,4).20.(9分)【解答】解:(1)当天盈利:(50﹣3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元.故答案为:2x;50﹣x.(3)根据题意,得:(50﹣x)×(30+2x)=2000,整理,得:x2﹣35x+250=0,解得:x1=10,x2=25,∵商城要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.21. (9分)【解答】解:(1)如图1,∵PM∥BD,∴△APM∽△ABD,=,即=,∴AP=AB,∵NQ∥AC,∴△BNQ∽△BCA,∴=,即=,∴BQ=AB,而AP+PQ+BQ=AB,∴AB+12+AB=AB,∴AB=18.答:两路灯的距离为18m;(2)如图1,他在路灯A下的影子为BN,∵BM∥AC,∴△NBM∽△NAC,∴=,即=,解得BN=3.6.答:当他走到路灯B时,他在路灯A下的影长是3.6m.22. (10分)【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.23.(12分)【解答】(1)解:①PE=PB,②PE⊥PB.(2)解:(1)中的结论成立.①∵四边形ABCD是正方形,AC为对角线,∴CD=CB,∠ACD=∠ACB,又PC=PC,∴△PDC≌△PBC,∴PD=PB,∵PE=PD,∴PE=PB,②:由①,得△PDC≌△PBC,∴∠PDC=∠PBC.(7分)又∵PE=PD,∴∠PDE=∠PED.∴∠PDE+∠PDC=∠PEC+∠PBC=180°,∴∠EPB=360°﹣(∠PEC+∠PBC+∠DCB)=90°,∴PE⊥PB.(3)解:如图所示:结论:①PE=PB,②PE⊥PB.。