平面立体的投影
- 格式:ppt
- 大小:543.50 KB
- 文档页数:14
平面与立体的投影投影是一个我们在日常生活中经常接触到的现象。
当我们将一个三维物体放置在一个平面上时,我们可以看到它在平面上的投影。
这篇文章将探讨平面与立体的投影,讨论其原理和应用。
一、平面的投影当一个平面被光线照射时,它会在另一个平面上产生影子,这就是平面的投影。
平面的投影可以是实心的,也可以是透明的,具体取决于光线的情况和投影面的材质。
1. 平行投影平行投影是一种常见且简单的投影方式。
在平行投影中,光线以平行于投影面的方式照射物体,并在投影面上形成与物体相似的图形。
平行投影常用于地图制作、建筑设计等领域。
2. 透视投影透视投影是一种更接近人眼实际观察的投影方式。
在透视投影中,光线以不同的角度和强度照射物体,使观察者可以看到物体的立体感。
透视投影常用于绘画、电影、游戏设计等领域。
二、立体的投影立体物体的投影相对于平面物体的投影更为复杂。
由于立体物体具有三个维度,我们需要使用不同的投影方式来表示其形状和结构。
1. 正交投影正交投影是一种通过将立体物体的边缘和角落垂直投影到一个平面上来表示立体物体的投影方式。
在正交投影中,保持物体的原始比例和形状,但失去了透视感。
正交投影常用于工程图纸、建筑设计等领域。
2. 斜投影斜投影是通过将立体物体的边缘和角落倾斜投影到一个平面上来表示立体物体的投影方式。
在斜投影中,保持物体的原始比例,但加入了透视感。
斜投影常用于绘画、建筑设计等领域。
三、投影的应用投影在我们的日常生活中有着广泛的应用。
以下是几个常见的应用场景:1. 地图制作地图常使用平行投影来表示地球的表面。
通过将地球的经纬线投影到地图上,我们可以更清晰地了解地球的形状和地理信息。
2. 建筑与室内设计在建筑与室内设计中,平行投影和透视投影常用于绘制平面图、规划房间布局和展示建筑效果图。
投影可以帮助设计师更好地理解和传达设计意图。
3. 工程图纸工程图纸使用正交投影来表示建筑、机械等物体的三维结构。
正交投影可以准确、清晰地表达物体的尺寸和比例,使工程师能够实施具体的施工和生产。
平面立体图形的投影与展开在我们的日常生活和学习中,平面立体图形无处不在。
从简单的正方体、长方体,到复杂的棱柱、棱锥,这些图形的投影与展开是理解其结构和性质的重要途径。
首先,让我们来了解一下什么是平面立体图形的投影。
投影可以简单地理解为光线照射在物体上,在某个平面上所形成的影子。
在数学中,我们通常考虑正投影,也就是光线垂直于投影面的情况。
比如说,一个正方体,当光线从它的正前方垂直照射时,在后面的平面上形成的投影就是一个正方形。
但如果光线从上方垂直照射,投影就变成了一个正方形的框。
不同的平面立体图形,其投影的形状和大小会有所不同。
对于长方体来说,如果它的长、宽、高各不相同,那么从不同的方向进行正投影,可能会得到长方形或者正方形。
而对于三棱柱,如果它的底面是等边三角形,且侧棱与底面垂直,那么从侧面投影就是一个长方形,从上下底面投影就是等边三角形。
接下来,我们说一说平面立体图形的展开。
展开图就像是把一个立体图形的表面“拆开”,平铺在一个平面上所得到的图形。
通过研究展开图,我们可以更直观地看到立体图形的各个面之间的关系。
以正方体为例,它有 11 种不同的展开图。
常见的有“1-4-1”型,就像“一”字排开;“2-3-1”型,像楼梯一样;还有“2-2-2”型,三个“2”并排。
通过观察这些展开图,我们可以清晰地看到正方体的 6 个面是如何相互连接的。
再比如长方体,它的展开图相对来说要复杂一些,因为长方体的长、宽、高可能不同。
但总的来说,也是由 6 个长方形(特殊情况下可能有两个正方形)组成,并且相对的面在展开图中是相同的。
平面立体图形的投影和展开在实际生活中有很多应用。
比如在制造业中,工程师们需要根据零件的投影图来设计和制造产品;在包装设计中,要考虑如何将立体的物品展开成平面,以节省材料和方便包装。
在学习数学的过程中,理解平面立体图形的投影和展开对于培养我们的空间想象力和逻辑思维能力非常重要。
当我们能够在脑海中想象出一个立体图形的投影和展开图时,就能够更好地解决与立体几何相关的问题。
第三章立体的投影立体按照其表面的性质,可分为平面立体和曲面立体两大类。
表面全部由平面围成的立体称为平面立体,表面由平面和曲面围成,或全部由曲面围成的立体称为曲面立体。
§3.1 平面立体一、平面立体的投影及其表面上的点平面立体的各个表面均为平面多边形,多边形的边即为各表面的交线(棱线),因此,绘制平面立体的投影可归结为绘制它的所有棱线及各棱线交点(顶点)的投影,然后判断可见性,将可见的棱线投影画成粗实线;不可见的棱线投影则画成虚线;当粗实线与虚线重合时,应画粗实线。
常见的平面立体是棱柱和棱锥。
1.棱柱(1)棱柱的投影(a)(b)图3-1 正六棱柱的投影图3-1所示为一个正六棱柱的立体图和投影图。
从本章开始,在投影图中不再画投影轴,但各点的三面投影仍要遵守正投影规律:水平投影和正面投影位于铅垂的投影连线上;正面投影和侧面投影位于水平的投影连线上;水平投影和侧面投影应保持前后方向的宽度一致及前后对应。
图3-1a 所示的正六棱柱,它的上、下底面均为水平面,六个棱面中,前后两个为正平面,其余四个为铅垂面。
作投影图时,先画上、下底面的投影:水平投影反映实形且两面重影;正面、侧面投影都积聚成直线段。
再画六条棱线:水平投影积聚在六边形的六个顶点上;正面、侧面投影均反映实长。
最后由读者自己分析各棱线和棱面的可见性。
要特别注意水平投影与侧面投影之间必须符合宽度相等和前后对应的关系,作图时可直接用分规量取距离,如图3-1b所示;但也可用添加45°辅助线的方法作图,如图3-2b。
(2)棱柱表面上的点棱柱体表面上取点和平面上取点的方法相同,先要确定点所在的平面并分析平面的投影特性。
如图3-1b,已知棱柱表面上点M的正面投影m'和N点的水平投影n,求作其它两个投影。
因为m'可见,它必在侧棱面ABB1A1上,其水平投影m必在有积聚性的投影上,由m'和m可求得m", 因点M所在的表面A B B1A1的侧面投影可见,故m"可见;由于N点的水平投影可见,它必在顶面ABCDEF上,而顶面的正面投影和侧面投影都有积聚性,因此n'、n"必在顶面的同面投影上。
第2章立体的投影2.1 立体及其表面上的点与线立体由其表面所围成,可分为两类:表面都是平面的平面立体和表面是曲面或曲面与平面的曲面立体。
一、平面立体平面立体由若干多边形所围成,因此,绘制平面立体的投影,可归结为绘制它的所有多边形表面的投影,也就是绘制这些多边形的边和顶点的投影。
多边形的边是平面立体的轮廓线,分别是平面立体的每两个多边形表面的交线。
当轮廓线的投影为可见时,画粗实线;不可见时,画虚线;当粗实线与虚线相重合时,应画粗实线。
常见的平面立体有棱柱和棱锥。
1、棱柱2、棱锥平面立体的投影的外围轮廓总是可见的,应画粗实线;而在投影的外围轮廓内部的图线,则应根据线、面的投影分析,按前遮后、上遮下、左遮右直接判断投影的可见性,决定画粗实线或虚线,必要时还可利用交叉两直线的重影点的可见性进行判断。
二、曲面立体曲面立体由曲面或曲面与平面所围成。
有的曲面立体有轮廓线,即表面之间的交线,如圆柱;有的曲面立体有尖点,如圆锥;有的曲面立体全部由光滑的曲面所围成,如圆球。
在画曲面立体的投影时,除了画出轮廓线和尖点外,还要画出曲面投影的转向轮廓线。
曲面立体的转向轮廓线是切于曲面的诸投射线与投影面的交点的集合,也就是这些投射线所组成的平面或柱面与曲面的切线的投影,常常是曲面的可见投影和不可见投影的分界线。
曲面立体的投影就是它的所有曲面表面或曲面表面与平面表面的投影,也就是曲面立体的轮廓线、尖点的投影和曲面投影的转向轮廓线。
常见的曲面立体有圆柱、圆锥、圆球,圆环。
1、圆柱圆柱由圆柱面、顶面和底面所围成。
圆柱面由直线绕与它平行的轴线旋转而成。
因此,画圆柱的投影就是画顶面和底面及轮廓线、圆柱面投影的转向轮廓线、轴线。
当圆柱的轴线与投影面垂直时,圆柱面在轴线垂直的投影面上的投影具有积聚性。
因此,作圆柱表面2、 圆锥圆锥由圆锥面和底面所围成。
圆锥面由直线绕与它相交的轴线旋转而成。
因此,画圆锥的投影就是画尖点(即锥顶)、底面及轮廓线、圆锥面投影的转向轮廓线、轴线。