回热抽汽系统
- 格式:ppt
- 大小:1.53 MB
- 文档页数:14
汽轮机介绍之回热抽汽系统汽轮机是一种利用高温高压蒸汽驱动的热能转换装置,其工作原理是通过燃烧燃料产生高温高压蒸汽,然后利用蒸汽的热能将轮叶推动转子旋转,最终输出机械能。
而在汽轮机的工作过程中,会产生大量的低温低压蒸汽,这些蒸汽还能够进一步发挥作用,提高汽轮机的热能利用效率。
回热抽汽系统就是利用这种低温低压蒸汽,将其回收利用的一种技术。
其主要作用是在汽轮机的排汽过程中,将高温高压的蒸汽与低温低压的蒸汽进行热量交换,从而使低温低压蒸汽的热能得到利用,提高汽轮机的热能转换效率。
回热抽汽系统由回热器、抽汽涡轮以及与主汽轮机相连接的管道系统组成。
在汽轮机工作过程中,高温高压的蒸汽从高压缸排出后,进入回热器进行热量交换。
回热器是一种换热设备,通过将高温高压蒸汽与低温低压蒸汽进行热量交换,使高温高压蒸汽冷却、降压同时,使低温低压蒸汽升温、升压,从而实现热量的回收利用。
在回热抽汽系统中,低温低压蒸汽经过回热器后,进一步被抽入抽汽涡轮中,通过抽汽涡轮的旋转将蒸汽的热能转化为机械能输出。
抽汽涡轮与主汽轮机是通过一条共同的轴线连接的,因此抽汽涡轮的旋转也将带动主汽轮机的旋转,增加了汽轮机的输出功率。
回热抽汽系统的优势在于可以将一部分原本被浪费的低温低压蒸汽的热能回收利用。
通过回热抽汽系统,汽轮机的热能利用效率得到了提高,可以有效地节约能源资源,减少对环境的影响。
此外,由于回热抽汽系统可以提高汽轮机的输出功率和热效率,因此对于提高汽轮机的运行经济性和稳定性也具有重要作用。
然而,回热抽汽系统也存在一些挑战。
首先,回热抽汽系统的设计与优化需要考虑更多的参数,如回热器的结构与性能、抽汽涡轮的转速等,增加了系统的复杂性。
其次,由于回热抽汽系统的操作与控制相对较为复杂,需要精确调节和控制各个部件的工作参数,以实现系统的平稳运行。
总之,回热抽汽系统是汽轮机中一种重要的热能回收利用技术,通过回收利用低温低压蒸汽的热能,提高汽轮机的热能利用效率,节约能源资源,减少对环境的影响。
汽轮机回热抽汽系统设计要点分析摘要:汽轮机回热抽汽系统的设计范围为:由汽轮机各级抽汽口至对应回热加热器加热蒸汽进口所有管道及附件的选型和布置设计,包括系统拟定和管道布置两个部分。
从设计程序上,应先进行系统拟定,后根据系统进行管道布置。
工程设计应本着安全第一的原则,设计的主要依据为国家标准、行业标准以及依据国家和行业标准编制的地方或企业标准,而图书及期刊只能作为参考资料使用。
有的设计人员不掌握汽轮机回热抽汽系统的设计流程,造成设计不合理或设计必须环节的遗漏;有的对汽轮机回热抽汽系统设计的关键点和需要注意的问题掌握不好,致使设计存在安全隐患。
关键词:汽轮机;回热抽汽系统;设计要点1回热抽汽系统概述由于回热抽汽管道一侧是汽轮机,一侧是加热器(包括除氧器),在汽轮机突降负荷、甩负荷或低负荷运行时,如果操作不当,就可能使湿蒸汽或水倒流入汽轮机,引起汽轮机超速或水击事故,为此,在抽汽管道上装设了气动或液动止回阀和电动隔离阀。
当电网甩负荷、汽轮机发生故障或加热器水侧水位超警戒水位时,能迅速切断抽汽管路。
电动隔离阀还可用于加热器故障停用时,切断加热汽源而不影响汽轮机的运行。
止回阀和隔离阀一般靠近汽轮机抽汽口布置,以减少抽汽管道上可能储存的蒸汽能量。
对于300MW以上的机组,由于除氧器汽化能量大,为加强保护,在与除氧器连接的抽汽管道上均增设一个止回阀。
另外在每一根与抽汽管道相连的外部蒸汽管道上也装设了止回阀和隔离阀。
2系统拟定2.1系统拟定原则系统拟定必须以汽轮热平衡为基础,结合工程需要,完成系统流程的拟定、管道及附件的选型、控制联锁条件要求、运行说明等。
2.2系统拟定要点2.2.1必须满足汽轮机热平衡的要求汽轮机抽汽系统管径选择必须满足汽轮机热平衡中规定的各级抽汽流量和压降要求,管道及附件强度必须满足汽轮机热平衡中规定的各级抽汽压力和温度要求,以保证运行安全,达到回热加热效果,确保汽轮机效率。
2.2.2气动止回阀为防止汽轮机甩负荷时,回热加热器中的饱和水闪蒸倒流入汽轮机引起汽轮机超速,汽轮机回热抽汽管道上一般需设置止回阀,止回阀同时也作为防止汽轮机进水的辅助措施。
汽机抽汽回热系统1、概述:回热抽气系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。
采用回热循环的主要目的是:提高工质在锅炉内吸热过程的平均温度,以提高级组的热经济性。
2、抽汽回热系统作用:抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少。
综合以上原因说明抽汽回热系提高了机组循环热效率。
因此,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。
3、影响抽汽回热系统经济型地主要参数:影响给水回热加热经济性的主要参数为回热加热分配、相应的最佳给水温度和回热级数,三者紧密联系,互有影响。
在求解最佳回热分配的计算分析中,以Z级理想回热循环的循环效率最大值求其最佳回热分配,(所谓理想回热循环,即假定为混合式加热器,端差为零,不计新蒸汽,抽汽压损和泵功、忽略散热损失)求得理想回热循环的最佳回热分配通式后,根据忽略一些次要因素,进一步简化,即可获得其它近似的最佳回热分配通式。
如“焓降分配法”,这种分配方法是将每一级加热器的焓升取作等于前一级至本级的蒸汽在汽轮机中的焓降;又如“平均分配法”,这种回热分配方法的原则是每一级加热器的焓升相等;其他还有“等焓降分配法”等。
可见给水回热总加热量在各级中的分配是在一定的给水温度和一定级数的条件下,使循环热效率最高为原则,由此对应的各级抽汽回热参数,即为最有利分配的参数。
4、提高系统循环热效率的措施:将给水加热到多少温度,才能使循环热效率达到最高值?以单级抽汽回热为例,回热时给水温度从汽轮机排汽压力下的饱和温度开始逐渐增加,热效率也逐渐增加,热效率达最大值时的给水温度称为最佳给水温度,再提高给水加热温度时,热效率反会减小,热经济性就降低。
汽轮机三级抽汽系统的问题一简要说明汽轮机的抽汽回热加热系统,共有六级管道及阀门等组成,其中,第三级抽汽,取自汽轮机中压缸的低部,主要作用是加热除氧器中的锅炉给水;在其进入除氧器之前,和来自机组辅助蒸汽加热系统中,用于机组启动初期使用的加热除氧器给水的管道合并,共用一根管道进入除氧器系统。
二存在的问题1)机组运行期间,三级抽汽出口压力经常小于或者等于除氧器压力,此时,三级抽汽系统不能正常供汽。
2)机组运行期间,控制机组辅助蒸汽加热系统中的辅助联箱压力偏高,经常大于三级抽汽出口的压力,此时,三级抽汽系统不能正常供汽。
三潜在危害1)三段抽汽系统不能正常供汽,造成管道内蒸汽滞留,容易凝结形成积水,特别是机组在低负荷下长期运行时,蒸汽滞留加聚,形成的积水也会更严重。
2)三段抽汽管道位于中压蒸汽进口处的中压缸低部,管道内的滞留蒸汽很容易反流进入中压缸低部,造成中压缸下部/上部的温差增大,如果存在积水,温差将会更大,其结果必会造成机组受力不均匀,引起机组振动,甚至跳机。
四采取的措施1)虽然三段抽汽系统有自动检测管道积水打开疏水阀组的功能,但是,按照运行实践经验,这些是有滞后的。
也就是说,不能等到其自动打开,最好是要提前采取措施,比如,机组低负荷下运行时间较长时,手动开启相应的疏水阀组减少积水现象。
2)严密监视三级抽汽压力,除氧器压力,以及辅助蒸汽联箱的压力,保证压差,确保三段抽汽系统正常供汽。
3)改变辅助蒸汽加热系统的供汽汽源,把目前使用的锅炉低温过热器出口蒸汽汽源,切换为再热蒸汽冷段蒸汽汽源,降低辅助联箱的供汽压力。
如不能满足汽轮机轴封供汽系统的压力温度时,退入辅助蒸汽加热除氧器系统运行。
4)机组低负荷(35%额定负荷以下)下长期运行时,要求锅炉增加热负荷,强化燃烧,提高锅炉出口蒸汽压力和温度等参数,尽量保证机组接近额定参数运行,保证三级抽汽压力正常。
刘大力2017年3月7日星期二。
汽机技术抽汽系统知识讲解1.回热循环的意义回热循环:把汽轮机中部分作过功的蒸汽抽出,送入加热器中加热凝结水和给水,这种循环叫回热循环。
回热循环的意义是:一方面从汽轮机中间抽出一部分蒸汽加热给水提高给水温度减少给水在锅炉中的吸热量;另一方面抽出的蒸汽不在排汽装置中凝结放热,减少了冷源损失。
我厂七段非调整抽汽系统,高压级后#1高加,高压11级后(高排汽)#2高加、轴封供汽辅助蒸汽,中压级后#3高加,中压8级后(中排汽)除氧器,低压级后#5低加,低压级后#6低加,低压级后#7低加。
2、各工况时各级抽汽参数汽轮机THA性能验收工况时各级抽汽参数抽汽级数流量kg/h压力MPa(a)温度。
C第一级(至1号高力口)981046.03352.5第二级(至2号高加)1672324.421312.7第二级(至厂用汽)///第三级(至3号高力口)740301.986459.1第四级(至除氧器)931670.991362.4第四级(至厂用汽)1/1第五级(至5号低力口)955840.405256.1第五级(至厂用汽)///第六级(至6号低加)612180.122135.7第七级(至7号低力口)591170.04780.53、各工况定义:本工程工况定义采用正C60045-1标准。
以IEC60045-1标准定义铭牌功率时,汽轮机各工况定义如下:一、铭牌功率(额定、最大连续功率)工况(TMCR)汽轮发电机组能在下列规定条件下,在保证寿命期内任何时间都能安全连续运行,发电机输出额定功率660MW(当采用静态励磁和/或采用不与汽机同轴的电动主油泵时,扣除各项所消耗的功率),此工况称为额定出力工况,此工况下的进汽量称为额定进汽量,是机组额定、最大连续出力保证值的验收工况。
其条件如下:1)额定主蒸汽参数、再热蒸汽参数及所规定的汽水品质;2)汽轮机低压缸排汽背压为:13kPa(a);(平均背压)3)补给水量为:1.5%;4)所规定的最终给水温度:约275.5o C;5)全部回热系统正常运行,但不带厂用辅助蒸汽;6)电动给水泵正常运行,满足额定给水参数;7)空冷系统满足设计负荷;8)在额定电压、额定频率、额定功率因数0.9(滞后)、额定氢压、发电机效率为99%o二、热耗率验收工况(THA)当机组功率(当采用静态励磁、和/或采用不与汽机同轴的电动主油泵时,扣除各项所消耗的功率)为铭牌功率660MW,除补水率为0%以外其它条件同(TMCR)时称为机组的热耗率验收(THA)工况,此工况为热耗率保证值的验收工况。
为什么设计回热抽汽系统?当然这个问题不是绝对的,小的背压汽轮机就没有回热系统。
没有回热抽汽的小汽轮机咱就不考虑了。
一、什么是回热抽汽循环?把汽轮机中部分做过功的蒸汽抽出,送入加热器中加热给水,这种循环叫给水回热循环。
二、如果没有回热抽汽系统会怎么样?对于锅炉来说:若汽轮机没有抽汽回热系统,那么就没有各级加热器,如果不采用外来蒸汽加热,锅炉给水温度就是凝结水温度,哪怕真空是-90kPa,凝结水温度也只有45℃。
这么低的给水温度从省煤器开启进入锅炉,一是水温降低使锅炉燃料量增加,锅炉的主再热蒸汽温度就会变得很高,二是锅炉给水温度低,那么排烟温度将会将的很低,造成尾部烟道、空预器等设备低温腐蚀,三是锅炉受热面换热温差巨大,将会频繁引发爆管等事故。
这些都是影响锅炉的问题,下面说说影响汽机的问题。
如果没有回热抽汽系统,对于汽机来说最主要的一点,对于所有蒸汽都需要进入汽轮机做功,而在纯凝汽式汽轮机中大约只有30%的热能转变为电能,而其中70%的热量被凝汽器的循环水带走,热量经循环水由冷却塔排至大气,变成了汽轮机的冷源损失,冷源损失是火力发电厂损失最大的一项。
其次,因没有抽汽,汽轮机后几级的通流量就要增加,低压缸体积就需要增大,末级叶片就要加长。
三、综上,为了提高机组经济性,设置了回热抽汽系统汽轮机中间部分抽出一部分蒸汽,经过加热器提高给水温度。
就避免了这部分蒸汽在凝汽器中凝结放热,减少了冷源损失。
抽汽通过加热器提高了给水温度,使给水在锅炉中的吸热量减少,因此燃料量也减少。
对锅炉本身带来的好处就很多了,防止低温腐蚀、减小换热温差等。
理论上,回热级数越多,汽机循环效率就越高。
但随着回热级数的增加,循环效率的增长逐渐平缓。
锅炉给水温度的增加,提高了热经济性,但却使锅炉排烟温度提高,锅炉效益降低,或需增加锅炉尾部采热面,使锅炉投资增加。
因此在回热抽汽系统设计上要综合考虑汽轮机效率、锅炉效率、给机组带来的问题、投资建设费用、运行维护等影响因素设计回热抽汽级数。
浅述汽机抽汽回热系统的优化方案【摘要】本文在充分借鉴国内外超超临界机组的先进设计思想以及总结国内超超临界机组成熟经验的基础上,对1000MW超超临界机组回热系统进行全面优化,充分利用蒸汽过热度,合理增加抽汽级数,提高能源综合利用效率,减少能耗,合理降低初投资和运营成本。
【关键词】抽汽;系统;回热;优化1回热系统概况1000MW超超临界机组在国内建设至今,经历了三个阶段:第一阶段,以华能玉环、华电邹县、国电泰州、外高桥三期为依托的我国第一批1000MW超超临界项目。
该阶段的特点是:主设备采取技术转让及合作设计制造、国内加工、并由外方进行性能保证的方式,电厂的总体设计由国内设计院参照外高桥二期900MW机组完成。
该阶段主机参数都基本类似,汽轮机进口参数为25~26.25MPa/600℃/600℃,回热系统都采用八级回热。
第二阶段,以华能海门、国华宁海等项目为代表的1000MW超超临界项目。
该阶段的特点是:除少数零部件外,主设备基本实现了国产化,性能保证也由国内厂商负责。
此阶段主要对辅机设备及系统选型进行了进一步优化,但是主机参数及回热级数上与第一阶段类似,汽轮机进口参数保持在25~26.25MPa/600℃/600℃,回热系统也采用八级回热。
第三阶段,为了提高主机的竞争力,各大主机厂都在原常规超超临界一次再热机组的参数基础上,对主机设备进行局部改造,以适应更高参数的1000MW高效超超临界机组。
据统计,在超超临界机组参数条件下,主蒸汽压力提高1MPa,机组热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25%~0.30%。
再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.25%。
相对于常规1000MW超超临界机组,高效1000MW超超临界机组的汽轮机进口主蒸汽压力和再热蒸汽温度进一步提高,参数提高至27~28MPa/600℃/610℃(620℃),部分机组回热级数也增加到9级。