化工原理课程设计冷凝器的设计说明
- 格式:doc
- 大小:317.50 KB
- 文档页数:14
《化工原理》课程设计说明书设计题目:煤油冷凝器的设计专业:高分子材料与工程指导老师:赵海鹏设计者:韩明扬学号: 1024121222015年1月设计任务书设计题目:煤油冷却器的设计设计任务处理能力:27000吨/年煤油操作条件①煤油:入口温度150℃,出口温度40℃②冷却介质:自来水,入口温度20℃,出口温度50℃③允许压强降:不大于100 kPa④每年按330天计,每天24小时连续运行设计内容①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。
②换热器的工艺计算:物料与热量衡算,传热面积,主要设备尺寸计算③换热器的主要结构尺寸设计。
④主要辅助设备选型。
⑤主要设备的材料选择目录绪论 (1)一.列管式换热器及设计方案简介 (2)1.1列管式换热器1.2.设计方案的拟定二.热量计算 (4)2.1.初选换热器的类型2.2.管程安排(流动空间的选择)及流速确定2.3.确定物性数据2.4.计算总传热系数2.5.计算传热面积三.工艺结构设计 (8)3.1.管径和管内流速3.2.管程数和传热管数3.3.平均传热温差校正及壳程数3.4.传热管排列和分程方法3.5.壳程内径及换热管选型汇总3.6.折流板3.7.接管四.换热器核算 (12)4.1.热量核算4.2.压力降核算五.辅助设备的计算和选择 (16)5.1.水泵的选择5.2.油泵的选择六.设计结果表汇 (18)七.心得体会 (19)八.参考文献..………………………………………………………....…..……… ..20 附图:(主体设备设计图,工艺流程简图)绪论换热器是化工,炼油工业中普遍应用的典型的工艺设备。
在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。
换热器在其他部门,如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。
因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的意义。
壳管式冷凝器课程设计第一部分:一:设计任务:用制冷量为273.6KW 的水冷螺杆式冷水机组,制冷 剂选用R134a ,蒸发器形式采用冷却液体载冷剂的卧式蒸发器 ,冷凝 器采用卧式壳管式。
二:工况确定1:冷凝温度t k 确定:冷却水进口温度t wi=32c ,出口温度t w2=37c ,冷凝温度t k :由 t k' t2:蒸发温度t o 确定:冷冻水进口温度t s,=12c ,出口温度t s2=7C ,蒸发温度t o :由t t sl t s2t3:吸气温度7 c ,采用热力膨胀阀时,蒸发器出口温度气体过热度 为3-5c 。
过冷度为5 c ,单级压缩机系统中,一般取过冷度为5 c 。
三:热力计算:1 :热力计算:制冷循环热力状态参数经过查制冷剂的参数可知◎ 5.5 = 40c 。
2+e 2 m 冒—Sc 。
2热力计算性能(1)单位质量制冷量q°q o = h i _h5 =403 -249 =154 Kj/Kg(2)单位理论功W oW o = h2s 一h = 427.65 - 403 = 24.65 KJ Kg(3)制冷循环质量流量q m(8)压缩机指示功率pPi 二 P 广 37.4 0.85 二 44Kw7.24;c(10) 冷凝器热负荷h - - h由 h 2 二 h 生 432kJ / kg ,i则 Q k =q m (h 2 -h 3) =1.517(432 - 255) =268kJ/kg理论制冷系数:“ q 。
154 6256.25w 024.65实际制冷系数:;iQ 0 m 233.6 0.9 s4.78mP i 44 卡诺循环制冷系数T 0275.15 ;c7.24T K -T 0313.15 -275.15(9)制冷系数及热力完善度故热力完善度为sqm廿誉1.517Kgs(4) 实际输气量q vsq vs3=q m V i =1.517 X 0.066 = 0.1m /s(5) 输气系数■:取压缩机的输气系数为 0.75(6) 压缩机理论输气量q vh亘將 0.133m 3s(7) 压缩机理论功率 p oPo二W 。
冷凝器的设计步骤解释说明1. 引言1.1 概述冷凝器是一种重要的热交换设备,广泛应用于各个工业领域。
它的主要作用是将具有高温高压态的气体或蒸汽通过传热过程转化为液体。
冷凝器的设计步骤是确保其能够有效地将热量散发出去,并满足特定工作条件下的要求。
本文将详细介绍冷凝器的设计步骤和相关原理。
1.2 文章结构本文将分为五个部分进行阐述。
首先是引言部分,对冷凝器及其设计步骤进行概述并阐明文章结构。
接下来,在第二部分中,我们将详细讨论冷凝器的设计步骤,包括了解工作原理、确定设计要求以及选择合适的冷却介质和传热方式。
在第三和第四部分中,我们将介绍正文内容,并提供相关要点进行说明。
最后,在结论部分对设计步骤进行总结,并展望未来可能的改进和建议。
1.3 目的本文旨在为读者提供关于冷凝器设计步骤方面的全面指南。
通过深入了解冷凝器的工作原理、设计要求及选择合适的冷却介质和传热方式,读者能够更好地理解和应用这些步骤于实际工程中。
同时,本文还将为读者展示如何进行改进和提供宝贵的建议,以促进冷凝器设计的发展与创新。
2. 冷凝器的设计步骤2.1 了解工作原理在进行冷凝器的设计之前,我们首先需要充分了解冷凝器的工作原理。
冷凝器是一种用于将气体或蒸汽转化为液体的热交换设备。
通过冷却和压缩气体或蒸汽,使其内部分子能量降低,从而实现相变为液体,并释放出大量热量。
2.2 确定设计要求确定设计要求是冷凝器设计过程中非常关键的一步。
在这一阶段,我们需要考虑以下因素:- 待处理气体的性质和特点:包括气体流量、温度、压力等参数。
- 冷凝器的使用环境:包括环境温度、环境压力等因素。
- 冷凝液排放方式:确定液态产物的排放方式,例如采用重力排放还是泵送排放等。
- 性能要求:根据应用需求确定效率、能耗等性能指标。
2.3 选择合适的冷却介质和传热方式在设计冷凝器时,我们需要选择合适的冷却介质和传热方式以达到预期效果。
常见的冷却介质包括空气、水和制冷剂等,而传热方式则有对流传热、辐射传热和传导传热等。
化工原理甲醇冷凝器的设计
甲醇冷凝器的设计是为了将甲醇蒸气冷凝成液体形式,以便进一步进行分离、提纯或者回收利用。
以下是甲醇冷凝器设计的一般步骤和要点:
1. 确定甲醇蒸气的冷凝温度和压力:根据工艺要求和操作条件,确定甲醇蒸气的冷凝温度和压力,通常根据甲醇蒸气的饱和蒸气压和冷凝器的设计温度确定。
2. 选择冷凝器类型:根据工艺要求和操作条件,选择合适的冷凝器类型,常见的有管壳式冷凝器、板式冷凝器、螺旋板式冷凝器等。
根据具体情况选择合适的冷凝器结构,例如在腐蚀性环境中选择耐腐蚀材料的冷凝器。
3. 计算冷凝器传热面积:根据甲醇蒸气的质量流量和冷凝温度差,计算出冷凝器需要的传热面积。
传热面积可以根据传热系数和传热温差来计算,也可以从经验或类似设备中获取。
4. 确定冷凝介质:根据甲醇蒸气和冷凝器结构的材料特性,选择合适的冷凝介质。
常用的冷凝介质有水、空气、冷冻液等,根据经济性和操作要求选择合适的介质。
5. 确定冷凝器布置和结构:根据具体情况,确定冷凝器的布置方式和结构,并进行细节设计。
例如冷凝管的排列方式、管道的布置、冷凝器与其他设备的连接方式等。
6. 考虑安全性和可靠性:在设计过程中,要考虑冷凝器的安全性和可靠性。
例如选择合适的安全阀和压力表,考虑冷凝器的排水和清洗等问题。
7. 进行性能计算和优化:完成初步设计后,进行性能计算和优化。
根据计算结果调整设计参数,以达到最佳的冷凝效果和经济性。
以上是甲醇冷凝器设计的一般步骤和要点,具体的设计还需要根据具体的工艺要求、操作条件和设备参数等因素进行详细的计算和分析。
化工原理课程设计设计题目:纯苯蒸汽冷凝器的设计指导老师:***系别:环境与安全工程系专业:安全工程班级学号:*********姓名:***目录一、设计任务: (2)1、处理能力:常压下5950kg/h的纯苯蒸汽 (2)2、设备型式:立式列管式冷凝器 (2)二、操作条件 (2)三、设计内容 (2)1、确定设计方案 (2)2、确定流体的流动空间 (2)3、计算流体的定性温度,确定流体的物性参数 (2)4、计算热负荷 (3)5、计算平均有效温度差 (3)6、选取经验传热系数k值 (3)7、估算传热面积 (3)8、结构尺寸设计 (3)(1)换热管规格、管子数、管长、管壳数的确定 (3)(2)传热管排列和分程方法 (4)(3)壳体内径内内径 (4)(4)折流板 (4)四、换热器核算 (5)1、换热器面积校核 (5)2、换热器内压降的核算 (7)五、换热器主要结构尺寸和计算结果一、设计任务:处理能力:1、常压下5950kg/h 的纯苯蒸汽 2、设备型式:立式列管式冷凝器二、操作条件1、常压下苯蒸气的冷凝温度为80.1℃,冷凝液在饱和温度下排出。
2、冷却介质:采用20℃自来水。
3、允许管程压降不大于50KPa 。
三、设计内容本设计的工艺计算如下:此为一侧流体恒温的列管式换热器的设计 1、确定设计方案 两流体的温度变化情况热流体(饱和苯蒸气)入口温度 80.1℃,(冷凝液)出口温度 80.1℃ 冷流体 水 入口温度 20℃,出口温度 40℃ 2、确定流体的流动空间冷却水走管程,苯走壳程,有利于苯的散热和冷凝。
3、计算流体的定性温度,确定流体的物性参数苯液体在定温度(80.1摄氏度)下的物性参数(查化工原理附录) ρ=815kg/,μ=3.09×Pa.s,=1.880KJ/kg.k ,ƛ=0.1255W/m.K, r=394.2kJ/kg 。
自来水的定性温度:入口温度:=20℃, 出口温度 =40℃则水的定性温度为:=(+)/2=(20+40)/2=30℃3m 410 PC 1t 2t m t 1t 2t根据热量衡算方程:=(-)得=/(-)=1.65×394.2/4.173(40-20)=7.79kg/s(式中=1.65kg/s )两流体在定性温度下的物性参数如下表计算热负荷ƍ==1.65×394.2=651.52kw 5、计算平均有效温度差 逆流温差=℃温差>50℃故选择固定管板式换热器需加补偿圈 6、选取经验传热系数k 值查《化工原理课程及设计》附录8,查的K 取430~850,暂取K=8507、估算传热面积==15.51m q 1r 2m q 2p c 2t 1t 2m q 1m q 1r 2p c 2t 1t 1m q 1r 1m q 逆m △t 43.4940)]-/(80.120)-(80.1[㏑40-80.1-20-1.80=)()(逆m t K Q S △=49.43×85010×52.65132m8、结构尺寸设计(1)换热管规格、管子数、管长、管壳数的确定选传热管,内径,外径,材料为碳钢。
冷凝器设计说明一、引言冷凝器是一种热交换设备,主要用于将气体或蒸汽冷凝成液体。
在各行各业的生产过程中,冷凝器起到了至关重要的作用。
本文将详细介绍冷凝器的设计原理和注意事项。
二、冷凝器的设计原理冷凝器的设计原理是基于热传导和传热的原理。
当高温气体或蒸汽进入冷凝器时,通过与冷却介质接触,热量会从气体或蒸汽传递到冷却介质中。
在这个过程中,气体或蒸汽会冷却下来,并逐渐凝结成液体。
三、冷凝器的设计要点1. 温度差:冷凝器的设计要考虑冷却介质与气体或蒸汽之间的温度差。
温度差越大,传热效果越好,但也会增加冷凝器的尺寸和成本。
2. 冷却面积:冷凝器的冷却面积需要足够大,以确保热量能够充分传递给冷却介质。
通常采用多管或片状结构来增加冷却面积。
3. 冷却介质:冷凝器的冷却介质可以是水、空气或其他液体。
选择合适的冷却介质需要考虑工艺要求、环境条件和能源消耗等因素。
4. 流速和压降:冷凝器的设计要合理控制流速和压降,以确保冷却介质能够充分流过冷凝器,并保持稳定的工作状态。
5. 材质选择:冷凝器的材质应具有良好的导热性和耐腐蚀性,以确保冷却介质和气体或蒸汽之间的有效传热。
四、冷凝器的类型1. 管壳式冷凝器:管壳式冷凝器由管束和外壳组成,冷却介质流过管束,气体或蒸汽流过管内。
这种冷凝器结构简单,传热效果好,广泛应用于化工、制药等行业。
2. 管板式冷凝器:管板式冷凝器由多个平行管板组成,冷却介质通过管板流过,气体或蒸汽流过管内。
这种冷凝器结构紧凑,适用于占地面积有限的场所。
3. 直接冷凝器:直接冷凝器是将冷凝介质直接喷洒在气体或蒸汽上,通过冷凝介质的蒸发吸收热量,实现冷凝。
这种冷凝器结构简单,传热效果好,适用于高温气体或蒸汽的冷凝。
4. 间接冷凝器:间接冷凝器是通过换热器将冷却介质与气体或蒸汽隔离,使其通过换热器壁传热。
这种冷凝器结构复杂,但可以避免冷却介质与气体或蒸汽直接接触,适用于对冷却介质有特殊要求的场合。
五、冷凝器的设计注意事项1. 设计合理的冷凝温度和冷却介质流量,以满足工艺要求。
化工原理课程设计标准系列管壳式立式冷凝器的设计姓名:学号:专业:应用化学班级设计时间:目录一、设计题目二、设计条件三、设计内容3.1概述3.2 换热3.3 换热设备设计步骤四、设计说明4.1选择换热器的类型4.2流动空间的确定五、传热过程工艺计算5.1计算液体的定性温度,确定流体的物性数据5.1.1正戊烷流体在定性温度(51.7℃)下的物性数据5.1.2水的定性温度5.2估算传热面积5.2.1换热器热负荷计算5.2.2平均传热温差5.2.3估算传热面积5.2.4初选换热器规格5.2.5立式固定管板式换热器的规格5.2.6计算面积裕度H及该换热器所要求的总传热系数K05.2.7折流板5.2.8换热器核算5.3核算壁温与冷凝液流型5.3.1核算壁温5.3.2核算流型5.4计算接口直径5.4.1计算壳程接口直径5.5计算管程接口直径5.6计算压强降5.6.1计算管程压降5.6.2计算壳程压降六、其他七、计算结果八、化工课程设计心得九、参考文献一.设计题目标准系列管壳式立式冷凝器的设计二.设计条件生产能力:正戊烷23760t/a,冷凝水流量70000Kg/h操作压力:常压正戊烷的冷凝温度51.7℃,冷凝水入口温度32℃每年按330天计,每天24小时连续生产要求冷凝器允许压降100000Pa三、设计内容3.1概述换热器在石油、化工生产中应用非常广泛。
在炼油厂中,原油常减压蒸馏装置中换热器的投资占总投资的20%;在化工厂中,换热器约占总投资的11%以上。
由于在工业生产中所用换热器的目的和要求不同,所以换热器的种类也多种多样。
列管式换热器在石油化工生产中应用最为广泛,而且技术上比较成熟。
在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。
35%~40%。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。
目录课程设计任务 (3)第一章前言 (4)第二章概述 (5)2.1冷凝的目的 (5)2.2冷凝器的类型 (5)2.2.1立式壳管式冷凝器 (5)2.2.2卧式壳管式冷凝器 (5)2.3设计方案的确定 (6)第三章设计计算 (8)3.1初选结构 (8)3.1.1 物性参数 (8)3.1.2设Ko 初选设备 (9)3.2传热计算 (10)3.2.1管程换热系数α2 (10)3.2.2 壳程传热热系数α1 (11)3.2.3污垢热阻与传导热阻 (11)3.2.4 校核传热 (11)3.3 压降计算 (12)3.3.1管程压降计算 (12)3.3.2壳程压降计算 (12)第四章结构设计 (13)4.1 冷凝器的安装与组合 (13)4.2管子设计 (13)4.3 管间距(S)的设计 (14)4.3.1管子在管板上的固定 (14)4.3.2管间距 (14)4.4管板设计 (14)4.5 壳体的厚度计算 (15)4.6 封头设计 (15)4.7 管程进出口管设计 (15)4.7.1进出口管径设计 (15)4.7.2位置设计 (15)4.8 壳程进出口管设计 (15)4.8.1出口管径(冷凝液) (15)4.8.2蒸汽入口管径的设计 (15)4.8.3位置设计 (16)4.9法兰 (16)4.10支座 (16)4.11其它 (16)第五章设计小结 (17)致谢 (18)参考文献 (18)课程设计任务:设计题目:乙醇=水精馏塔塔顶产品全凝器设计条件:处理量: 6 万吨/年产品浓度:含乙醇 95%操作压力:常压冷却介质:水压力: P= 303.9kPa水进口温度: 30o C水出口温度: 40o C第一章前言课程设计是化工原理课程教学中综合性和实际性较强的教学环节。
它要求学生利用课程理论知识,进行融会贯通的独立思考,在规定时间内完成指定的化工设计任务,是使学生体察工程实际问题复杂性的初次尝试,培养了学生分析和解决工程实际问题的能力。
化工原理课程设计指导书—精馏塔的预热器、冷凝器、再沸器工艺设计适应专业:化学工程与工艺编写作者:胡建明编写日期:2007.7邵阳学院生物与化学工程系预热器、冷凝器、再沸器的工艺设计概述蒸馏是化工生产中分离均相液体混合物的典型单元操,其历史悠久,应用广泛。
蒸馏的基本原理是将液体混合物部分汽化、部分冷凝,利用其中个组分挥发度不同而将其分离。
其本质是液、汽相间的质量传递和热量传递。
为使分离彻底,以获得较纯的产品,工业生产中常采用多次部分汽化、多次部分冷凝的方法——精馏。
精馏过程通常是在塔设备内完成的。
预热器、冷凝器、再沸器是精馏过程必不可少的设备。
它们承担着将物料预热、气化、冷凝等重要任务。
而固定管板式换热器更是因其具有工艺简单、造价低廉、工艺设计成熟、热效率较高等优点而得到广泛的应用,尤其在很多大工业生产中。
换热器的工艺设计主要内容和步骤 1 物料衡算1.1 设计依据1.1.1 《×××××设计任务书》1.1.2 产量 年产99.5%(均为质量分数,下同)环己烷(丙酮)20000吨,根据工业生产中连续生产的特点,取年平均生产时间为8000小时,即小时产量为:20000×103/8000=2500kg /h ,本设计以小时产量为计算基准。
1.1.3 进料组成F x 、产品组成D x 1,1.4 分离要求 1.2 精馏塔物料衡算1.2.1 物料衡算示意图1.2.2 用质量分率计算进料量及塔釜采出量G D ,X D F D W G G G =+ F F D D W W G x G x G x =+ 解得: G F (kg/h ) G W (kg/h )1.2.3 计算摩尔量、摩尔分率 G W由物质A 、B 组成的混合物,其分子量分别为M A ,M B 则其平均分子量:A A B B M M x M x =+,用摩尔量表示为:;;W D F G G GD W F M M M===; 同理可求得X D 、X W 、 X F 1.2.4 精馏塔物料衡算表表1.1 精馏塔的物料衡算表※必须达成Σ进=Σ出。
化工原理课程设计设计题目:6000t乙醇水分离精馏塔冷凝器的设计指导教师:郝媛媛设计者:韦柳敏学号: 1149402102 班级:食品本111班专业:食品科学与工程设计时间: 2014年6月15日目录1.设计任务书及操作条件 (2)设计任务 (2)设计要求 (2)设计步骤 (2)设计原则 (2)2.设计方案简介 (3)3.工艺设计及计算 (4)确定设计方案 (4)确定定性温度、物性数据并选择列管式换热器形式 (4)计算总传热系数 (4)工艺结构尺寸 (6)4.换热器的核算 (9)热量核算 (9)传热面积 (9)换热器流体的流动阻力 (9)设计结果一览表 (10)5.主要符号说明 (12)6.设计的评述 (13)1.设计任务书及操作条件设计任务:1)生产能力:833.33kg/h2)乙醇从78.23℃降到40℃3)冷却水进口:30℃4)冷却水出口:40℃设计要求:1)设计一个固定管板式换热器2)设计容要包含a)热力设计b)流动设计c)结构设计d)强度设计设计步骤1)根据换热任务和有关要求确定设计方案2)初步确定换热器的结构和尺寸3)核算换热器的传热面积和流体阻力4)确定换热器的工艺结构设计原则1)传热系数较小的一个,应流动空间较大,使传热面两侧的传热系数接近2)换热器减少热损失3)管、壳程的决定应做到便于除垢和修理,以保证运行的可靠性4)应减小管子和壳体因受热不同而产生的热应力。
从这个角度来讲,顺流式就优于逆流式5)对于有毒的介质,必使其不泄露,应特别注意其密封性,密封不仅要可靠,而且应要求方便及简洁6)应尽量避免采用贵金属,以降低成本2.设计方案简介根据任务书给定的的冷热流体的温度,来选择设计一个合适的列管式换热器;再依据冷热流体的性质,判断其是否易结垢,来选择管程走什么,壳程走什么。
从手册中查得冷热流体的物性数据,计算出总传热系数,再计算出传热面积。
根据管径管流速,确定传热管数,算出传热管程,传热管总根数等等。
然后校正传热温差以及壳程数,确定传热管排列方式和分程方法。
根据设计步骤计算出壳体径,选择折流板,确定板间距,折流板数等,再设计壳程和管程的径。
分别对换热的流量,管程对流系数,传热系数,传热面积进行核算,再计算出面积域度,使其在设计围就能完成任务。
3.工艺设计及计算 确定设计方案1.列管换热器的选择由于两流体温差小于50℃且壳方流体不易结垢,因此选择固定管板式换热器。
选用φ25mm ×2.5mm 的碳钢管,管流速取u = 0.5m/s .2.流体流动通道的选择酒精走壳程,冷却水走管程。
冷却水易结垢,走管程易清洗,且冷却水走管程可减少热量损失;酒精走壳程可利用壳体对外散热,利于冷却,同时酒精粘度比较大,当装有折流板时,走管程可在较低的雷诺数能达到湍流,有利于提高壳程一侧的对流传热系数。
确定定性温度、物性数据并选择列管式换热器形式定性温度:可取流体进口温度的平均值。
管程冷却水的定性温度:3524030=+=T ℃ 壳程乙醇的定性温度为:62.6124523.78=+=t ℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
计算总传热系数1.热流量(热量损失3%):()()W T T C q Q P m 42111004.24023.7830.2360033.833⨯=-⨯⨯=-= 热量损失:610.62W %Q 30== Q2.平均传热温差 ()()05.2130404023.78ln 30404023.78ln2121=-----=∆∆∆-∆=∆t t t t t m ℃3.冷却水用量()()s kg t T C Q Q w P c /47.03040417462.6101004.241220=-⨯-⨯=--=4.估算总传热系数K ’1) 管程传热系数661033.11095.57.7925.002.0⨯=⨯⨯⨯==iii i ei u d R μρ ()()Cm W C d o i iP i ii •=⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯⨯=⎪⎪⎭⎫⎝⎛=-23.0638.063.08.0/31.3434156.010595.01030.21033,102.0156.0023.0Re 023.0λμλα2)壳程传热系数假设壳程的传热系数0α=300)℃m W ⋅2/( 3) 污垢热阻200.00017197/R m W=⋅℃20.00034394/i R m W =⋅℃4) 管壁的导热系数λ=45)℃m W ⋅2/(()Cm W R d bd d d R d d K O i i i i i •=+⨯+⨯⨯+⨯⨯+⨯=++++=--24400000'/27.2323001107197.1025.045025.0025.002.0025.0104394.302.031.3434025.0111αλα 5.热负荷()()Wt t C w Q P c 4122'1098.130-40174.447.0⨯=⨯⨯=-=6.传热面积2405.405.2127.2321098.1'''m t K Q A m =⨯⨯=∆⋅=考虑15%到25%的安全系数,设计的实际需要面积:()()206.5~65.405.425.1~15.1'25,1~15.1m A A =⨯=⨯=取A=5m 2。
工艺结构尺寸1.管径和管流速选用φ25×2.5传热管(碳管),取管流速0.5m/s 。
2.管程数和传热管数1) 依据传热管径和流速确定单程传热管数 301.35.002.04.99447.0422≈=⨯⨯==ππud qVn i s 根2) 传热管长度 m nd A L 22.21025.035=⨯⨯==ππ 3) 按单管程设计,传热管过长,宜采用多管程结构。
现取传热管长 l =3.0m ,则该换 热器管程数为807.7322.21≈===l L N P 管程 传热管总根数: 2483=⨯=N 根3.平均传热温差校正及壳程数 平均传热温差校正系数 82.330404023.782121=--=--=t t T T R21.03023.7830401121=--=--=t T t t P按单壳程,双管程结构,温差校正系数查《化工原理(上册)》第二版图4-20得: 97.0=∆t ϕ 平均传热温差:42.2005.2197.0=⨯=∆m t ℃ 4.传热管排列和分程方法采用正三角形排列,取管心距t=1.250d ,则mm t 3225.312525.1≈=⨯= 隔板中心到离其最近一排管中心距离为mm tS 2262=+=各程相邻管的管心距:44mm 横过管束中心线管数:58.52419.119.1≈===N n c 根。
5.壳体径1) 采用多管程结构,取管板利用率η=0.7, 则壳体径为 mm Nt D 1967.0243205.105.1=⨯⨯==η圆整可取D=219mm 6.折流板采用弓形折流板,取弓形折流板圆缺高度为壳体径的25%,则切去的圆缺高度为mm h 75.5421925.0=⨯=,可h 取为60mm 。
取折流板间距B = 0.3D ,则mm B 7.652193.0=⨯=,可取B 为70mm 7.计算壳程流通面积及流速1) 流通面积683.52419.119.1≈===N n c()()230010015.3045.0025.06219.0m B d n D A c -⨯=⨯⨯-=-=2) 冷却水流速()()()()sm t t C A T T q C A q u P c c m P m C /16.03040174.410105.30.99436004023.7833.83330.23600360031222111020=-⨯⨯⨯⨯⨯-⨯⨯=--==-ρρ3) 壳程流体进出口接管:取接管乙醇流速为s m u /16.0=,则接管径为 mm u V D S 21.3816.07,792360033.83344011=⨯⨯⨯==ππ 4) 当量直径m d d t d 027.0025.0025.04032.0444220202=⨯⎪⎭⎫ ⎝⎛⨯-⨯=⎪⎭⎫⎝⎛⨯-=ππππε67001090.510274.799416.0027.0Re ⨯=⨯⨯⨯==-cce u d μρ 670001047.510274.799416.0025.0'Re ⨯=⨯⨯⨯==-ccu d μρ 8、计算管程流通面积及流速1) 流通截面积: 242021042.982402.044m N N d A ii -⨯=⨯⨯==ππ2) 冷却水流速: s m A q u i m i /31.01042.97.792360033.833360041=⨯⨯⨯==-ρ3) 雷诺数: 661026.810596.07.79231.002.0Re ⨯=⨯⨯⨯==-μρi i i u d4.换热器的核算 热量核算1) 壳程对流传热系数 对圆缺形折流板,可采用克恩公式14.003155.000Pr Re 36.0⎪⎪⎭⎫ ⎝⎛=w d μμλαε其中,普朗特常数:3371084.4627.010174.410274.7Pr --⨯=⨯⨯⨯==λμP C 黏度校正:05.114.00≈⎪⎪⎭⎫⎝⎛w μμ,则()()62.727805.11084.41090.5027.0627.036.014.031355.060=⨯⨯⨯⨯⨯⨯=-αW/(m 2.℃)2) 对流传热系数46101026.8Re >⨯=i普朗特常数:3361077.8156.01030.210595.0Pr --⨯=⨯⨯⨯==λμp C ()()52.148011077.81026.802.0156.0023.0Pr Re 023.03.038.063.08,00=⨯⨯⨯⨯⨯==-ii d λαW/(m 2.℃)传热面积24017.442.2027.2321098.1'm t K Q A =⨯⨯=∆=实际传热面积:2065.5243025.0m LN d A p =⨯⨯⨯⨯==ππ 面积裕度:%6.3517.417.465.500=-=-=A A A H P 换热器流体的流动阻力 (1)管程流动阻力()p s t i N N F p p p 21∆+∆=∑∆ 其中5.1=t F ,1=s N ,4=p N 。
由61026.8Re ⨯=,传热管相对粗糙度01.0202.0===de ε,根据《化工原理(第二版)》上册图1-27得:054.0=λ。
则有:Pa u d l p p i h 177.1710231.0994302.03054.023221=⨯⨯⎪⎭⎫ ⎝⎛+⨯=⎪⎭⎫ ⎝⎛+=∆+∆ρλ 即:kPa p i 301003.1415.1177.17104<⨯=⨯⨯⨯=∑∆管程流动阻力在允许的围。