2020年高考试题分类汇编(坐标系与参数方程)
- 格式:doc
- 大小:88.50 KB
- 文档页数:1
专题13 坐标系与参数方程【知识要点】1.极坐标系的概念,极坐标系中点的表示.在平面内取一个定点O ,O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 称为极点,Ox 称为极轴.设M 是平面内任意一点,极点O 与点M 的距离|OM |叫做点M 的极径,记作ρ ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记作θ ,有序数对(ρ ,θ )叫做点M 的极坐标.一般情况下,约定ρ ≥0.2.极坐标系与直角坐标系的互化.直角坐标化极坐标:x =ρ cos θ ,y =ρ sin θ ; 极坐标化直角坐标:, 3.参数方程的概念设在平面上取定一个直角坐标系xOy ,把坐标x ,y 表示为第三个变量t 的函数……①,如果对于t 的每一个值(a ≤t ≤b ),①式所确定的点M (x ,y )都在一条曲线上;而这条曲线上任意一点M (x ,y ),都可由t 的某个值通过①式得到,则称①式为该曲线的参数方程,其中t 称为参数.4.参数方程与普通方程的互化把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法.常见的消参方法有:代入消元法;加减消参法;平方和(差)消参法;乘法消参法等.把曲线C 的普通方程F (x ,y )=0化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.要注意方程中的参数的变化范围. 5.直线、圆、椭圆的参数方程.(1)经过一定点P 0(x 0,y 0),倾斜角为α 的直线l 的参数方程为(t 为参数);(2)直线参数方程的一般形式为(t 为参数);222y x +=ρ).0(tan =/=x xyθ⎩⎨⎧==)()(t g y t f x b t a ≤≤⎩⎨⎧+=+=ααsin ,cos 00t y y t x x ⎩⎨⎧+=+=bt y y at x x 00,(3)圆的参数方程为(θ 为参数);(4)椭圆的参数方程为(θ 为参数).【复习要求】1.理解坐标系的作用.2.能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.3.了解参数方程.4.能选择适当的参数写出直线、圆和圆锥曲线的参数方程,并会简单的应用. 【例题分析】例1 (1)判断点是否在曲线上. (2)点P 的直角坐标为,则点P 的极坐标为______.(限定0<θ ≤2π)(3)点P 的极坐标为,则点P 的直角坐标为______.解:(1)因为,所以点是在曲线上. (2)根据ρ 2=x 2+y 2,, 得ρ =2,,又点P 在第四象限,,所以,所以点P 的极坐标为 (3)根据x =ρ cos θ ,y =ρ sin θ ,得, 所以点P 的直角坐标为 例2 (1)圆ρ =2(cos θ +sin θ )的半径为______.⎩⎨⎧+=+=θθsin ,cos 00r y y r x x )0(12222>>=+b a b y a x ⎩⎨⎧==θθsin ,cos b y a x )35π,23(-2cos θρ=)3,1(-)4π,3(-2365πcos2cos-==θ)35π,23(-2cos θρ=)0(tan =/=x xy θ3tan -=θ2π23π≤<θ35π=θ).3π5,2(223,223-==y x ).223,223(-(2)直线与圆ρ =2sin θ 交与A ,B 两点,则|AB |=______. 解:(1)由ρ =2(cos θ +sin θ ),得ρ 2=2ρ (cos θ +sin θ ), 所以,x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2, 所以圆ρ =2(cos θ +sin θ )的半径为. (2)将直线与圆ρ =2sin θ 化为直角坐标方程,得 由得,即, 由ρ =2sin θ ,变形为ρ 2=2ρ sin θ ,得x 2+y 2=2y ,即x 2+(y -1)2=1, 因为圆的半径为1,圆心到直线的距离为, 所以评述:(1)应熟练运用直角坐标与极坐标互化的方法解决有关极坐标的问题;(2)由直角坐标化极坐标时要注意点位于哪一个象限才能确定θ 的大小,如例1(2),否则,极坐标不唯一; (3)例2也可以用极坐标有关知识直接解决.这需要知道一些直线与圆的极坐标方程的知识.如: ①过极点,倾斜角为α 的直线:θ =α (ρ ∈R )或写成θ =α 及θ =α +π. ②过A (a ,α)垂直于极轴的直线:ρ cos θ =a cos α . ③以极点O 为圆心,a 为半径的圆(a >0):ρ =a .④若O (0,0),A (2a ,0),以OA 为直径的圆:ρ =2a cos θ . ⑤若O (0,0),A (2a ,),以OA 为直径的圆:ρ =2a sin θ . 对于例2(2),可以利用结论①⑤,作出直线与圆,通过解三角形的方法求|AB |,当然也可以用极坐标方程直接解ρ ,根据ρ 的几何意义求|AB |.例3 圆O 1和圆O 2的极坐标方程分别为ρ =4cos θ ,ρ =-4sin θ . (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过圆O 1和圆O 2交点的直线的直角坐标方程.)(3πR ∈=ρθ2)(3πR ∈=ρθ3π=θxy=3πtan x y 3=21311=+=d .3)21(12||2=-=AB 2π解:(1)由ρ =4cos θ 得ρ 2=4ρ cos θ ,根据x =ρ cos θ ,y =ρ sin θ ,所以x 2+y 2=4x . 即x 2+y 2-4x =0为圆O 1的直角坐标方程,同理x 2+y 2+4y =0为圆O 2的直角坐标方程.(2)由解得 即圆O 1和圆O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y =-x .例4(1)曲线的参数方程是(t 为参数,t ≠0),它的普通方程是________. (2)在平面直角坐标系xOy 中,直线l 的参数方程为 (参数t ∈R ),圆C 的参数方程为(参数θ ∈[0,2π]),则圆C 的圆心坐标为______,圆心到直线l 的距离为______. 解:(1)由得,带入y =1-t 2,得 注意到,所以已知参数的普通方程为 (2)直线l 的普通方程为x +y -6=0,圆C 的普通方程为x 2+(y -2)2=4, 所以圆心坐标为(0,2),圆心到直线l 的距离评述:(1)应熟练运用将参数方程化为普通方程的方法解决有关参数方程的问题;(2)在将参数方程化为普通方程的过程中应注意消参带来的范围变化问题.如例4(1),若参数方程为(t 为参数,t >0),则其普通方程为 例5 求椭圆的内接矩形的最大面积.解:设内接矩形在第一象限内的顶点为P (a cos θ ,b sin θ ),P 点在两轴上的投影分别为A 、B ,则有S 内接矩形=4S 矩形OAPB =4·a cos θ ·b sin θ =2ab sin2θ . 因为,所以2θ ∈(0,π),S 内接矩形的最大值为2ab . ⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x ⎩⎨⎧==;0,011y x ⎩⎨⎧-==.2,222y x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=21,11t y t x ⎩⎨⎧-=+=t y t x 3,3⎩⎨⎧+==2sin 2,cos 2θθy x t x 11-=x t -=11,)1()2()11(122--=--=x x x x y 111=/-=t x ⋅--=2)1()2(x x x y .222|620|=-+=d ⎪⎪⎩⎪⎪⎨⎧-=-=21,11t y t x ).1()1()2(2<--=x x x x y 12222=+by a x )2π,0(∈θ评述:圆锥曲线参数方程主要应用于利用参数方程设圆锥曲线上的点,从而讨论最值等有关问题.椭圆的参数方程为 (θ 为参数).抛物线y 2=2px (p >0)的参数方程为.例6 圆M 的参数方程为x 2+y 2-4Rx cos α -4Ry sin α +3R 2=0(R >0). (1)求该圆的圆心坐标以及圆M 的半径;(2)当R 固定,α 变化时,求圆心M 的轨迹,并证明此时不论α 取什么值,所有的圆M 都外切于一个定圆. 解:(1)依题意得圆M 的方程为(x -2R cos α )2+(y -2R sin α )2=R 2, 故圆心的坐标为M (2R cos α ,2R sin α ),半径为R .(2)当α 变化时,圆心M 的轨迹方程为 (α 为参数),两式平方相加得x 2+y 2=4R 2,所以圆心M 的轨迹是圆心在原点,半径为2R 的圆.由于所以所有的圆M 都和定圆x 2+y 2=R 2外切,和定圆x 2+y 2=9R 2内切.例7 过P (5,-3),倾斜角为α ,且的直线交圆x 2+y 2=25于P 1、P 2两点.(1)求|PP 1|·|PP 2|的值;(2)求弦P 1P 2的中点M 的坐标.解:(1)由已知得所以已知直线的参数方程为…………………①(t 为参数)代入圆的方程化简,得…………………② ②的两个解t 1、t 2就是P 1、P 2对应的参数,由参数的几何意义及韦达定理知)0,0(12222>>=+b a b y a x ⎩⎨⎧==θθtan sec b y a x ⎩⎨⎧==pty ptx 222⎩⎨⎧==,sin 2,cos 2ααR y R x ,32)sin 2()cos 2(22R R R R R -==+αα,2)sin 2()cos 2(22R R R R R +==+αα53cos -=α53cos -=α,54sin =α⎪⎪⎩⎪⎪⎨⎧+-=-=,543,535t y t x .095542=+-t t|PP 1|·|PP 2|=|t 1|·|t 2|=9.(2)设M (x ,y )为P 1P 2的中点,则点M 对应的参数,代入参数方程, 得 所以 评述:根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点t 1+t 2=0;③设弦M 1M 2的中点为M ,则点M 对应的参数值,(由此可求得|M 2M |及中点坐标). 习题13一、选择题 1.极坐标的直角坐标为 (A)(1,)(B)(-,-1)(C)(-1,-)(D)(-1,)2.椭圆(θ 为参数)的焦距等于( )(A) (B)2 (C) (D)3.已知某条曲线的参数方程为(0≤t ≤5),则该曲线是( )(A)线段 (B)圆弧 (C)双曲线的一支 (D)射线4.若是极坐标系中的一点,则四点中与P 重合的点有( )(A)1个(B)2个(C)3个(D)4个527221=+=t t t ,2533,2544==y x M PP PP ,9||||21=⋅).2533,2544(⇒221t t t M +=)34π(2,3333⎩⎨⎧==θθsin 5,cos 2y x 212129292⎪⎩⎪⎨⎧-=+=1,2322t y t x )3π,2(--P 、、、)3π5,2()3π8,2()3π2,2(-M R Q )3π5π2,2(-k N )(Z ∈k5.在极坐标系中,若等边△ABC 的两个顶点是,那么顶点C 的坐标可能是( ) (A) (B) (C)(D)(3,π)二、选择题6.过极点,倾斜角是的直线的极坐标方程为____________. 7.点M 的直角坐标(3,-3)化为极坐标是____________. 8.直线(t 为参数)过定点____________.9.曲线(t 为参数)与y 轴的交点坐标是____________.10.参数方程(θ 为参数)表示的曲线的普通方程是____________.三、解答题11.求过点,并且和极轴垂直的直线的极坐标方程.12.在椭圆上求一点,使点M 到直线的距离最小,并求出最小距离.13.设圆C 是以C (4,0)为圆心,半径等于4的圆.(1)求圆C 的极坐标方程;(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程.)4π5,2()4π,2(B A 、)4π3,4()43π,32()π,32(6π⎩⎨⎧+-=+=t y at x 41,3⎩⎨⎧=+-=t y t x ,12⎩⎨⎧+==θθθcos sin ,2sin y x )4π,3(14922=+y x 021032=-+y x14.已知点M (2,1)和双曲线,求以M 为中点的双曲线右支的弦AB 所在直线l 的方程.专题13 坐标系与参数方程参考答案习题13一、选择题1.C 2.B 3.A 4.C 5.B 二、填空题 6.; 7.; 8.(3,-1); 9.(0,1),(0,-1); 三、解答题 11. 12.解:由题设知椭圆参数方程为(θ 为参数).设M 的坐标(3cos θ ,2sin θ )由点到直线距离 即d 的最小值为,此时.所以M 的坐标为13.解:(1)设P (ρ ,θ )为圆C 上任意一点,圆C 交极轴于另一点A .由已知|OA |=8,在Rt △ABC 中,|OP |=|OA |cos θ ,即ρ =8cos θ ,这就是圆C 的方程.1222=-y x )(6πR ∈=ρθ)47π,23(⋅=223cos θρ⎩⎨⎧==θθsin 2,cos 3y x ,13|210)4πsin(26|13|210sin 6cos 6|-+=-+=θθθd 261344π=θ).2,223((2)连结CM ,因为M 是ON 的中点,所以CM ⊥ON ,故M 在以OC 为直径的圆上. 由r =|OC |=4,得动点M 的轨迹方程是ρ =4cos θ .14.解:设AB 的方程为(t 为参数),代入双曲线方程,得(2cos 2α -sin 2α )t 2+(8cos α -2sin α )t +5=0,由于M 为AB 的中点,则t 1+t 2=0,则tan α =4,从而AB 的方程为:4x -y -7=0.⎩⎨⎧+=+=ααsin 1,cos 2t y t x。
新高考数学《坐标系与参数方程》练习题一、131.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (3sin x y θθθ=⎧⎪⎨=⎪⎩为参数), 有22cos 23sin x y θθ+=+134sin 22con θθ⎛⎫=+ ⎪ ⎪⎝⎭4sin 6πθ⎛⎫=+⎪⎝⎭. 因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭,所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.2.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为 A .B .C .D .【答案】A 【解析】 【分析】将、两点的极角代入曲线的极坐标方程,求出、,将、的极角作差取绝对值得出,最后利用三角形的面积公式可求出的面积。
【详解】 依题意得:、,,所以,故选:A 。
【点睛】本题考查利用极坐标求三角形的面积,理解极坐标中极径、极角的含义,体会数与形之间的关系,并充分利用正弦、余弦定理以及三角形面积公式求解弦长、角度问题以及面积问题,能起到简化计算的作用。
3.在符合互化条件的直角坐标系和极坐标系中,直线l :20y kx ++=与曲线C :2cos ρθ=相交,则k 的取值范围是( )A .34k <-B .34k ≥-C .k R ∈D .k R ∈但0k ≠【答案】A 【解析】分析:一般先将原极坐标方程2cos ρθ=两边同乘以ρ后,把极坐标系中的方程化成直角坐标方程,再利用直角坐标方程进行求解即可.详解:将原极坐标方程2cos ρθ=,化为:22cos ρρθ=,化成直角坐标方程为:2220x y x +-=, 即22(1)1x y -+=. 则圆心到直线的距离221k d k +=+由题意得:1d <,即2211k d k +=<+,解之得:34k <-. 故选A .点睛:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用cos x ρθ=,sin y ρθ=,222x y ρ=+,进行代换即得.4.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() A 3B .3C 3D .3±【答案】D 【解析】 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。
第十五章 新增内容和创新题目三、极坐标与参数方程【考题分类】(一)选择题(共 3题)(A )两个圆(C ) 一个圆和一条射线 【答案】C(B )两条直线(D ) —条直线和一条射线cos和参数方程y 2 3t ( t 为参数)所表示的图形分别是 A 、圆、直线 C 圆、圆【答累】ALB 析】极坐标方程口二込召化備普通方程加「十护亍十資“施的方程: 餐数方程["T7化为普通方程为 弘+¥+1=0吕工+叶1 = 0次的直线闻亓程,故选A【命题意图】朮题考査H1的极坐标方程和直址的参数右程与互化普通右程的属容易题x 1 t3.(湖南卷文4)极坐标P c °s 和参数方程 y 2 t (t 为参数)所表示的图形分别是 A.直线、直线B.直线、圆C.圆、圆D. 圆、直线【解析】扱坐标方程卩二匚小&化为普通方程为:工r b’s 工*十厂二片为圆的方程: 萝数方程尸一 一。
化为普通方程丸X+L +1 = 03¥+L —1 = 0为的直线的方程,故选 y =2+3/」D(二)填空题(共 4题)1.(广东卷理 15)在极坐标系(P,0)(0 <0 <2 n )中,曲线p =2sin 与pcos 1的交点的极坐标为 _____________塔案】(、児)1.(北京卷理5)极坐标方程(p-1)( )=(p 0)表示的图形是 【解析】•原方程等价于,前者是半径为1的圆,后者是一条射线。
2.(湖南卷理3文4)极坐标方程 、直线、圆 、直线、直线【解析】. 由极坐标方程与普通方程的互化式 cos ,sin知,这两条曲线的普通方程分2别为X 2 y 2y ,x 1•解得 y1,1.由 cos ,sin得点(-1 , 1)的极坐标为2.(广东卷文15)在极坐标系(p. )(0 v 2)中,曲线 cos sin 1与sin cos 1的交点的极坐标为 w*w.k s 5 u.c*o*m解:转化为直角坐标系下^-Fv=l 与]-"1的交鬲可知奁点舟(L 0)垓点■在极坐标系下耒示丸] x cos3.(陕西卷理15C )已知圆 C 的参数方程为y 1sin(a 为参数)以原点为极点,x 轴正半轴为极轴建立极坐标系, 直线 I 的极坐标方程为sin 1,则直线I 与圆C 的交点的直角坐标系为 【答案】1,1,11 【解析】由题设知,在直角坐标系下, 直线I 的方程为 2y 1,圆c 的方程为X又解方程组 ,得 1.故所求交点的直角坐标为1,1, 1,1cos 4.(陕西卷文 【答案】X2 + (三)解答题(共 4题) 15C )参数方程 (y — 1) 2= 1 1 sin (为参数)化成普通方程为1.(福建卷理21②)在直角坐标系 y xOy 中,直线I 的参数方程为 三3t2 .5 2t2 (t 为参数), 在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点 °为极点,以x 轴正半轴为 极轴)中,圆C 的方程为 2'5sin。
新高考数学《坐标系与参数方程》专题解析一、131.已知点N 在圆224x y +=上,()2,0A -,()2,0B ,M 为NB 中点,则sin BAM ∠的最大值为( )A .12B .13C .10D 【答案】B 【解析】 【分析】设(2cos ,2sin )N αα,则(1cos ,sin )M αα+先求出AM 的斜率的最大值,再得出sin NAM ∠的最大值. 【详解】解:设(2cos ,2sin )N αα,则(1cos ,sin )M αα+,sin 0sin tan 1cos 2cos 3BAM αααα-∠==+++„, 1sin 3BAM ∴∠„, 故选:C . 【点睛】本题考查了直线与圆的位置关系,属中档题.2.点(,)ρθ满足223cos 2sin 6cos ρθρθθ+=,则2ρ的最大值为( ) A .72B .4C .92D .5【答案】B 【解析】 【分析】将223cos 2sin 6cos ρθρθθ+=化成直角坐标方程,则2ρ的最大值为22xy + 的最大值。
【详解】223cos 2sin 6cos ρθρθθ+=两边同时乘ρ,化为22326x y x +=,得22332y x x =-,则()2222211919369(3)22222x y x x x x x +=-+=--++=--+.由223302y x x =-…,可得02x 剟,所以当2x =时,222x y ρ=+取得最大值4. 故选B 【点睛】本题考查极坐标方程与直角坐标方程的互化以及利用二次函数求最值,属于一般题。
3.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【答案】C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.4.已知直线1:1x t l y at =+⎧⎨=+⎩(t 为参数)与曲线221613sin ρθ=+的相交弦中点坐标为(1,1),则a 等于( )A .14-B .14C .12-D .12【答案】A 【解析】 【分析】根据参数方程与普通方程的互化,得直线l 的普通方程为1=-+y ax a ,由极坐标与直角坐标的互化,得曲线C 普通方程为221164x y +=,再利用“平方差”法,即可求解.【详解】由直线1:1x tl y at=+⎧⎨=+⎩(t 为参数),可得直线l 的普通方程为1=-+y ax a ,由曲线221613sin ρθ=+,可得曲线C 普通方程为221164x y +=,设直线l 与椭圆C 的交点为()11,A x y ,()22,B x y ,则22111164x y +=,2221164x y +=,两式相减,可得1212121214y y y y x x x x -+⋅=--+. 所以1212114y y x x -⋅=--,即直线l 的斜率为14-,所以a =14-,故选A .【点睛】本题主要考查了参数方程与普通方程、极坐标方程与直角坐标方程的互化,以及中点弦问题的应用,其中解答中熟记互化公式,合理应用中点弦的“平方差”法是解答的关键,着重考查了推理与运算能力,属于基础题.5.在符合互化条件的直角坐标系和极坐标系中,直线l :20y kx ++=与曲线C :2cos ρθ=相交,则k 的取值范围是( )A .34k <-B .34k ≥-C .k R ∈D .k R ∈但0k ≠【答案】A 【解析】分析:一般先将原极坐标方程2cos ρθ=两边同乘以ρ后,把极坐标系中的方程化成直角坐标方程,再利用直角坐标方程进行求解即可.详解:将原极坐标方程2cos ρθ=,化为:22cos ρρθ=,化成直角坐标方程为:2220x y x +-=, 即22(1)1x y -+=.则圆心到直线的距离d =由题意得:1d <,即1d =<,解之得:34k <-. 故选A .点睛:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用cos x ρθ=,sin y ρθ=,222x y ρ=+,进行代换即得.6.在直角坐标系xOy 中,曲线C 的方程为22162x y +=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为cos()6πρθ+=M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .13【答案】C 【解析】分析:先由曲线C 的直角坐标方程得到其极坐标方程为()221+2sin 6ρθ=,设A 、B 两点坐标为()1,ρθ,()2,ρθ,将射线M 的极坐标方程为θα=分别代入曲线C 和直线l 的极坐标方程,得到关于α的三角函数,利用三角函数性质可得结果.详解:∵曲线C 的方程为22162x y +=,即2236x y +=,∴曲线C 的极坐标方程为()221+2sin 6ρθ=设A 、B 两点坐标为()1,ρθ,()2,ρθ,联立()221+2sin 6ρθθα⎧=⎪⎨=⎪⎩,得221112sin 6θρ+=,同理得222cos 163πθρ⎛⎫+ ⎪⎝⎭=, 根据极坐标的几何意义可得22222212cos 111112sin 663OA OBπθθρρ⎛⎫+ ⎪+⎝⎭+=+=+1+1cos 21cos 23sin 23666ππθθθ⎛⎫⎛⎫-+++-+ ⎪ ⎪⎝⎭⎝⎭=,即可得其最大值为23,故选C. 点睛:本题考查两线段的倒数的平方和的求法,考查直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,充分理解极坐标中ρ的几何意义以及联立两曲线的极坐标方程得到交点的极坐标是解题的关键,是中档题.7.已知曲线C 的极坐标方程为:22cos 2sin 0ρρθρθ--=,直线l 的极坐标方程为:4πθ=(ρ∈R ),曲线C 与直线l 相交于A B 、两点,则AB 为( )AB.CD.【答案】B 【解析】 【分析】把圆和直线的极坐标方程都转化成直角坐标方程,可得弦AB 过圆心,则2AB r =。
2020年高考数学精选专题(含答案详解)一、填空题(共6题;共6分)1.若曲线 ρ=2√2 上有 m 个点到曲线 ρsin(θ−π4)=√2 的距离为 √2 ,则 m 的值为________. 2.在直角坐标系 xOy 中,圆 O 的方程为 x 2+y 2=1 ,将其横坐标伸长为原来的 √2 倍,纵坐标不变,得到曲线 C ,则曲线 C 的普通方程为________.3.若曲线 {x =2sinθy =sin 2θ (θ 为参数),与直线 y =a 有两个公共点则实数 a 的取值范围是________.4.在极坐标系 (ρ,θ) (0≤θ<2π) 中,曲线 ρ(sin θ+cos θ)+2=0 与 ρ(sin θ−cos θ)+2=0 的交点的极坐标为________;5.已知直线 l 的参数方程为 {x =4−3t y =√3t ( t 为参数),曲线 C 的参数方程为 {x =2+cosθy =sinθ ( θ 为参数) 则它们公共点的坐标为________.6.已知直线 l:{x =−35t +2y =45t ( t 为参数)与 x 轴交于点 M ,点 N 是圆 x 2+y 2−4y =0 上的任一点,则 |MN| 的最大值为________.二、解答题(共9题;共85分)7.在直角坐标系 xOy 中,曲线 C 1 的参数方程为 {x =−1+tcosαy =2+tsinα( t 为参数),其中 α≠kπ+π2,(k ∈Z) ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 ρ2−2ρcosθ−4ρsinθ+4=0 .(1)求曲线 C 2 的直角坐标方程;(2)已知曲线 C 1 与曲线 C 2 交于 A,B 两点,点 P(−1,2) ,求 |PA|+|PB| 的取值范围.8.在极坐标系中,直线 l 的极坐标方程为 θ=π3 (ρ∈R) .以极点为原点,极轴为 x 轴的正半轴建立平面直角坐标系,曲线 C 的参数方程为 {x =2sinαy =1−cos2α ,( α 为参数). (1)请写出直线 l 的参数方程;(2)求直线 l 与曲线 C 交点 P 的直角坐标.9.以直角坐标系xOy 的原点为极坐标系的极点,x 轴的正半轴为极轴.已知曲线 C 1 的极坐标方程为 ρ=4cosθ+8sinθ ,P 是 C 1 上一动点, OP⃗⃗⃗⃗⃗ =2OQ ⃗⃗⃗⃗⃗⃗ ,Q 的轨迹为 C 2 . (1)求曲线 C 2 的极坐标方程,并化为直角坐标方程,(2)若点 M(0,1) ,直线l 的参数方程为 {x =tcosαy =1+tsinα (t 为参数),直线l 与曲线 C 2 的交点为A ,B ,当 |MA|+|MB| 取最小值时,求直线l 的普通方程.10.在同一平面直角坐标系 xOy 中,经过伸缩变换 {x ′=2x,y ′=y 后,曲线 C 1:x 2+y 2=1 变为曲线 C 2 .(1)求 C 2 的参数方程;(2)设 A(2,1) ,点 P 是 C 2 上的动点,求 △OAP 面积的最大值,及此时 P 的坐标. 11.设 A 为椭圆 C 1 :x 24+y 224=1 上任意一点,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 ρ2−10ρcosθ+24=0 , B 为 C 2 上任意一点. (Ⅰ)写出 C 1 参数方程和 C 2 普通方程; (Ⅱ)求 |AB| 最大值和最小值.12.曲线C 的参数方程为 {x =mt +mty =t −1t ( t 为参数, m >0 ),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线 θ=α 与直线 ρsin θ=2 交于点P , 动点Q 在射线OP 上,且满足|OQ ||OP |=8. (1)求曲线C 的普通方程及动点Q 的轨迹E 的极坐标方程;(2)曲线E 与曲线C 的一条渐近线交于P 1 , P 2两点,且|P 1P 2|=2,求m 的值.13.在直角坐标系 xOy 中,曲线 C 的参数方程为 {x =√6sinαy =√6cosα ( α 为参数),以坐标原点 O 为极点,以 x 轴正半轴为极轴,建立极坐标系,直线 l 的极坐标方程为 ρcos(θ+π3)=2 . (1)求 C 的普通方程和 l 的直角坐标方程;(2)直线 l 与 x 轴的交点为 P ,经过点 P 的直线 m 与曲线 C 交于 A,B 两点,若 |PA|+|PB|=4√3 ,求直线 m 的倾斜角.14.在极坐标系中,已知圆的圆心 C(6,π3) ,半径 r =3 , Q 点在圆 C 上运动.以极点为直角坐标系原点,极轴为 x 轴正半轴建立直角坐标系. (1)求圆 C 的参数方程;(2)若 P 点在线段 OQ 上,且 |OP|:|PQ|=2:3 ,求动点 P 轨迹的极坐标方程.15.在新中国成立 70 周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情.在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线.如图,在直角坐标系中,以原点 O 为极点, x 轴正半轴为极轴建立极坐标系。
新《坐标系与参数方程》专题解析一、131.能化为普通方程210x y +-=的参数方程为( )A .2sin ,cos x t y t=⎧⎨=⎩(t 为参数)B .2tan ,1tan x y ϕϕ=⎧⎨=-⎩(ϕ为参数) C.x y t ⎧=⎪⎨=⎪⎩(t 为参数)D .2cos ,sin x y θθ=⎧⎨=⎩(θ为参数) 【答案】B 【解析】A:21,[1,1]y x x =-∈- ;B 21,y x x =-∈R ;C:21,[0,)y x x =-∈+∞ ;D:21,[1,1]y x x =-∈-,所以选B.点睛:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,经常用到公式:22221cos sin 1,1tan cos θθθθ+=+=.不要忘了参数的范围.2.将直线1x y -=变换为直线326x y -=的一个伸缩变换为( ) A .23x xy y''=⎧⎨=⎩B .32x xy y ''=⎧⎨=⎩C .1312x x y y ⎧=⎪⎪⎨=''⎪⎪⎩D .1213x x y y ⎧=⎪⎪⎨=''⎪⎪⎩【答案】A 【解析】 【分析】设伸缩变换的公式为(0,0)x ax a b y by =⎧>>⎨⎩'=',则11x x ay y b ⎧=⎪⎪⎨=''⎪⎪⎩,代入直线1x y -=的方程,变换后的方程与直线326x y -=的一致性,即可求解. 【详解】由题意,设伸缩变换的公式为(0,0)x ax a b y by =⎧>>⎨⎩'=',则11x x ay y b ⎧=⎪⎪⎨=''⎪⎪⎩代入直线1x y -=的方程,可得111x y a b''-=, 要使得直线111x y a b''-=和直线326x y -=的方程一致, 则112a =且113b =,解得2,3a b ==, 所以伸缩变换的公式为23x xy y ''=⎧⎨=⎩,故选A .【点睛】本题主要考查了图形的伸缩变换公式的求解及应用,其中解答中熟记伸缩变换公式的形式,代入准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.221x y +=经过伸缩变换23x xy y''=⎧⎨=⎩后所得图形的焦距( )A.B.C .4D .6【答案】A 【解析】 【分析】用x ′,y '表示出x ,y ,代入原方程得出变换后的方程,从而得出焦距. 【详解】由23x x y y ''=⎧⎨=⎩得2 3x x y y '⎧=⎪⎪⎨'⎪=⎪⎩,代入221x y +=得22 149x y ''+=,∴椭圆的焦距为=A .【点睛】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.4.已知直线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数)与圆228x y +=相交于B 、C 两点,则||BC 的值为( )A.BC.D.2【答案】B 【解析】 【分析】根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论. 【详解】曲线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数),化为普通方程1y x =-, 将1y x =-代入228x y +=,可得22270x x --=, ∴()271114302BC =+-⋅+⨯=,故选B . 【点睛】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.5.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。
极坐标和参数方程1.(2020•全国1卷)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.2.(2020•全国2卷)已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.3.(2020•全国3卷)在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.4.(2020•江苏卷)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<). (1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.不等式选讲1.(2020•全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.2.(2020•全国2卷)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.3.(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }4.(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤.答 案 极坐标和参数方程1.(2020•全国1卷)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)11(,)44.【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论;(2)当4k =时,0,0x y ≥≥,曲线1C的参数方程化为22cos (sin tt t==为参数),两式相加消去参数t ,得1C 普通方程,由cos ,sin x y ρθρθ==,将曲线2C 化为直角坐标方程,联立12,C C 方程,即可求解. 【详解】(1)当1k =时,曲线1C 的参数方程为cos (sin x tt y t=⎧⎨=⎩为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)当4k =时,曲线1C 的参数方程为44cos (sin x tt y t ⎧=⎨=⎩为参数), 所以0,0x y ≥≥,曲线1C的参数方程化为22cos (sin tt t==为参数), 两式相加得曲线1C1=,1=1,01,01y x x y =-≤≤≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,曲线2C 直角坐标方程为41630x y -+=,联立12,C C方程141630y x x y ⎧=-⎪⎨-+=⎪⎩,整理得12130x -=12=136=(舍去),11,44x y ∴==,12,C C ∴公共点的直角坐标为11(,)44.【点睛】本题考查参数方程与普通方程互化,极坐标方程与直角坐标方程互化,合理消元是解题的关系,要注意曲线坐标的范围,考查计算求解能力,属于中档题.2.(2020•全国2卷)已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y +=;222:4C x y -=;(2)17cos 5ρθ=. 【解析】(1)分别消去参数θ和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭;设所求圆圆心的直角坐标为(),0a ,其中0a >, 则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=. 【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.3.(2020•全国3卷)在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)2)3cos sin 120ρθρθ-+=【解析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题. 4.(2020•江苏卷)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<). (1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.【答案】(1)1242ρρ==,(2))4π【解析】(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果. 【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos2,43πρρ=∴=,因为点B 为直线6πθ=上,故其直角坐标方程为y x =, 又4sin ρθ=对应的圆的直角坐标方程为:2240x y y+-=,由2240y x x y y ⎧=⎪⎨⎪+-=⎩解得00x y==⎧⎨⎩或1x y ⎧=⎪⎨=⎪⎩ 对应的点为())0,0,,故对应的极径为20ρ=或22ρ=.(2)cos 2,4sin ,4sin cos 2,sin 21ρθρθθθθ==∴=∴=,5[0,2),,44ππθπθ∈∴=,当4πθ=时ρ=当54πθ=时0ρ=-<,舍;即所求交点坐标为当),4π 【点睛】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题.不等式选讲1.(2020•全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.【解析】(1)根据分段讨论法,即可写出函数()f x的解析式,作出图象;(2)作出函数()1f x+的图象,根据图象即可解出.【详解】(1)因为()3,1151,1313,3x xf x x xx x⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x的图象向左平移1个单位,可得函数()1f x+的图象,如图所示:由()3511x x--=+-,解得76x=-.所以不等式()(1)f x f x>+的解集为7,6⎛⎫-∞-⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.2.(2020•全国2卷)已知函数2()|21|f x x a x a=-+-+.(1)当2a=时,求不等式()4f x的解集;(2)若()4f x,求a的取值范围.【答案】(1)32x x⎧≤⎨⎩或112x⎫≥⎬⎭;(2)(][),13,-∞-+∞.【解析】(1)分别在3x≤、34x<<和4x≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a≥-,由此构造不等式求得结果.【详解】(1)当2a=时,()43f x x x=-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭. (2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥, a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 3.(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }【答案】(1)证明见解析(2)证明见解析.【解析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++ 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=. .当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题. 4.(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤. 【答案】22,3⎡⎤-⎢⎥⎣⎦【解析】根据绝对值定义化为三个方程组,解得结果 【详解】1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤,所以解集为22,3⎡⎤-⎢⎥⎣⎦【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题.。
2020年高考理科数学《坐标系与参数方程》【题型归纳】题型一 曲线的极坐标方程例1 、在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 【答案】(1)C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0;(2)面积为12. 【解析】(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0, 得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12. 【易错点】互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x(x ≠0),要注意ρ,θ的取值范围及其影响. 【思维点拨】1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x(x ≠0),要注意ρ,θ的取值范围及其影响,灵活运用代入法等技巧. 2.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.题型二 参数方程及其应用例2、已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.【答案】(1)2x +y -6=0;(2)最大值为2255,最小值为255.【解析】(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0. (2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255; 当sin(θ+α)=1时,|P A |取得最小值,最小值为255. 【易错点】参数方程要变形使用.【思维点拨】1.将参数方程化为普通方程的过程就是消去参数的过程,常用的消参方法有代入消参、加减消参、三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件.2. 在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.题型三 极坐标与参数方程的综合应用例3、在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin )4(πθ+=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.【答案】(1)x +y -4=0;(2)最小值为2,此时点P 的直角坐标为)21,23(【解析】(1)C 1的普通方程为x 23+y 2=1,曲线C 2的直角坐标方程为x +y -4=0. (2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值.又d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2,当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值, 最小值为2,此时点P 的直角坐标为)21,23(.【思维点拨】1.涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的. 【巩固训练】题型一 曲线的极坐标方程1.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.求直线C 1与曲线C 2交点的极坐标. 【答案】)4,22(π-. 【解析】联立方程⎩⎪⎨⎪⎧ρcos θ=-2,θ=π4,解之得θ=π4且ρ=-2 2. 所以直线C 1与曲线C 3交点的极坐标为)4,22(π-.2.在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ.(1)求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状;(2)若曲线C 1,C 2交于A ,B 两点,求两点间的距离.【答案】(1)x -3y -1=0,表示一条直线,(x -1)2+y 2=1圆.【解析】(1)由C 1:ρcos θ-3ρsin θ-1=0,∴x -3y -1=0,表示一条直线.由C 2:ρ=2cos θ,得ρ2=2ρcos θ.∴x 2+y 2=2x ,则(x -1)2+y 2=1,∴C 2是圆心为(1,0),半径r =1的圆.(2)由(1)知,点(1,0)在直线x -3y -1=0上,因此直线C 1过圆C 2的圆心.∴两交点A ,B 的连线段是圆C 2的直径,因此两交点A ,B 间的距离|AB |=2r =2.3.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.求圆C 2关于极点的对称圆的方程.【答案】ρ2+2ρcos θ+4ρsin θ+4=0.【解析】∵点(ρ,θ)与点(-ρ,θ)关于极点对称,设点(ρ,θ)为对称圆上任意一点,则(-ρ,θ)在圆C 2上, ∴(-ρ)2+2ρcos θ+4ρsin θ+4=0,故所求圆C 2关于极点的对称圆方程为ρ2+2ρcos θ+4ρsin θ+4=0.题型二 参数方程及其应用1.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4 C .ρ=cos θ+sin θ,0≤θ≤π2 D .ρ=cos θ+sin θ,0≤θ≤π4【答案】A 【解析】∵∴y =1-x 化为极坐标方程为ρcos θ+ρsin θ=1,即ρ=1cos θ+sin θ.∵0≤x ≤1,∴cos ,sin ,x y ρθρθ=⎧⎨=⎩线段在第一象限内(含端点),∴0≤θ≤π2.故选A. 2.在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),直线l 的参数方程为⎩⎨⎧x =1-22t ,y =22t(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)写出直线l 的普通方程以及曲线C 的极坐标方程;(2)若直线l 与曲线C 的两个交点分别为M ,N ,直线l 与x 轴的交点为P ,求|PM |·|PN |的值.【答案】(1)ρ=4sin θ;(2)1.【解析】(1)直线l 的参数方程为⎩⎨⎧x =1-22t ,y =22t(t 为参数),消去参数t ,得x +y -1=0. 曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数), 利用平方关系,得x 2+(y -2)2=4,则x 2+y 2-4y =0.令ρ2=x 2+y 2,y =ρsin θ,代入得C 的极坐标方程为ρ=4sin θ.(2)在直线x +y -1=0中,令y =0,得点P (1,0).把直线l 的参数方程代入圆C 的方程得t 2-32t +1=0,∴t 1+t 2=32,t 1t 2=1.由直线参数方程的几何意义,|PM |·|PN |=|t 1·t 2|=1.题型三 极坐标与参数方程的综合应用1.在直角坐标系中,圆的方程为.(1)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;(2)直线的参数方程是(为参数), 与交于两点,,求的斜率. 【答案】(1);(2). 【解析】(1)由可得的极坐标方程(2)在(I )中建立的极坐标系中,直线的极坐标方程为由所对应的极径分别为将的极坐标方程代入的极坐标方程得于是 xOy C 22(6)25x y ++=x C l cos sin x t y t αα=⎧⎨=⎩t l C ,AB ||AB =l 212cos 110ρρθ++=3±cos ,sin x y ρθρθ==C 212cos 110.ρρθ++=l ()R θαρ=∈,A B 12,,ρρl C 212cos 110.ρρα++=121212cos ,11,ρραρρ+=-=由得,所以的斜率为或 2.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin )6(πθ+=4.(1)写出曲线C 的极坐标方程和直线l 的普通方程;(2)若射线θ=π3与曲线C 交于O ,A 两点,与直线l 交于B 点,射线θ=11π6与曲线C 交于O ,P 两点,求△P AB 的面积.【答案】(1)x +3y -8=0;(2)23.【解析】(1)由⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),消去θ. 普通方程为(x -2)2+y 2=4.从而曲线C 的极坐标方程为ρ2-4ρcos θ=0,即ρ=4cos θ,因为直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π6=4,即32ρsin θ+12ρcos θ=4, ∴直线l 的直角坐标方程为x +3y -8=0.(2)依题意,A ,B 两点的极坐标分别为)3,2(π,)3,4(π, 联立射线θ=11π6与曲线C 的极坐标方程,得P 点极坐标为)611,32(π, ∴|AB |=2,∴S △P AB =12×2×23sin )63(ππ+=2 3.12||||AB ρρ=-==||AB=23cos ,tan 8αα==l33-。
专题18 坐标系与参数方程考纲解读三年高考分析1.坐标系(1)理解坐标系的作用.(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.方程的互化和几何意义的应用是考查的重点,解题时常用到参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,利用几何意义将原问题转化三角函数的问题,考查学生的数学逻辑推理能力、数学运算能力,题型以选择填空题和解答题为主,中等难度.1、会求伸缩变换,求点的极坐标和应用直线、圆的极坐标方程是重点,主要与参数方程相结合进行考查,以解答题的形式考查,难度中档.2、了解参数的意义,重点考查直线参数方程中参数的几何意义及圆、椭圆的参数方程与普通方程的互化,往往与极坐标结合考查.在高考选做题中以解答题形式考查,难度为中档.1.【2019年北京理科03】已知直线l的参数方程为(t为参数),则点(1,0)到直线l的距离是()A.B.C.D.【解答】解:由(t为参数),消去t,可得4x﹣3y+2=0.则点(1,0)到直线l的距离是d.故选:D.2.【2019年天津理科12】设a∈R,直线ax﹣y+2=0和圆(θ为参数)相切,则a的值为.【解答】解:∵a∈R,直线ax﹣y+2=0和圆(θ为参数)相切,∴圆心(2,1)到直线ax﹣y+2=0的距离:d2=r,解得a.故答案为:.3.【2018年北京理科10】在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a =.【解答】解:圆ρ=2cosθ,转化成:ρ2=2ρcosθ,进一步转化成直角坐标方程为:(x﹣1)2+y2=1,把直线ρ(cosθ+sinθ)=a的方程转化成直角坐标方程为:x+y﹣a=0.由于直线和圆相切,所以:利用圆心到直线的距离等于半径.则:1,解得:a=1±.a>0则负值舍去.故:a=1.故答案为:1.4.【2018年天津理科12】已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d,弦长|AB|=222,∴△ABC的面积为S•|AB|•d.故答案为:.5.【2017年北京理科11】在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为.【解答】解:设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C,将圆C的极坐标方程化为:x2+y2﹣2x﹣4y+4=0,再化为标准方程:(x﹣1)2+(y﹣2)2=1;如图,当A在CP与⊙C的交点Q处时,|AP|最小为:|AP|min=|CP|﹣r C=2﹣1=1,故答案为:1.6.【2017年天津理科11】在极坐标系中,直线4ρcos(θ)+1=0与圆ρ=2sinθ的公共点的个数为.【解答】解:直线4ρcos(θ)+1=0展开为:4ρ1=0,化为:2x+2y+1=0.圆ρ=2sinθ即ρ2=2ρsinθ,化为直角坐标方程:x2+y2=2y,配方为:x2+(y﹣1)2=1.∴圆心C(0,1)到直线的距离d1=R.∴直线4ρcos(θ)+1=0与圆ρ=2sinθ的公共点的个数为2.故答案为:2.7.【2019年新课标3理科22】如图,在极坐标系Ox中,A(2,0),B(,),C(,),D (2,π),弧,,所在圆的圆心分别是(1,0),(1,),(1,π),曲线M 1是弧,曲线M 2是弧,曲线M3是弧.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M 1,M2,M3构成,若点P在M上,且|OP|,求P的极坐标.【解答】解:(1)由题设得,弧,,所在圆的极坐标方程分别为ρ=2cosθ,ρ=2sinθ,ρ=﹣2cosθ,则M1的极坐标方程为ρ=2cosθ,(0≤θ),M2的极坐标方程为ρ=2sinθ,(θ),M3的极坐标方程为ρ=﹣2cosθ,(θ≤π),(2)设P(ρ,θ),由题设及(1)值,若0≤θ,由2cosθ得cosθ,得θ,若θ,由2sinθ得sinθ,得θ或,若θ≤π,由﹣2cosθ得cosθ,得θ,综上P的极坐标为(,)或(,)或(,)或(,).8.【2019年全国新课标2理科22】在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.【解答】解:(1)当θ0时,,在直线l上任取一点(ρ,θ),则有,故l的极坐标方程为有;(2)设P(ρ,θ),则在Rt△OAP中,有ρ=4cosθ,∵P在线段OM上,∴θ∈[,],故P点轨迹的极坐标方程为ρ=4cosθ,θ∈[,].9.【2019年新课标1理科22】在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【解答】解:(1)由(t为参数),得,两式平方相加,得(x≠﹣1),∴C的直角坐标方程为(x≠﹣1),由2ρcosθρsinθ+11=0,得.即直线l的直角坐标方程为得;(2)设与直线平行的直线方程为,联立,得16x2+4mx+m2﹣12=0.由△=16m2﹣64(m2﹣12)=0,得m=±4.∴当m=4时,直线与曲线C的切点到直线的距离最小,为.10.【2019年江苏22】在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin(θ)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.【解答】解:(1)设极点为O,则在△OAB中,由余弦定理,得AB2=OA2+OB2﹣2OA,∴AB;(2)由直线1的方程ρsin(θ)=3,知直线l过(3,),倾斜角为,又B(,),∴点B到直线l的距离为.11.【2018年江苏23】在极坐标系中,直线l的方程为ρsin(θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.【解答】解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(θ)=2,∴2,∴直线l的普通方程为:x y=4.圆心C到直线l的距离为d,∴直线l被曲线C截得的弦长为2.12.【2018年新课标1理科22】在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该射线关于y轴对称,且恒过定点(0,2).由于该射线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,或解得:k或0,当k=0时,不符合条件,故舍去,同理解得:k或0经检验,直线与曲线C2没有公共点.故C1的方程为:.13.【2018年新课标2理科22】在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:x sinα﹣y cosα+2cosα﹣sinα=0.(2)把直线的参数方程(t为参数),代入椭圆的方程得到: 1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,(由于t1和t2为A、B对应的参数)由于(1,2)为中点坐标,所以利用中点坐标公式,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.14.【2018年新课标3理科22】在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α时,过点(0,)且倾斜角为α的直线l的方程为x=0,成立;当α时,过点(0,)且倾斜角为α的直线l的方程为y=tanα•x,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)l的参数方程为,(t为参数,),设A,B,P对应的参数分别为t A,t B,t P,则,且t A,t B满足,∴,∵P(x,y)满足,∴AB中点P的轨迹的参数方程为:,(α为参数,).15.【2017年江苏23】在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d,∴当s时,d取得最小值.16.【2017年新课标1理科22】在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d,φ满足tanφ,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+φ)﹣a﹣4|≤|﹣5﹣a﹣4|=|5+a+4|=17解得a=8和﹣26,a=8符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+φ)﹣a﹣4|≤|5﹣a﹣4|=|5﹣a﹣4|=17,解得a=﹣16和18,a=﹣16符合题意.17.【2017年新课标2理科22】在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0,∵|OM||OP|=16,∴16,即(x2+y2)(1)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C 2上,|OA|=2,∴曲线C 2的圆心(2,0)到弦OA的距离d,∴△AOB的最大面积S|OA|•(2)=2.18.【2017年新课标3理科22】在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l 2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l 3:ρ(cosθ+sinθ)0,M为l3与C的交点,求M的极径.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l 2的参数方程为,(m 为参数),同理可得,直线l 2的普通方程为:x =﹣2+ky ②;联立①②,消去k 得:x 2﹣y 2=4,即C 的普通方程为x 2﹣y 2=4(y ≠0); (2)∵l 3的极坐标方程为ρ(cos θ+sin θ)0,∴其普通方程为:x +y 0, 联立得:,∴ρ2=x 2+y 25.∴l 3与C 的交点M 的极径为ρ.1.【安徽省安庆市市示范中学2019届髙三联考】在直角坐标系xOy 中,曲线C 的参数方程为2cos 3sin x y αα=+⎧⎨=+⎩,(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知点A 的极坐标为3,2π⎛⎫⎪⎝⎭. (1)求曲线C 的极坐标方程;(2)过A 作曲线C 的切线,切点为M ,过O 作曲线的C 切线,切点为N ,求||||ON AM .【答案】(1)24cos 6sin 120ρρθρθ--+=(2)2 【解析】 (1)由23x cos y sin αα=+⎧⎨=+⎩,得()()22231x y -+-=,即2246120x y x y +--+=,故曲线C 的极坐标方程为24cos 6sin 120ρρθρθ--+=. (2)由(1)知,曲线C 表示圆心为()2,3C ,半径为1的圆.因为A (0,3),所以2AC =, 所以2213AM =-=.因为13OC = 所以13123ON =-=故2ON AM=.2.【安徽省1号卷A10联盟2019届高考最后一卷】在平面直角坐标系xOy 中,直线l 的参数方程为122222x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),圆C 的参数方程为22cos 2x y sin ϕϕ=+⎧⎨=⎩(ϕ为参数,[)0,2ϕ∈π),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系. (1)写出直线l 与圆C 的极坐标方程; (2)已知点1,02M ⎛⎫⎪⎝⎭,直线l 与圆C 交于,A B 两点,求MA MB -的值 【答案】(1) 1cos sin 2ρθρθ-=;4cos ρθ=.(2) 322. 【解析】(1)由题意得,直线l 的普通方程为102x y --=, ∴直线l 的极坐标方程为1cos sin 2ρθρθ-=.圆C 的直角坐标方程为()2224x y -+=,即2240x y x +-=.∴圆C 的极坐标方程为4cos ρθ=.(2)显然直线l 过点1,02M ⎛⎫⎪⎝⎭, 将122222x y ⎧=+⎪⎪⎨⎪=⎪⎩代入圆C 的直角坐标方程得2327024t --=.设12,t t 是上述方程的两根,则12322t t +=,12704t t =-<,121232MA MB t t t t ∴-=-=+=3.【山东省潍坊市2019届高三上学期期末】已知在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x y αα=⎧⎨=+⎩(α为参数),以x 轴的非负半轴为极轴,原点O 为极点建立极坐标系,两种坐标系中取相同的长度单位,若直线3πθ=和56πθ=()R ρ∈分别与曲线C 相交于A 、B 两点(A ,B 两点异于坐标原点).(1)求曲线C 的普通方程与A 、B 两点的极坐标; (2)求直线AB 的极坐标方程及ABO ∆的面积. 【答案】(1)(3,)3A π,5(1,)6B π.(23【解析】(1)曲线C 的参数方程为1x cos y sin αα=⎧⎨=+⎩(α为参数),所以消去参数α得曲线C 的普通方程为2220x y y +-=,因为cos x ρθ=,sin y ρθ=,代入曲线C 可得C 的极坐标方程:2sin ρθ=. 将直线3πθ=,56πθ=代入圆的极坐标方程可知:13ρ=21ρ=, 故A 、B 两点的极坐标为3,3A π⎫⎪⎭,51,6B π⎛⎫ ⎪⎝⎭.(2)由cos x ρθ=,sin y ρθ=得:332A ⎫⎪⎪⎝⎭,312B ⎛⎫⎪ ⎪⎝⎭,根据两点式可知直线AB 的方程为:,所以的极坐标方程为:31y x =+.所以AB 的极坐标方程为3sin 6πρθ⎛⎫-= ⎪⎝⎭可知直线AB 恰好经过圆的圆心,故ABO ∆为直角三角形,且3OA =1OB =,故1332ABO S ∆==4.【福建省2019届高三模拟考试】在直角坐标系xOy 中,曲线1C 的参数方程是32cos 12sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()2sin()3m m R ρπθ=∈-.(1)求曲线1C ,2C 的直角坐标方程;(2)设A ,B 分别在曲线1C ,2C 上运动,若AB 的最小值是1,求m 的值.【答案】(1)曲线1C 的直角坐标方程为22(3)(1)4x y +-=,2C 的直角坐标方程为30x y m -+=;(2)4m =或8m =-. 【解析】(1)由3212x cos y sin θθ⎧=⎪⎨=+⎪⎩消去参数,得(()22314x y +-=,所以曲线1C 的直角坐标方程为(()22314x y +-=.由2sin 3mρπθ=⎛⎫- ⎪⎝⎭,整理得sin 3cos m ρθρθ=, 而cos x ρθ=,sin y ρθ=,所以3y x m =,即2C 30x y m -+=. (2)由(1)知曲线1C 是圆心为()3,1,半径2r =的圆,则圆心()3,130x y m -+=()()2233131m⨯-++-所以()()min 223312131mAB ⨯-+=-=+-,解得4m =或8m =-.5.【山东省聊城市2019届高三二模】在直角坐标系xOy 中,曲线12cos :12sin x C y αα=+⎧⎨=-+⎩(α为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 42πρθ⎛⎫+= ⎪⎝⎭. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)若曲线C 与直线l 交于,A B 两点,点()1,0P ,求PA PBPB PA+的值. 【答案】(1)22(1)(1)4x y -++=,10x y --=;(2)83【解析】(1)曲线C 的普通方程为()()22114x y -++=, 直线l 的直角坐标方程为10x y --=.(2)点()1,0P 在直线l 上,直线l 的参数方程为21222x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),将直线l 的参数方程代入曲线C 的普通方程化简,得2230t t +-=. 设点A ,B 所对应的参数分别为1t ,2t ,则122t t +=-123t t =-.所以2212122112PAPBt t t t PB PA t t t t ++=+= ()21212122t t t t t t +-=(()2223833---==-. 6.【河北省沧州市2019届高三普通高等学校招生全国统一模拟】在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为()1cos28cos ρθθ-=,直线cos 1ρθ=与曲线C 相交于,M N 两点,直线l 过定点()2,0P 且倾斜角为α,l 交曲线C 于,A B 两点.(1)把曲线C 化成直角坐标方程,并求MN 的值;(2)若PA ,MN ,PB 成等比数列,求直线l 的倾斜角α. 【答案】(1) 答案见解析 (2) 4a π=或34π 【解析】(1)由ρ(1-cos2θ)=8cosθ得ρ2-ρ2cos 2θ+ρ2sin 2θ=8ρcosθ, ∴x 2+y 2-x 2+y 2=8x ,即y 2=4x . 由ρcosθ=1得x =1,由124x y x =⎧=⎨⎩的M (1,2),N (1,-2),∴|MN |=4. (2)直线l 的参数方程为:{2x tcos y tsin αα=+=(t 为参数),联立直线l 的参数方程与曲线C :y 2=4x , 得t 2sin 2α-4t cosα-8=0,设A ,B 两点对应的参数为t 1,t 2, 则t 1+t 2=24cos sin αα,t 1t 2=-28sin α, 因为|P A |,|MN |,|PB |成等比数列, ∴|P A ||PB |=|MN |2=16, ∴|t 1||t 2|=16,∴|t 1t 2|=16, ∴28sin α=16,∴sin 2α=12, ∵0≤α<π, ∴sinα=22, ∴α=4π或α=34π. 7.【山东省实验中学2019届高三4月上旬质量检测】在直角坐标系xOy 中,曲线C 的方程为22143x y +=.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 24πρθ⎛⎫-=- ⎪⎝⎭(1)求曲线C 的参数方程和直线l 的直角坐标方程;(2)若直线l 与x 轴和y 轴分别交于A ,B 两点,P 为曲线C 上的动点,求△PAB 面积的最大值.【答案】(1)2cos 3x y αα=⎧⎪⎨=⎪⎩(α为参数),20x y --=(272【解析】(1)由22143x y +=,得C 的参数方程为2cos 3x y αα=⎧⎪⎨=⎪⎩(α为参数) 由()2sin sin cos 242πρθρθθ⎛⎫-=-=- ⎪⎝⎭,得直线l 的直角坐标方程为20x y --= (2)在20x y --=中分别令0y =和0x =可得:()2,0A ,()0,2B -22AB ⇒=设曲线C 上点()2cos 3sin P αα,则P 到l 距离:327sin cos 22cos 3sin 23sin 2cos 277222d αααααα⎛⎫-+ ⎪---+⎝⎭===()7sin 22αϕ-+=,其中:3cos 7ϕ=,sin 7ϕ=当()sin 1αϕ-=,max 722d +=所以PAB ∆面积的最大值为172227222+⨯= 8.【广东省东莞市2019届高三上学期期末调研】在直角坐标系xOy 中,曲线1C 的普通方程为22(1)1x y -+=,曲线2C 的参数方程为2cos ,4sin ,x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为()4R πθρ=∈.(1)求曲线1C 的极坐标方程和曲线2C 的普通方程;(2)直线l 与曲线1C 在第一象限内的交点为P ,过点P 的直线l '交曲线2C 于,A B 两点,且AB 的中点为P ,求直线l '的斜率.【答案】(1) 1C 的极坐标方程2cos ρθ=,曲线2C 的普通方程221416x y+= (2)-4【解析】(1)曲线1C 的圆心极坐标为()1,0,半径为1,所以,其极坐标方程为2cos ρθ=.由题意得:,2,4xcos y sin θθ⎧=⎪⎪⎨⎪=⎪⎩,22124x y ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,曲线2C 的普通方程221416x y +=.(2)当4πθ=时,2cos 2ρθ==,11x cos y sin ρθρθ==⎧⎨==⎩,所以,()1,1P于是直线l '的参数方程为11x tcos y tsin αα=+⎧⎨=+⎩(α为倾斜角,t 为参数),代入2C 的普通方程,整理得关于t 的方程()()223cos 12sin 8cos 110t t ααα+++-=.①因为曲线1C 截直线l '所得线段的中点()1,1在1C 内,设,A B 对应的参数为1t ,2t ,则120t t +=. 由韦达定理得:1222sin 8cos 03cos 1t t ααα++=-=+,2sin 8cos 0αα+=,tan 4α=-.所以,直线l '的斜率为-4.9.【山东省德州市2019届高三下学期第一次练习】在直角坐标系xOy 中,直线1l 的参数方程为x 2t (t 3y kt 4=+⎧⎪⎨=⎪⎩为参数),直线2l 的参数方程为x 2m (m m y k =-+⎧⎪⎨=-⎪⎩为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .()1写出C 的普通方程;()2以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设31:π2ρsin θ42⎛⎫+=⎪⎝⎭,3l 与C 的交点为A 、B ,M 为线段AB 的中点,求M 的极径.【答案】(1)22143x y +=;(2)57【解析】()1直线1l 的普通方程为()324y k x =-,直线2l 的普通方程为2x y k +=-,消去k 得22143x y+=,即C 的普通方程为22143x y +=.()2设()11,A x y ,()22,B x y ,3l 化成普通方程为1x y +=.联立221143x y x y +=⎧⎪⎨+=⎪⎩得27880x x --=,1287x x ∴+=,()1212627y y x x +=-+=, 43,77M ⎛⎫∴ ⎪⎝⎭,2222435()()()777ρ=+=,M ∴的极径为57.10.【河北省沧州市2019年普通高等学校招生全国统一模拟】在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为()1cos28cos ρθθ-=,直线cos 1ρθ=与曲线C 相交于,M N 两点,直线l 过定点()2,0P 且倾斜角为α,l 交曲线C 于,A B 两点.(1)把曲线C 化成直角坐标方程,并求MN 的值;(2)若PA ,MN ,PB 成等比数列,求直线l 的倾斜角α. 【答案】(1) 答案见解析 (2) 4a π=或34π【解析】(1)由ρ(1-cos2θ)=8cosθ得ρ2-ρ2cos 2θ+ρ2sin 2θ=8ρcosθ, ∴x 2+y 2-x 2+y 2=8x ,即y 2=4x . 由ρcosθ=1得x =1,由124x y x =⎧=⎨⎩的M (1,2),N (1,-2),∴|MN |=4. (2)直线l 的参数方程为:{2x tcos y tsin αα=+=(t 为参数),联立直线l 的参数方程与曲线C :y 2=4x ,得t 2sin 2α-4t cosα-8=0,设A ,B 两点对应的参数为t 1,t 2, 则t 1+t 2=24cos sin αα,t 1t 2=-28sin α, 因为|P A |,|MN |,|PB |成等比数列, ∴|P A ||PB |=|MN |2=16, ∴|t 1||t 2|=16,∴|t 1t 2|=16, ∴28sin α=16,∴sin 2α=12, ∵0≤α<π, ∴2∴α=4π或α=34π. 11.【广东省珠海市2019届高三上学期期末学业质量监测】在直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线3C 的极坐标方程为(0,)R θααπρ=<<∈,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,A ,B 均异于原点O ,且42AB =,求α的值. 【答案】(1)()()222224,24x y x y -+=+-=;(2)3π4. 【解析】(1)由222x cos y sin ϕϕ=+⎧⎨=⎩消去参数ϕ,得1C 的普通方程为()2224x y -+=.由4sin ρθ=,得24sin ρρθ=,又sin y ρθ=,222x y ρ+=,所以2C 的直角坐标方程为()2224x y +-=.(2)由(1)知曲线1C 的普通方程为()2224x y -+=, 所以其极坐标方程为4cos ρθ=.设点A ,B 的极坐标分别为(),A ρα,(),B ρα, 则4cos A ρα=,4sin B ρα=, 所以4cos sin 42sin 424A B AB πρρααα⎛⎫=-=-=-= ⎪⎝⎭所以sin 14πα⎛⎫-=± ⎪⎝⎭,即()42k k Z ππαπ-=+∈, 解得()34k k Z παπ=+∈, 又0απ<<,所以34πα=. 12.【江苏省南通市2019届高三适应性考试】已知曲线C 的极坐标方程为2sin ρθ=.以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程为1232x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数).(1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)求直线l 被曲线C 所截得的弦长.【答案】(1)曲线C 的直角坐标方程为2220x y y +-=.直线l 的普通方程为32y x =+.(23【解析】(1)因为曲线C 的极坐标方程可化为22sin ρρθ=.且222x y ρ+=,sin y ρθ=,所以曲线C 的直角坐标方程为2220x y y +-=.直线l :12322x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)的普通方程为32y x =+.(2)圆心(0,1)到直线l :32y x =+的距离为21213d ==+,又因为半径为1,所以弦长为212132⎛⎫-= ⎪⎝⎭13.【安徽省毛坦厂中学2019届高三校区4月联考】已知直线l 的参数方程为122x ty t⎧=⎪⎨=⎪⎩(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为322sin 4πρθ⎛⎫=- ⎪⎝⎭.(1)求直线l 的普通方程及曲线C 的直角坐标方程; (2)设直线l 与曲线C 交于A ,B 两点,求AB 的值.【答案】(1)220x y +-=,22220x y x y +--=;(265【解析】(1)直线l 的参数方程为122x ty t⎧=⎪⎨=⎪⎩(t 为参数),消去t ,得()21x y -=,即直线l 的普通方程为220x y +-=. 又曲线3:22sin 4C πρθ⎛⎫=-⎪⎝⎭,即2cos 2sin ρθθ=+, 22cos 2sin ρρθρθ∴=+,∴曲线C 的直角坐标方程为22220x y x y +--=.(2)由(1)得,直线l 的标准参数方程为155x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),代入曲线C 的直角坐标方程得,2105t -=,125t t ∴+=1210t t =-<, ()21212126545AB t t t t t t ∴=-=+-=. 14.【河北省中原名校联盟2019届高三3.20联考】已知曲线C 的参数方程为32,12,x cos y sin αα=+⎧⎨=-⎩(α为参数),以直角坐标原点为极点,x 轴非负半轴为极轴并取相同的单位长度建立极坐标系.()1求曲线C 的极坐标方程,并说明其表示什么轨迹.()2若直线l 的极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 的最大距离.【答案】(1)26cos 2sin 60ρρθρθ--+=,表示以()3,1为圆心,2为半径的圆 ;(2)525+. 【解析】()1由3212x cos y sin αα=+⎧⎨=-⎩得32,12,x cos y sin αα-=⎧⎨-=-⎩两式两边平方并相加,得()()22314x y -+-=. 所以曲线C 表示以()3,1为圆心,2为半径的圆.将,,y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+=.所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+=.()2由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=.所以直线l 的直角坐标方程为210x y -+=. 因为圆心()3,1C 到直线:210l x y -+=的距离()23111655d ⨯+-⨯+==. 所以曲线C 上的点到直线l 的最大距离为652d r +=. 15.【山东省菏泽市2019届高三下学期第一次】已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.【答案】(1)26cos 2sin 60ρρθρθ--+=(26525【解析】(1)由3212x cos y sin αα=+⎧⎨=-⎩,得3212x cos y sin αα-=⎧⎨-=-⎩,两式两边平方并相加,得()()22314x y -+-=, 所以曲线C 表示以()3,1为圆心,2为半径的圆.将y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+= 所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+= (2)由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=所以直线l 的直角坐标方程为210x y -+= 因为圆心()3,1C 到直线:l 210x y -+=的距离()23111655d ⨯+-⨯+==, 所以曲线C 上的点到直线l 的最大距离为652d r +=. 16.【河南省南阳市第一中学2019-2020学年高三上学期第二次开学考试】在直角坐标系xOy 中,直线l 的参数方程为32x t y t =--⎧⎨=+⎩,(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程42)4πρθ=+.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A ,B 两点,(2,3)P -为直线l 上一点,求11||||PA PB +. 【答案】(1)直线l 的普通方程为10x y ++=,曲线C 的直角坐标方程为22(2)(2)8f x y -++=(2)307【解析】(1)直线l 的普通方程为10x y ++=,曲线C 的直角坐标方程为22(2)(2)8x y -++=.(2)将直线l 的参数方程化为2223x y ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数),代入曲线C 的方程22(2)(2)8x y -++=,得2270t t -=,所以122t t +=127t t =-,所以()21212121212|4|1130||7t t t t t t PA PB t t +--+===17.【福建省2019届高三毕业班数学学科备考关键问题指导系列适应性练习(一)】在直角坐标系xOy 中,曲线1C 的参数方程为3sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+=. (1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值以及此时P 的直角坐标.【答案】(1)1C :2213xy +=,2C :40x y +-=;(2)min 2PQ =31(,)22P . 【解析】(1)1C 的普通方程为2213xy +=,2C 的直角坐标方程为40x y +-=.(2)由题意,可设点P 的直角坐标为3,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,3π()2sin()2|32d αα==+-.当且仅当π2π()6k k α=+∈Z 时,()d α2,此时P 的直角坐标为31(,)22.18.【山东省淄博市2019届高三3月模拟】在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t为参数,0≤α<π).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(Ⅰ)写出曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,且AB 的长度为5,求直线l 的普通方程.【答案】(Ⅰ) ()()22219x y -++=;(Ⅱ)34y x =和x=0. 【解析】(Ⅰ)将x cos y sin ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程得:曲线C 的直角坐标方程为:22442x y x y +-=- 即()()22219x y -++=(Ⅱ)将直线的参数方程代入曲线方程:()()22cos 2sin 19t t αα-++=整理得24cos 2sin 40t t t αα-+-= 设点A ,B 对应的参数为1t ,2t , 解得124cos 2sin t t αα+=-,124t t ⋅=- 则()()2212121244cos 2sin 1625AB t t t t t t αα=-=+-=-+=23cos 4sin cos 0ααα-=,因为0απ≤<得3tan 24παα==或,直线l 的普通方程为34y x =和x=0 19.【河北省衡水市2019届高三下学期第三次质量检测】已知曲线1C 的参数方程为23x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),以原点O 为极点,以x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin()14πρθ-=.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程; (2)射线OM :()2πθααπ=<<与曲线1C 交于点M ,射线ON :4πθα=-与曲线2C 交于点N ,求2211OMON+的取值范围.【答案】(1)1C 的极坐标方程为222cos 26ρθρ+=,2C 的直角方程为20x y -+=;(2)13()32,.【解析】(1)由曲线1C 的参数方程23x cos y sin ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数)得:2222cos sin 123ϕϕ+=+=,即曲线1C 的普通方程为22123x y+=又cos ,sin x y ρθρθ==,曲线1C 的极坐标方程为22223cos 2sin 6ρθρθ+=,即222cos 26ρθρ+= 曲线2C 的极坐标方程可化为sin cos 2ρθρθ-=故曲线2C 的直角方程为20x y -+=(2)由已知,设点M 和点N 的极坐标分别为()1,ρα,2,4πρα⎛⎫-⎪⎝⎭,其中2παπ<<则22126cos 2OMρα==+,2222211cos sin 2ON ρπαα===⎛⎫- ⎪⎝⎭于是2222211cos 27cos 2cos 66OM ONααα+++=+= 由2παπ<<,得1cos 0α-<<故2211OMON+的取值范围是1332,⎛⎫⎪⎝⎭20.【山东省威海市2019届高三二模】在直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x r y r αα=+⎧⎨=⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin 36πρθ⎛⎫+= ⎪⎝⎭,且曲线1C 与2C 恰有一个公共点. (Ⅰ)求曲线1C 的极坐标方程;(Ⅱ)已知曲线1C 上两点A ,B 满足4AOB π∠=,求AOB ∆面积的最大值.【答案】(Ⅰ) 4cos ρθ=.(Ⅱ) 222+. 【解析】(Ⅰ)曲线2C 的极坐标方程为31sin()sin cos 362πρθρθρθ+=+=, 将sin ,cos y x ρθρθ==代入上式可得2C 直角坐标方程为31322y x +=, 即360x y +-=,所以曲线2C 为直线.又曲线1C 是圆心为(2,0),半径为||r 的圆, 因为圆1C 与直线1C 恰有一个公共点, 所以|26|||22r -==, 所以圆1C 的普通方程为2240x y x +-=,把222,cos x y x ρρθ+==代入上式可得1C 的极坐标方程为24cos 0ρρθ-=,即4cos ρθ=.(Ⅱ)由题意可设()2121(,),0,0,4(),B A πθρρρθρ+>>,1212||sin 42cos cos 2444MON S OA OB ππρρθθ∆⎛⎫===+ ⎪⎝⎭uu r uu u r ‖ ()21cos 2sin 24cos sin cos 422θθθθθ+⎛⎫=-=-⎪⎝⎭222cos 24πθ⎛⎫=++ ⎪⎝⎭,所以当cos 214πθ⎛⎫+= ⎪⎝⎭时,AOB ∆的面积最大,且最大值为222+.1.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为:为参数,,曲线C 的极坐标方程为:.写出曲线C 的直角坐标方程;设直线l 与曲线C 相交于P ,Q 两点,若,求直线l 的斜率.【答案】(1);(2)。
新单元《坐标系与参数方程》专题解析一、131.设椭圆C :2211612x y +=上的一点P 到两条直线4y =和8x =的距离分别是1d ,2d ,则122d d +的最小值( ) A .5 B .6C .7D .8【答案】D 【解析】 【分析】设()4P cos θθ,02θπ≤<,由题意可得:1222484d d cos θθ+=-+-,利用三角函数的单调性、和差公式即可得出结论. 【详解】解:设()4P cos θθ,02θπ≤<, 由题意可得:122248416416816886d d cos cos sin πθθθθθ⎛⎫+=-+-=--=-+≥-= ⎪⎝⎭.当且仅当816sin πθ⎛⎫+= ⎪⎝⎭时取等号. 122d d ∴+的最小值为8.故选:D 【点睛】本题考查了椭圆的标准方程及其参数方程、三角函数的单调性、和差公式,考查了推理能力与计算能力,属于中档题.2.曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离的最大值为( )A .1B .3C .2D .4 【答案】C 【解析】 【分析】根据点到直线的距离求最值. 【详解】曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离为:2=,当且仅当cos 1θ=±时取得等号 故选C. 【点睛】本题考查椭圆参数方程的应用.3.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1 BC .2D.【答案】B 【解析】 【分析】由题意可知曲线1C 与2C 交于原点和另外一点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立两曲线的极坐标方程,解出ρ的值,可得出AB ρ=,即可得出AB 的值. 【详解】易知,曲线1C 与2C 均过原点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立曲线1C 与2C的坐标方程2sin ρθρθ=⎧⎪⎨=⎪⎩,解得3πθρ⎧=⎪⎨⎪=⎩,因此,AB ρ== 故选:B. 【点睛】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.4.在极坐标系中,已知圆C 经过点6P π⎛⎫ ⎪⎝⎭,,圆心为直线sin 4πρθ⎛⎫+= ⎪⎝⎭轴的交点,则圆C 的极坐标方程为 A .4cos ρθ= B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=【答案】A 【解析】【分析】求出圆C 的圆心坐标为(2,0),由圆C 经过点6P π⎛⎫⎪⎝⎭,得到圆C 过极点,由此能求出圆C 的极坐标方程. 【详解】在sin 4πρθ⎛⎫+= ⎪⎝⎭中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0). 因为圆C 经过点6P π⎛⎫⎪⎝⎭,,所以圆C 的半径2r ==,于是圆C 过极点,所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.5.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩,(t 为参数),曲线C 的方程为4cos 02πρθθ⎛⎫= ⎪⎝⎭剟,(2,0)C 直线l 与曲线C 相交于A B ,两点,当ABC ∆的面积最大时,tan α=( )ABCD 【答案】D 【解析】 【分析】先将直线直线l 与曲线C 转化为普通方程,结合图形分析可得,要使ABC ∆的面积最大,即要ACB ∠为直角,从而求解出tan α。
极坐标和参数方程1.(2020•全国1卷)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin kkx t y t ⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)11(,)44.【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论;(2)当4k =时,0,0x y ≥≥,曲线1C 的参数方程化为22cos (sin tt t ==为参数),两式相加消去参数t ,得1C 普通方程,由cos ,sin x y ρθρθ==,将曲线2C 化为直角坐标方程,联立12,C C 方程,即可求解. 【详解】(1)当1k =时,曲线1C 的参数方程为cos (sin x tt y t ⎧=⎪⎨=⎪⎩为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)当4k =时,曲线1C 的参数方程为44cos (sin x tt y t ⎧=⎪⎨=⎪⎩为参数),所以0,0x y ≥≥,曲线1C 的参数方程化为22cos (sin tt t ==为参数),两式相加得曲线1C 1=,1=-1,01,01y x x y =-+≤≤≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,曲线2C 直角坐标方程为41630x y -+=,联立12,C C 方程141630y x x y ⎧=-⎪⎨-+=⎪⎩,整理得12130x -+=12=136=(舍去),11,44x y ∴==,12,C C ∴公共点的直角坐标为11(,)44.【点睛】本题考查参数方程与普通方程互化,极坐标方程与直角坐标方程互化,合理消元是解题的关系,要注意曲线坐标的范围,考查计算求解能力,属于中档题.2.(2020•全国2卷)已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎪⎨=⎪⎩,(θ为参数),C 2:1,1x t t y t t ⎧=+⎪⎨⎪=-⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y +=;222:4C x y -=;(2)17cos 5ρθ=. 【解析】(1)分别消去参数θ和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎨⎪=-⎩得:2222221212x t t y t t ⎧=++⎪⎨⎪=+-⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y ⎧+=⎪⎨-=⎪⎩得:5232x y ⎧=⎪⎨⎪=⎩,即53,22P ⎛⎫ ⎪⎝⎭;设所求圆圆心的直角坐标为(),0a ,其中0a >, 则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.3.(2020•全国3卷)在直角坐标系xOy 中,曲线C 的参数方程为22223x t ty t t ⎧=--⎪⎨=-+⎪⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)2)3cos sin 120ρθρθ-+=【解析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴== (2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题. 4.(2020•江苏卷)在极坐标系中,已知点π1(,)3A ρ在直线:cos 2l ρθ=上,点π2(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<). (1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.【答案】(1)1242ρρ==,(2))4π【解析】(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果. 【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos 2,43πρρ=∴=,因为点B 为直线6πθ=上,故其直角坐标方程为y =, 又4sin ρθ=对应的圆的直角坐标方程为:2240x y y +-=, 由2240y x y y ⎧=⎪⎨⎪+-=⎩解得00x y ==⎧⎪⎨⎪⎩或1x y ⎧=⎪⎨=⎪⎩, 对应的点为())0,0,,故对应的极径为20ρ=或22ρ=.(2)cos 2,4sin ,4sin cos 2,sin21ρθρθθθθ==∴=∴=,5[0,2),,44ππθπθ∈∴=,当4πθ=时ρ=当54πθ=时0ρ=-<,舍;即所求交点坐标为当),4π【点睛】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题.13 不等式选讲1.(2020•全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.【解析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出.【详解】(1)因为()3,1151,1313,3x x f x x x x x ⎧+≥⎪⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.2.(2020•全国2卷)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(),13,⎣-⎤⎦∞-+∞⎡.【解析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(),13,⎣-⎤⎦∞-+∞⎡.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 3.(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c. 【答案】(1)证明见解析(2)证明见解析.【解析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明; (2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22221ab bc ca a b c ∴++=-++1,,,abc a b c =∴均不为0,则2220a b c ++>,()222102ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b cb c bc bc bc a a a bc bc bc++++∴=⋅==≥=. 当且仅当b c =时,取等号,a ∴≥3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题. 4.(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤. 【答案】22,3⎡⎤-⎢⎥⎣⎦【解析】根据绝对值定义化为三个方程组,解得结果 【详解】1224x x x ⎧<-⎪⎨---≤⎪⎩或10224x x x ⎧-≤≤⎪⎨+-≤⎪⎩或0224x x x ⎧>⎪⎨++≤⎪⎩21x ∴-≤<-或10x -≤≤或203x <≤,所以解集为22,3⎡⎤-⎢⎥⎣⎦【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题..。
2020年高考试题分类汇编(坐标系与参数方程)
1.(2020·全国卷Ⅰ)在直角坐标系xoy 中,曲线1C 的参数方程为cos sin k k x t y t
⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为
4cos 16sin 30ρθθ-+=.
(Ⅰ)当1k =时,1C 是什么曲线?
(Ⅱ)当4k =时,求1C 与2C 的公共点的直角坐标.
2.(2020·全国卷Ⅱ)已知曲线1C ,2C 的参数方程分别为1C :224cos 4sin x y θθ
⎧=⎨=⎩(θ为参数),2C :
11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩
(t 为参数). (Ⅰ)将1C ,2C 的参数方程化为普通方程;
(Ⅱ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设1C ,2C 的交点为P ,求圆心在极轴上,且过极点和P 的圆的极坐标方程.
3.(2020·全国卷Ⅲ)在直角坐标系xoy 中,曲线C 的参数方程为2
2223x t t y t t ⎧=--⎨=-+⎩(t 为参数且1t ≠).C 与坐标轴交于A ,B 两点. (Ⅰ)求AB ;
(Ⅱ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.。