纳米金的制备与性能 共21页
- 格式:ppt
- 大小:5.09 MB
- 文档页数:21
纳米金的制备方法胶体金溶液的制备有许多种方法,其中最常用的是化学还原法,基本的原理是向一定浓度的金溶液内加入一定量的还原剂使金离子变成金原子。
目前常用的还原剂有:白磷、乙醇、过氧化氢、硼氢化钠、抗坏血酸、枸橼酸钠、鞣酸等,下面分别介绍制备不同大小颗粒的胶体金溶液。
一、制备胶体金的准备(一)玻璃器皿的清洁制备胶体金的成功与失败除试剂因素以外玻璃器皿清洁是非常关键的一步。
如果玻璃器皿内不干净或者有灰尘落入就会干扰胶体金颗粒的生成,形成的颗粒大小不一,颜色微红、无色或混浊不透明。
我们的经验是制备胶体金的所有玻璃器皿先用自来水把玻璃器皿上的灰尘流水冲洗干净,加入清洁液(重铬酸钾1000g,加入浓硫酸2500ml,加蒸馏水至10000ml)浸泡24h,自来水洗净清洁液,然后每个玻璃器皿用洗洁剂洗3~4次,自来水冲洗掉洗洁剂,用蒸馏水洗3~4次,再用双蒸水把每个器皿洗3~4次,烤箱干燥后备用。
通过此方法的处理玻璃器皿不需要硅化处理,而直接制备胶体金。
也可用已经制备的胶体金溶液,用同等大不颗粒的金溶液去包被所用的玻璃器皿的表面,然后弃去,再用双蒸水洗净,即可使用,这样效果更好,因为减少了金颗粒的吸附作用。
(二)试剂的配制要求(1)所有配制试剂的容器均按以上要求酸处理洗净,配制试剂用双蒸馏水或三蒸馏水。
(2)氯化金(HauCl4水溶液的配制:将lg的氯化金一次溶解于双蒸水中配成1%的水溶液。
放在4”c冰箱内保存长达几个月至1年左右,仍保持稳定。
(3)白磷或黄磷乙醚溶液的配制:白磷在空气中易燃烧,要格外小心操作。
把白磷在双蒸水中切成小块,放在滤纸上吸于水份后,迅速放入已准备好的乙醚中去,轻轻摇动,等完全溶解后即得饱和溶液。
储藏于棕色密闭瓶内,放在阴凉处保存。
二、制备胶体金的方法和步骤(一)白磷还原法1.白磷还原法(z Sigmondy 1905年)(1)取1%的HAuCl4水溶液1ml,加双蒸水99ml配成0.01%的HAuCl4水溶液。
胶体金(纳米金Gold Nanoparticles)的详细制备步骤和注意事项胶体金的制备一般采用还原法,常用的还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。
下面介绍最常用的制备方法及注意事项。
1、玻璃容器的清洁:玻璃表面少量的污染会干扰胶体金颗粒的生成,一切玻璃容器应绝对清洁,用前经过酸洗、硅化。
硅化过程一般是将玻璃容器浸泡于5%二氯二甲硅烷的氯仿溶液中1分钟,室温干燥后蒸馏水冲洗,再干燥备用。
专用的清洁器皿以第一次生成的胶体金稳定其表面,弃去后以双蒸馏水淋洗,可代替硅化处理。
2、试剂、水质和环境:氯金酸极易吸潮,对金属有强烈的腐蚀性,不能使用金属药匙,避免接触天平称盘。
其1%水溶液在4℃可稳定数月不变。
实验用水一般用双蒸馏水。
实验室中的尘粒要尽量减少,否则实验的结果将缺乏重复性。
金颗粒容易吸附于电极上使之堵塞,故不能用pH电极测定金溶液的pH值。
为了使溶液pH值不发生改变,应选用缓冲容量足够大的缓冲系统,一般采用柠檬酸磷酸盐(pH3~5.8)、Tris-HCL (pH5.8~8.3)和硼酸氢氧化钠(pH8.5~10.3)等缓冲系统。
但应注意不应使缓冲液浓度过高而使金溶胶自凝。
3、柠檬酸三钠还原法制备金溶胶:取0.01%氯金酸水溶液100ml 加热至沸,搅动下准确加入1%柠檬酸三钠水溶液0.7ml,金黄色的氯金酸水溶液在2分钟内变为紫红色,继续煮沸15分钟,冷却后以蒸馏水恢复到原体积,如此制备的金溶胶其可见光区最高吸收峰在535nm,A1cm/535=1.12。
金溶胶的光散射性与溶胶颗粒的大小密切相关,一旦颗粒大小发生变化,光散射也随之发生变异,产生肉眼可见的显著的颜色变化,这就是金溶胶用于免疫沉淀或称免疫凝集试验的基础。
金溶胶颗粒的直径和制备时加入的柠檬酸三钠量是密切相关的,保持其他条件恒定,仅改变加入的柠檬酸三钠量,可制得不同颜色的金溶胶,也就是不同粒径的金溶胶,见附表。
附表100 ml 氯金酸中柠檬酸三钠的加入量对金溶胶粒径的影响1%柠檬酸三钠ml 0.30 0.45 0.70 1.00 1.50 2.00金溶胶颜色蓝灰紫灰紫红红橙红橙吸收峰(nm) 220 240 535 525 522 518径粒(nm) 147 97.5 71.5 41 24.5 154、柠檬酸三钠-鞣酸混合还原剂:用此混合还原剂可以得到比较满意的金溶胶,操作方法如下:取4ml1%柠檬酸三钠(Na3C6H5O7.2H2O),加入0~5ml1%鞣酸,0~5ml 25mmo/L K2CO2(体积与鞣酸加入量相等),以双蒸馏水补至溶液最终体积为20ml,加热至60℃取1ml1%的HAuCl4,加于79ml双蒸馏水中,水浴加热至60℃,然后迅速将上述柠檬酸-鞣酸溶液加入,于此温度下保持一定时间,待溶液颜色变成深红色(约需0.5~1小时)后,将溶液加热至沸腾,保持沸腾5分钟即可。
纳米金材料的制备与性能研究随着科技的不断进步,纳米材料的应用领域也在不断拓宽。
其中,纳米金材料作为一种有着独特性能的纳米材料,在能源、光电、催化等领域具有广阔的应用前景。
本文将探讨纳米金材料的制备方法以及其在性能研究方面的应用。
纳米金材料的制备有多种方法,其中较常见的是湿化学法和物理法。
湿化学法主要包括化学还原法、溶胶-凝胶法和电化学沉积法等。
化学还原法是指将金离子还原为金纳米颗粒,通过在反应溶液中加入还原剂,如氨水、甲醛等,可得到具有不同形貌和尺寸的纳米金颗粒。
溶胶-凝胶法则通过控制溶胶的成分和凝胶的温度、pH值和反应时间等参数,实现纳米金材料的制备。
电化学沉积法则是将金属离子通过外加电压的作用沉积到电极上,形成纳米金材料。
物理法主要包括溅射法、热蒸发法和激光蚀刻法等。
溅射法是将金属靶材置于真空腔内,通过高能粒子轰击金属靶材使其释放出金原子,再以惰性气体或惰性气氛控制金原子的运动,从而得到纳米金材料。
热蒸发法则是通过高温将金属材料蒸发,使其沉积在基底上形成纳米金材料。
激光蚀刻法则是利用激光束对金属材料进行蚀刻,形成纳米级小孔,然后将大孔在高温条件下迅速冷却,从而得到具有纳米尺寸的金材料。
除了制备方法外,纳米金材料的性能研究也是科学家们关注的热点。
纳米金材料由于其特殊的尺寸效应和表面效应,表现出与宏观金材料不同的物理、化学和生物学性能。
其中,表面等离子体共振现象是纳米金材料的重要性能之一。
当入射光与纳米金颗粒表面的自由电子振荡频率相匹配时,会发生等离子体共振现象,极大地放大了光的吸收和散射,从而使得纳米金材料具有优异的光学性能。
这一性能使得纳米金材料在光学传感器、光催化等领域具有广泛的应用前景。
此外,纳米金材料还具有优异的电学性能。
由于纳米金颗粒的特殊结构,其载流子具有较高的迁移率,因此纳米金材料在传感器、储能器件和显示器件等领域有着广泛的应用。
此外,纳米金材料在催化领域的应用也备受瞩目。
纳米金材料具有较大的比表面积和优异的催化活性,因此在催化剂的研究中具有广泛的应用前景。
纳米金材料的制备与应用研究近年来,纳米科技的发展迅猛,纳米材料作为一种新型材料,受到了广泛的关注和研究。
其中,纳米金材料作为一种重要的纳米材料,在诸多领域展现出了广阔的应用前景。
本文将探讨纳米金材料的制备方法以及其在生物医学、能源储存和环境治理等领域的应用研究。
首先,纳米金材料的制备方法多种多样,常见的有物理法、化学法和生物法等。
物理法主要是通过机械力、热力和电力等手段对金材料进行加工,使其尺寸缩小到纳米级别。
化学法则是利用化学反应来合成纳米金材料,常见的方法有溶剂热法、溶胶凝胶法和化学气相沉积法等。
生物法则是利用生物体内的微生物、植物或动物来合成纳米金材料,这种方法具有环境友好、无毒无害的优点。
各种制备方法各有优劣,研究者可以根据具体需求选择适合的方法。
其次,纳米金材料在生物医学领域的应用研究备受关注。
纳米金材料具有良好的生物相容性和生物活性,可以用于生物成像、药物传输和肿瘤治疗等方面。
例如,研究人员可以利用纳米金材料的表面增强拉曼散射效应,实现对生物分子的高灵敏检测,从而提高疾病的早期诊断率。
此外,纳米金材料还可以作为药物载体,通过控制粒径和表面修饰,实现药物的靶向传递,提高治疗效果。
同时,纳米金材料还可以通过光热效应和放射性效应等机制,用于肿瘤治疗,为肿瘤患者带来新的治疗选择。
再次,纳米金材料在能源储存领域的应用研究也备受关注。
随着能源危机的日益严重,寻找高效、环保的能源储存材料成为了研究的热点。
纳米金材料因其较大的比表面积和独特的电子结构,在能源储存领域具有广阔的应用前景。
例如,研究人员可以利用纳米金材料的高比表面积和优异的导电性能,制备高性能的超级电容器和锂离子电池,实现高能量密度和长循环寿命。
此外,纳米金材料还可以作为催化剂,用于燃料电池和光电催化等领域,提高能源转换效率,减少能源消耗。
最后,纳米金材料在环境治理领域的应用研究也具有重要意义。
纳米金材料具有较大的比表面积和丰富的表面活性位点,可以用于吸附、催化和光催化等环境治理过程。
胶体⾦(纳⽶⾦GoldNanoparticles)的制备步骤和注意事项胶体⾦(纳⽶⾦Gold Nanoparticles)的详细制备步骤和注意事项胶体⾦的制备⼀般采⽤还原法,常⽤的还原剂有柠檬酸钠、鞣酸、抗坏⾎酸、⽩磷、硼氢化钠等。
下⾯介绍最常⽤的制备⽅法及注意事项。
1、玻璃容器的清洁:玻璃表⾯少量的污染会⼲扰胶体⾦颗粒的⽣成,⼀切玻璃容器应绝对清洁,⽤前经过酸洗、硅化。
硅化过程⼀般是将玻璃容器浸泡于5%⼆氯⼆甲硅烷的氯仿溶液中1分钟,室温⼲燥后蒸馏⽔冲洗,再⼲燥备⽤。
专⽤的清洁器⽫以第⼀次⽣成的胶体⾦稳定其表⾯,弃去后以双蒸馏⽔淋洗,可代替硅化处理。
2、试剂、⽔质和环境:氯⾦酸极易吸潮,对⾦属有强烈的腐蚀性,不能使⽤⾦属药匙,避免接触天平称盘。
其1%⽔溶液在4℃可稳定数⽉不变。
实验⽤⽔⼀般⽤双蒸馏⽔。
实验室中的尘粒要尽量减少,否则实验的结果将缺乏重复性。
⾦颗粒容易吸附于电极上使之堵塞,故不能⽤pH电极测定⾦溶液的pH值。
为了使溶液pH值不发⽣改变,应选⽤缓冲容量⾜够⼤的缓冲系统,⼀般采⽤柠檬酸磷酸盐(pH3~5.8)、Tris-HCL (pH5.8~8.3)和硼酸氢氧化钠(pH8.5~10.3)等缓冲系统。
但应注意不应使缓冲液浓度过⾼⽽使⾦溶胶⾃凝。
3、柠檬酸三钠还原法制备⾦溶胶:取0.01%氯⾦酸⽔溶液100ml 加热⾄沸,搅动下准确加⼊1%柠檬酸三钠⽔溶液0.7ml,⾦黄⾊的氯⾦酸⽔溶液在2分钟内变为紫红⾊,继续煮沸15分钟,冷却后以蒸馏⽔恢复到原体积,如此制备的⾦溶胶其可见光区最⾼吸收峰在535nm,A1cm/535=1.12。
⾦溶胶的光散射性与溶胶颗粒的⼤⼩密切相关,⼀旦颗粒⼤⼩发⽣变化,光散射也随之发⽣变异,产⽣⾁眼可见的显著的颜⾊变化,这就是⾦溶胶⽤于免疫沉淀或称免疫凝集试验的基础。
⾦溶胶颗粒的直径和制备时加⼊的柠檬酸三钠量是密切相关的,保持其他条件恒定,仅改变加⼊的柠檬酸三钠量,可制得不同颜⾊的⾦溶胶,也就是不同粒径的⾦溶胶,见附表。