纯电动汽车整车控制器设计
- 格式:doc
- 大小:1.49 MB
- 文档页数:38
车辆工程技术 2 车辆技术纯电动汽车整车控制器(VCU)研究宋述铨(天津优控智行科技有限公司,天津 300000)摘 要:电动汽车主要由电池管理系统(BMS),整车控制系统(VCS),以及电机控制器(MCU)等构成。
整车控制器(VCU)是电动汽车的重要控制结构,对汽车的各种信息进行检测、对车内通信网络和异常信息进行监控等,能够提高整车驾驶性能,进行制动能量回馈完善能源管理。
提升整车舒适性,使用户获得完美体验。
关键词:纯电动汽车;整车控制器;完美体验 随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。
传统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。
纯电动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。
随着科技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。
本文从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。
1 整车电控系统组成 整车电控系统主要由整车控制器VCU为核心,通过硬线信号指挥各控制器使能,通过CAN总线信号控制储能系统、电机系统等关键总成执行相应的上下电动作以及扭矩指令。
最终完成整车的驾驶运行以及高压充电。
其中,低压部分完成车辆控制器供电和信号采集通讯。
高压部分通过高压线束将动力电池的电能传输到空调压缩机、电动机等高压供电设备,实现动力电能的传输。
其中电机、电池、电控系统被称为“三电”系统,主要包括:1.1 整车控制器 整车控制器系统为整车的运行大脑,具有高可靠性、高运行效率、逻辑缤密性。
整车控制系统上电后首先运行初始化程序并且自检,在自身没有问题后驱动端口使能储能系统、电机系统上电。
储能系统和电机系统完成上电后同样分别进行上电自检。
所有系统自检无故障且驾驶员有上高压指令时,整车控制系统通过总线驱动储能系统、电机系统完成上高压动作。
1.2 储能系统 储能系统包括动力电池组和BMS管理单元。
电动汽车用电机及控制器布置规范1范围本蟒准规定了电动汽车用电机及控制器(以下荷称电机及控制器)及其相关附件的布置形式和布置原则°本标准适应于本公司生产的混合动力、纯电动等所有新能源车型.2规范性引用文件下列文件对于本文件的应用是必不“少的。
凡是注日期的引用文件,仪所注日期的版本适用于本文件。
凡是不注日期的引用文件,其量新版本(包括所有的修改单)适用于本文件。
Q/OC JT108-2008整车二维数模装配间隙设计3术语和定义Q/OC TU08—2008界定的术语和定义适用于本标?(L4布置形式4-1分类电机及控制器布置可简单分为前丘、后置,控制器一般布置在电机正上方。
4.2纯电动汽车本公司研发的纯电动汽车的电机布置一段为前置,其布置形式如下二a)纯电动汽车电机前过,电机与减速器同轴布:a,与整车ZX平面垂直,如图1所示:b)貌电动汽车控制器前置.为了接线方便和缩近堆束长度,控制群布置在电机接战盒位置的正上•方与整车ZX平面垂直,如图2所示工图1前置电机布置形式I图2前亘控翻器布克形式]<3混合动力汽车混合动力汽车的电机布置M以前置也可以后置,其布置形式如下,El)混合动力汽车电机前置,电机与发动机同轴布置与整车ZX平面垂直,如图3所示:b)混合动力汽车控制楼而置,为了接线方便和筋短缓束长度,同时要避让发动机及其附件J控制器布置在电机上方与整车ZX平面垂直,如图4所示Fc)混合动力汽车电机及控制器后置,为了实现四强功能,发动机前置,电驱动桥后:B・电机及控制器后置,电机与旗速器同轴布丘修整车ZX平面垂直.图3前五电机布适形式n图4前置控制赤布置形式II图5后置电机布置形式对于电机、控制器及其附件的布置,底保证工作川配J井能灌足整车布置的需要和整车性能的发挥;应保证机舱与发动机、变速器,底盘之间布置和设计的合理也电机及控制器的通风散热.诏音隔热良好,与其他零部件最小间隙合理、拆卸方便F同时还要保证安装T艺性、有足热的刚度和强度.一般从以下几个方面进行布置考出r动、除占间隙要求工装配工艺性要求;雄脩方便性等要求:。
纯电动汽车整车控制器的构成、原理、功能说明整车控制器是电动汽车正常行驶的控制中枢,是整车控制系统的核心部件,是纯电动汽车的正常行驶、再生制动能量回收、故障诊断处理和车辆状态监视等功能的主要控制部件。
整车控制器包括硬件和软件两大组成部分,它的核心软件和程序一般由生产厂商研发,而汽车零部件供应商能够提供整车控制器硬件和底层驱动程序。
现阶段国外对纯电动汽车整车控制器的研究主要集中在以轮毂电机驱动的纯电动汽车。
对于只有一个电机的纯电动汽车通常不配备整车控制器,而是利用电机控制器进行整车控制。
国外很多大企业都能够提供成熟的整车控制器方案,如大陆、博世、德尔福等。
1整车控制器组成与原理纯电动汽车整车控制系统主要分为集中式控制和分布式控制两种方案。
集中式控制系统的基本思想是整车控制器独自完成对输入信号的采集,并根据控制策略对数据进行分析和处理,然后直接对各执行机构发出控制指令,驱动纯电动汽车的正常行驶。
集中式控制系统的优点是处理集中、响应快和成本低;缺点是电路复杂,并且不易散热。
分布式控制系统的基本思想是整车控制器采集一些驾驶员信号,同时通过CAN总线与电机控制器和电池管理系统通信,电机控制器和电池管理系统分别将各自采集的整车信号通过CAN总线传递给整车控制器。
整车控制器根据整车信息,并结合控制策略对数据进行分析和处理,电机控制器和电池管理系统收到控制指令后,根据电机和电池当前的状态信息,控制电机运转和电池放电。
分布式控制系统的优点是模块化和复杂度低;缺点是成本相对较高。
典型分布式整车控制系统示意图如下图所示,整车控制系统的顶层是整车控制器,整车控制器通过CAN总线接收电机控制器和电池管理系统的信息,并对电机控制器、电池管理系统和车载信息显示系统发送控制指令。
电机控制器和电池管理系统分别负责驱动电机和动力电池组的监控与管理,车载信息显示系统用于显示车辆当前的状态信息等。
典型分布式整车控制系统示意图下图为某公司开发的纯电动汽车整车控制器组成原理图。
电动汽车整车控制器(VCU)技术及开发流程深度剖析焉知焉知·焉能不知整车控制器(VCU)作为电动汽车上全部电⽓的运⾏平台,它的性能优劣,直接影响其他电⽓性能的发挥,是整车性能好坏的决定性因素之⼀。
1、组成1.1结构组成VCU,结构上,由⾦属壳体和⼀组PCB线路板组成。
1.2硬件组成功能上由主控芯⽚及其周边的时钟电路、复位电路、预留接⼝电路和电源模块组成最⼩系统。
在最⼩系统以外,⼀般还配备数字信号处理电路,模拟信号处理电路,频率信号处理电路,通讯接⼝电路(包括CAN通讯接⼝和RS232通讯接⼝)。
2、各电⽓与VCU之间是怎样⼯作的⼀些⽤于监测车体⾃⾝状态的信号或者车载部件中⽐较重要的开关信号、模拟信号和频率信号,由传感器直接传递给VCU,⽽不通过CAN总线。
电动汽车上的其他具有独⽴系统的电⽓,⼀般通过共⽤CAN总线的⽅式进⾏信息传递。
2.1直接传递的信号们开关信号:钥匙信号,档位信号,充电开关,制动信号等;模拟信号:加速踏板信号,制动踏板信号,电池电压信号等;频率信号,⽐如车速传感器的电磁信号。
输出的开关量,动⼒电池供电回路上的接触器和预充继电器,在⼀些车型上,由VCU负责控制。
2.2通过CAN交互的电⽓单元CAN总线上的通讯参与者地位不分主从,随时随地向总线发动信息。
信息之间的先后顺序由发出信息者的优先级确定。
优先级在通讯协议中已经做出规定,每条信息⾥都有发信者的地址编码;通讯中的信息编码,都有相应的通讯协议予以明确规定。
谁发出什么样的代码提供哪些类型的信息,主要依据是供需双⽅的约定。
2.2.1 VCU与动⼒电池系统动⼒电池是纯电动汽车动⼒的唯⼀来源。
VCU与电池管理系统(BMS)通过整车CAN总线进⾏信息交互。
动⼒电池包实时监测并上报给VCU参数包括:总电流,总电压,最⾼单体电压,最低单体电压,最⾼温度,电池包荷电状态SOC,某些系统还监测电池包健康状态SOH。
VCU发送给电池包的命令包括充电,放电和开关指令:充电,在最初的充电连接信号确认后,整车处于禁⽌⾏车状态,VCU交出控制权。
纯电动汽车整车控制器(VCU)详细介绍嘿,伙计们!今天我要给大家讲讲一个非常酷的东西——纯电动汽车整车控制器(VCU)。
别看它是个小小的东西,但它可是电动汽车的大脑,负责控制着整个车辆的运行呢!让我们一起来揭开它神秘的面纱吧!咱们来了解一下什么是VCU。
VCU是英文“Vehicle Control Unit”的缩写,翻译成中文就是“车辆控制单元”。
它是一种专门用于控制电动汽车的电子设备,可以实现对电池管理系统、电机控制系统、辅助系统等多种功能的综合控制。
有了VCU,电动汽车就可以像传统汽车一样行驶了!那么,VCU到底是怎么工作的呢?其实很简单,它就像是一个指挥家,指挥着电动汽车的各个部件协同工作。
当驾驶员踩下油门时,VCU会接收到这个信号,然后通过电池管理系统向电机控制系统发送指令,让电机产生动力;VCU还会根据车辆的速度、加速度等参数,调整能量回收系统的工作状态,确保电池的能量得到最大限度的利用。
接下来,我们再来聊聊VCU的一些重要功能。
首先就是电池管理系统。
这个系统负责监控和管理电动汽车的电池,确保电池在良好的状态下运行。
它可以实时监测电池的剩余电量、充电状态、温度等参数,并根据这些信息制定相应的充放电策略。
这样一来,不仅可以延长电池的使用寿命,还能提高电动汽车的续航里程。
其次就是电机控制系统。
这个系统负责控制电动机的转速和扭矩,从而实现对车辆的驱动。
VCU会根据驾驶员的需求和车辆的状态,向电机控制系统发送指令,让电动机产生合适的动力输出。
VCU还会对电机的工作状态进行监控和保护,防止因为过载或故障导致的损坏。
最后就是辅助系统。
这个系统包括了很多辅助功能,比如空调、音响、照明等。
VCU会根据驾驶员的需求和车辆的状态,向这些系统发送指令,实现各种功能的切换和调节。
这样一来,即使在没有发动机的情况下,电动汽车也可以享受到舒适便捷的驾驶体验。
VCU是电动汽车的核心部件之一,它的存在使得电动汽车变得更加智能、高效和环保。
国内外电动汽车整车控制器(VCU)性能指标及设计思路一、国外产品介绍(1)丰田公司整车控制器丰田公司整车控制器的原理图如下图所示:该车是后轮驱动,左后轮和右后轮分别由2个轮毂电机驱动。
其整车控制器接收驾驶员的操作信号和汽车的运动传感器信号,其中驾驶员的操作信号包括加速踏板信号、制动踏板信号、换档位置信号和转向角度信号,汽车的运动传感器信号包括横摆角速度信号、纵向加速信号、横向加速信号和4个车轮的转速信号。
整车控制器将这些信号经过控制策略计算,通过左右2组电机控制器和逆变器分别驱动左后轮和右后轮。
(2)日立公司整车控制器日立公司纯电动汽车整车控制器的原理图如下图所示。
图中电动汽车是四轮驱动结构,其中前轮由低速永磁同步电机通过差速器驱动,后轮由高速感应电机通过差速器驱动。
整车控制器的控制策略是在不同的工况下使用不同的电机驱动电动汽车,或者按照一定的扭矩分配比例,联合使用2台电机驱动电动汽车,使系统动力传动效率最大。
当电动汽车起步或爬坡时,由低速、大扭矩永磁同步电机驱动前轮。
当电动汽车高速行驶时,由高速感应电机驱动后轮。
(3)日产公司整车控制器日产聆风LEAF是5门5座纯电动轿车,搭载锂离子电池,续驶里程是160km。
采用200V家用交流电,大约需要8h可以将电池充满;快速充电需要10min,可提供其行驶50km的用电量。
日产聆风LEAF的整车控制器原理图如下图所示,它接收来自组合仪表的车速传感器和加速踏板位置传感器的电子信号,通过子控制器控制直流电压变换器DC/DC、车灯、除霜系统、空调、电机、发电机、动力电池、太阳能电池、再生制动系统。
(4)英飞凌新能源汽车VCU & HCU解决方案该控制器可兼容12V及24V两种供电环境,可用于新能源乘用车、商用车电控系统,作为整车控制器或混合动力控制器。
该控制器对新能源汽车动力链的各个环节进行管理、协调和监控,以提高整车能量利用效率,确保安全性和可靠性。
汽车研发:整车控制器(VCU )策略及开发流程!摘要:纯电动汽车整车控制系统以VCU为中心,电池、电机及充电系统为外围辅助系的一套完整的电控系统。
随着汽车纯电动汽车的发展,将来对VCU的要求会越来越高。
电动汽车资源网讯:整车控制器是电动汽车各个子系统的调控中心,协调管理整车的运行状态, 也是电动汽车的核心技术之一。
就像真正的美女是需要智慧与美貌并存,光有身材,哪怕前凸后翘,S型,xiong器逼人,也只能从肉体上感觉很诱人,可远观却无法多沟通,这就是大家常说的胸大无脑,而VCU就是汽车的大脑,能够让汽车变得智能化,更懂你,可远观也可亵玩焉!今天,漫谈君就和大家聊一聊,整车控制器(VCU )开发的方法和流程。
、VCU的作用与功能在电动汽车中,VCU是核心控制部件,它根据加速踏板位置、档位、制动踏板力等驾驶员的操作意图和蓄电池的荷电状态计算出运行所需要的电机输出转矩等参数,从而协调各个动力部件的运动,保障电动汽车的正常行驶。
此外, 可通过行车充电和制动能量的回收等实现较高的能量效率。
在完成能量和动力控制部分控制的同时,VCU还可以与智能化的车身系统一起控制车上的用电设备,以保证驾驶的及时性和安全性。
因此,VCU的设计直接影响着汽车的动力性、经济性、可靠性和其他性能。
1、VCU主要功能.接收驾®S指令,輸岀电机I区前扭矩, 实现躯动系统控制★整车能■分配及优化S理*监测和协调管理车上其他用电器★故障处理及诊断功能★系统状态仪裘显示亠*整车设备營理1)整车能量分配及优化管理;根据驾驶员的具体操作和实际工况对车辆进行管理、优化及调整,以实现优化能量供给,延长车辆使用寿命,提高车辆运行经济性。
2 )故障处理及诊断功能;对出现的异常情况进行诊断、提示和主动修复工作。
3)系统状态仪表显示;4)整车设备管理监控各设备运行状态,及时进行动态调整。
5)系统控制根据既定的操控程序对驾驶员的各项操作进行及时响应,实时与数据库进行比对,对各节点进行动态控制。
整车控制器(VCU)策略及开发流程一、VCU的作用与功能在电动汽车中,VCU是核心控制部件,它根据加速踏板位置、档位、制动踏板力等驾驶员的操作意图和蓄电池的荷电状态计算出运行所需要的电机输出转矩等参数,从而协调各个动力部件的运动,保障电动汽车的正常行驶。
此外,可通过行车充电和制动能量的回收等实现较高的能量效率。
在完成能量和动力控制部分控制的同时,VCU还可以与智能化的车身系统一起控制车上的用电设备,以保证驾驶的及时性和安全性。
因此,VCU的设计直接影响着汽车的动力性、经济性、可靠性和其他性能。
1、VCU主要功能1)整车能量分配及优化管理;根据驾驶员的具体操作和实际工况对车辆进行管理、优化及调整,以实现优化能量供给,延长车辆使用寿命,提高车辆运行经济性。
2)故障处理及诊断功能;对出现的异常情况进行诊断、提示和主动修复工作。
3)系统状态仪表显示;4)整车设备管理监控各设备运行状态,及时进行动态调整。
5)系统控制根据既定的操控程序对驾驶员的各项操作进行及时响应,实时与数据库进行比对,对各节点进行动态控制。
二、VCU的结构VCU为纯电动汽车的调度控制中心,负责与车辆其他部件进行通信,协调整车的运行。
VCU系统结构,如下图所示。
其主要包含电源电路、开关量输入/输出模块、模拟量输入模块及CAN通讯模块。
1)电源模块从车载12V蓄电池取电,开关量输入模块接收的信号主要有钥匙信号、挡位信号、制动开关信号等;2)开关量输出信号主要是控制继电器,其在不同整车系统中意义略有不同,一般情况下控制如水泵继电器及PTC继电器等;3)模拟量输入模块采集加速踏板和制动踏板开度信号及蓄电池电压信号等;4)CAN模块负责与整车其他设备通信,主要设备有电机控制器(MCU)、电池管理系统(BMS)及充电机等。
三、整车通信网络管理整车系统通过CAN通信网络将各个子控制系统连接在一起。
整车系统通讯网络结构如下图所示。
VCU起到协调管理整个通信网络的功能,是各个子设备的通信服务端。
新能源纯电动汽车整车上下电控制策略设计介绍一、前言为了提高整车高压上下电安全,准确诊断出整车动力系统的高压故障并迅速做出相应处理,本文针对纯电动汽车动力系统结构,定义了基于CAN通讯的整车控制网络。
以整车安全性为主要参考量,设计了电动汽车整车控制器上电控制策略、下电控制策略以及紧急故障模式下对高压电紧急下电和低压电处理方法,为调试整车控制器及相应的高低压设备奠定基础。
电动汽车展示二、高压控制的重要性纯电动汽车(EV)以动力蓄电池组作为唯一动力源,以驱动电机作为唯一动力驱动装置。
蓄电池工作电压高达几百伏,当发生高压电路绝缘失效或短路等故障时,会直接影响驾乘人员的生命财产以及车载用电器的安全。
因此,在设计和规划高压动力系统时应充分考虑整车和人员的电气安全性,确保车辆运行安全、驾驶人员安全和车辆运行环境安全。
整车控制器(VCU)是纯电动汽车运行的核心单元,担负着整车驱动控制、能量管理、安全保障、故障诊断和信息处理等功能,是实现纯电动汽车安全高效运行的必要保障。
纯电动汽车上下电控制策略开发设计的目的在于:在已有整车动力系统结构的前提下,通过采集钥匙及踏板等驾驶员动作信号,并通过CAN总线、电池管理系统(BMS)及电机控制器(MCU)等子系统进行通讯,来控制整车高压上电、下电安全。
同时在上下电过程中,力求准确诊断出整车动力系统的高压故障并迅速做出相应处理。
目标车型钥匙门开关设置为两挡:OFF挡、ON挡;整车挡位设置为:前进挡(D挡)、空挡(N挡)、倒挡(R挡)。
表1为各主要部件缩略语及其定义。
表2为各变量名称及说明。
表1主要部件缩略语及其定义表2各变量名称及说明三、整车上下电控制策略1、整车模式说明基于钥匙门位置设置,进行上下电控制,实现整车控制系统初始化、自检、充电状态判断等功能。
目标车型整车控制器由低压蓄电池供电,其上电下电状态由仪表板上的低压开关进行控制。
整车模式分为外接充电模式、非充电模式和紧急停机模式。
基于双MCU的纯电动汽车整车控制器硬件设计纯电动汽车整车控制器是负责控制车辆行驶、充电、能量管理等多个方面的核心控制设备。
在这个系统中,双MCU最为常见,用于处理车辆电力系统和通信控制系统的数据交换和分析。
下面,将介绍一下基于双MCU的纯电动汽车整车控制器硬件设计。
整车控制器硬件设计的核心是处理器,采用基于ARM Cortex-M3架构的主控制器STMicroelectronics STM32F103VET6。
它具有高性能、低功耗、可扩展、易开发的特点,能够满足电动汽车的实时计算、高速传输和多任务处理要求。
在整车控制器中,双MCU是必不可少的,因此采用STMicroelectronics STM32F103RET6为次控制器。
这款芯片可以支持高速CAN总线、SPI总线、串口等多种通信方式,同时还具有低功耗、可靠性和实时性等特点。
在整车控制器中,还需要使用大量传感器来获取车辆各个方面的信息,如电池电量、车速、加速度等等。
因此,为了保证传感器输入的准确性和稳定性,需要使用高质量的AD7799集成电路,该电路能够提供精度高、噪音小的模拟信号转换功能。
在高压电源方面,采用VPX3220E高压MOSFET芯片,仅需几毫安的电流就可以切换200V的高电压。
它能够提供高速开关、低导通电阻、可靠性和长寿命等优点,可以保证整车控制器的电源系统的稳定性和可靠性。
总之,基于双MCU的纯电动汽车整车控制器硬件设计需要满足高性能、低功耗、可靠性和实时性等要求,并且需要结合各个部件之间的协作,保证整车控制器可以实现安全、准确和稳定的运行。
除了处理器、传感器和高压电源,整车控制器还需要设计多个模块,包括电机驱动模块、电池管理模块、充电模块和通信模块等。
这些模块的设计和优化需要考虑到多个方面的因素,如控制逻辑、通信协议、电路板布局、电路保护等,以保证整车控制器的稳定性和可靠性。
在电机驱动模块方面,需要设计一个高精度、高效率的PWM控制电路,以调节电机的输出力矩和转速。
纯电动汽车整车控制器VCU技术要求目录1. 概述 (5)2. 术语 (5)3.1定义 (5)3.2缩略语 (5)3. 开发流程 (5)4.1VCU控制策略开发流程 (5)4.2VCU控制策略开发需求输入 (6)4.3VCU控制策略开发交付物 (6)4. VCU软件功能需求 (6)5.上下电功能需求 (7)6.1功能概述 (7)6.2功能实现描述 (7)6.2.1上电功能逻辑图 (7)6.2.2上电功能需求 (8)6.2.3下电功能逻辑图 (9)6.2.4下电功能需求 (10)6.挡位管理功能需求 (10)7.1功能概述 (10)7.2功能实现描述 (10)7.2.1功能逻辑图 (10)7.2.2功能需求 (11)7.驾驶员需求扭矩计算功能需求 (11)8.1功能概述 (11)8.2功能实现描述 (11)8.2.1功能逻辑图 (11)8.2.2功能需求 (12)8.蠕行功能需求 (14)9.1功能概述 (14)9.2功能实现描述 (14)9.2.1功能逻辑图 (14)9.2.2功能需求 (14)9.驱动扭矩控制功能需求 (15)10.1功能概述 (15)10.2功能实现描述 (15)10.2.1功能逻辑图 (15)10.2.2功能需求 (15)10.高压能量管理功能需求 (16)11.1功能概述 (16)11.2功能实现描述 (16)11.2.1功能逻辑图 (16)11.2.2功能需求 (16)11.充电管理功能需求 (17)12.1功能概述 (17)12.2功能实现描述 (17)12.2.1充电上电功能逻辑图 (17)12.2.2充电上电功能需求 (18)12.2.3充电下电功能逻辑图 (18)12.2.4充电下电功能需求 (19)12.滑行能量回收功能需求 (19)13.1功能概述 (19)13.2功能实现描述 (19)13.2.1功能逻辑图 (19)13.2.2功能需求 (20)13.制动能量回收功能需求 (21)14.1功能概述 (21)14.2功能实现描述 (21)14.2.1功能逻辑图 (21)14.2.2功能需求 (21)14.最高车速计算功能需求 (22)15.1功能概述 (22)15.2功能实现描述 (22)15.2.1功能逻辑图 (22)15.2.2功能需求 (22)15.辅助控制功能需求 (23)16.1功能概述 (23)16.2功能实现描述 (23)16.2.1功能逻辑图 (23)16.2.2功能需求 (23)16.故障诊断功能需求 (24)16.1功能概述 (24)16.2功能实现描述 (24)16.2.1功能逻辑图 (24)16.2.2功能需求 (24)1.概述该技术要求书定义了整车控制策略的技术要求,仅作为纯电动汽车策略开发技术交流的依据,同时指导自主开发整车控制策略方案制定及实施。
纯电动汽车整车控制器设计摘要:当今世界由于环境问题和能源问题日益突出,使用电动汽车已经成为了趋势,电动车行业轮毂电机的使用已经非常广泛,但是电动汽车控制器的研发和使用尚未完善,本课题设计内就是以轮毂电机为动力的电动汽车整车控制器。
本课题对纯电动汽车控制系统分析和研究,对整车控制器输入输出信号的类型和功能来明确整车控制器的设计要求及控制器的设计要求本课题首先选定MC9S08DZ60芯片为纯电动汽车控制器,使用软件Protl99SE对纯电动汽车的整车控制器的硬件进行设计。
然后结合分层设计思路和模块化设计思路,对纯电动汽车的整车控制器的软件架构、软件主程序进行构思设计,实现了纯电动汽车整车控制器各模块的功能和作用。
关键词:纯电动;Protl99SE;轮毂电机;控制器Design of vehicle controller for electric vehicleAbstract:Due to the increasingly prominent environmental problems and energy problems, the use of electric vehicles has become a trend, the use of electric vehicle hub motor is very extensive, but the development and use of electric vehicle controller is not perfect, this paper design is a wheel motor as the power of electric vehicle controller. Through the analysis and research of the control system of pure electric vehicle, combined with the type and function of the vehicle controller input and output signal, the requirements of the pure electric vehicle controller design, determine the pure electric vehicle controller design. This paper first selects mc9s08dz60 chip as pure electric vehicle controller, using software protl99se to design the hardware of the vehicle controller of pure electric vehicle. Then combined with the layered design idea and modular design idea, the software architecture and software main program of pure electric vehicle controller are designed, the function and function of each module of pure electric vehicle controller.Key words: pure electric; Protl99se; Wheel hub motors; Controller目录摘要 (I)Abstract. (II)目录...................................................................................................................................... I II 1绪论 . (1)1.1纯电动汽车发展现状 (1)1.2纯电动汽车关键技术 (2)1.3纯电动汽车的电子控制系统的研究现状 (5)1.4本文的主要工作内容 (9)2 纯电动汽车控制系统的方案设计 (10)2.1 纯电动汽车行驶工况分析 (10)2.2各工况控制策略研究 (10)2.3纯电动汽车结构特点分析 (12)2.4纯电动汽车控制系统总体设计 (14)2.5纯电动汽车控制器设计方案 (16)3 纯电动汽车整车控制器硬件设计 (19)3.1整车控制器MCU选型设计 (19)3.2最小系统设计 (19)3.2.1 供电电路 (19)3.2.2时钟电路 (20)3.3信号处理电路 (21)3.3.1开关信号处理电路 (21)3.3.2踏板信号处理电路 (21)3.3.3通讯接口电路 (22)4 纯电动汽车整车控制器软件开发 (25)4.1控制器软件架构总体设计 (25)4.2控制器底层软件开发 (27)4.2.1初始化子程序 (27)4.2.2 信号采集处理子程序 (28)4.3 通讯接口子程序 (31)参考文献 (33)致谢 (34)1 绪论1.1纯电动汽车发展现状大家都知道,当今世界能源问题和环保问题的日益突出,随之而来的就是新能源的开发和利用,新能源中电能几乎是最清洁的燃料,因为它在使用过程中几乎没有污染,现在人们的正常生活离不开汽车,燃油汽车的如果能够被取缔,那么将大大的有利于能源的节约和环境的保护,因为纯电动汽车[1]的出现时必然的。
纯电动汽车比普通燃油汽车有优点如下:1)纯电动汽车有高的利用能量率,“零”污染。
2)电动汽车有着更加合理的能量回收装置,在制动时,电能可以回收到蓄电池中,不会有燃油汽车那种怠速时仍然消耗能量的缺陷。
3)电动汽车没有燃油汽车复杂的的发动机,离合器等动力传输机构,设计简化,操作简单。
4)电动汽车的转矩输出更加迅速快捷,所以起步快,动力性能好。
5)电动汽车的结构简单,多线束、多电路,更容易实现转向操作和四驱布置。
自从1883年10月1日,科尔•本茨制造了世界上第一台汽车起,一直有许多人构思着纯电动汽车的研发和制造,但是由于当时燃油车所需的燃料简单、廉价而且使用方便,所以很快地大量推广和使用。
上世纪末,由于工业发展消耗了大量的不可再生能源,温室效应严重,生态破坏日益严重,纯电动汽车又被许多人所重视。
20世纪初,许多大的汽车企业使用许多的经费来研究和制造纯电动汽车,如福特投入生产Think city、通用投资研发的EV 1、丰田创新设计的EV Plus、本田研发生产的的EV Plus, Insight和FCX-V3,这些公司不但付出了巨大的资金来研发纯电动汽车而且完整研发一辆纯电动汽车需要消耗了很多的时间,有时候即使时间和资金全部投入了,并不一定能见到回报。
但是为了把握汽车向纯电动方向发展的趋势和引领世界的潮流,更为关键的是为节能和环保作了巨大贡献,这些都是值得的。
电动汽车包括纯电动、混合动力电动(传统转为纯电动的中间产物)和燃料电池三个分支,显而易见,由于纯电动汽车具有高的效率、零排放、低的噪声、节能等先天的优势,纯电动是趋势和潮流,纯电动汽车将是未来占领汽车市场的主力军。
业内人士认为纯电动汽车的研发过程最早是在美国等发达国家,研发过程在日本、中国等国家不断延伸和扩张。
美、德、法由于开始较前,因而纯电动汽车技术比较先进。
相比而言,我国纯电动汽车研发起步较晚,所以我国制定了许多积极的政策和制度去让人们研究开发,现在我国的纯电动汽车的研发在国内各大汽车企业如火如荼地进行,例如比亚迪[2]投资研发的秦、比亚迪唐、比亚迪宋等纯电动汽车,最值得关注的是比亚迪e6已经在国内许多大城市里充当了出租车的角色,据官方统计显示,比亚迪e6的续航里程可以达到400多公里,最大速度可达140Km/h,可见比亚迪公司研发的纯电动汽车已经达到了全球的靠前面的水平。
我国自主研发的纯电动汽车虽然没有发达国家的续航远、速度快、稳定性能高,但是我国国内的各大汽车研发机构的的研发劲头十足,国内纯电动汽车已经形成了百家争鸣、百花齐放的良好发展状态。
1.2纯电动汽车关键技术纯电动汽车是一个包括了机械、计算机、能源、电子等很多的先进科学技术的集合产品,要想实现纯电动汽车环保、节能、续航远、速度高而且稳定性能好,需要我们攻克如动力电池技术、动力电机技术以及整车控制器等许多的先进技术堡垒。
1)动力电池技术纯电动汽车要想在未来激烈的汽车行业中兴起,必须要有较大的比功率和比能量而且长得使用寿命的高效动力电池。
回顾纯电动汽车的动力电池的发展,可以按照其更新历程分为三步:一代铅酸汽车动力电池,二代碱性汽车动力电池和三代燃料动力电池[3]。
第一代铅酸动力电池的表能量高,放电率高,最重要的是生产成本低,价格便宜,所以可以在市面上大量流通和使用,特别,市面上销量最好的动力电池是阀控铅酸(VRLA)。
第二代碱性动力电池的性能比铅酸电池更好,有着更大的比能量(E)和比功率(P),最重要的是能量密度(Ed)远远超过了铅酸动力电池,碱性电池主要包括以下几类:镍氢(Ni-MH)、镍(NJ-Cd)、钠硫(Na/S), 离子(Li-ion)和锌空气(Zn/Air),总的来说,碱性电池各个方面的性能都优于铅酸电池,碱性电池在电动自行车和电池汽车上的使用都大大地增加了车的动力性能和车的续航里程,但是由于它的造价成本高,使用环境要求比较苛刻,所以并没有铅酸电池使用广泛,但是只要技术有突破时,成本降低的碱性电池的销量绝对可以超过铅酸性的。
第三代燃料电池是目前为止,世界上最先进的电池,只有在美国等少数发达国家有使用,燃料电池直接将燃烧产生的化学热能转化为热能,实现了最快速的能量的转化使用,燃料电池的比能量和比功率都远远超过了铅酸电池和碱性电池,燃料电池的转化效率也远远高出了铅酸电池和碱性电池,它的优点不仅仅于此,燃料电池还可以实现化学反应的能力转化的过程控制,这在电池技术中具有突破性的里程碑的意义,此项动力电池技术应用到电动汽车上,可以实现在需要电时燃料电池工作产生电量,在不需要电量时,燃料电池停止化学反应,燃料停止燃烧,减少不必要的能源浪费。
总体来说,燃料电池的各个方面性能都是最优的,但是优于目前的燃料电池的技术不够完善,研发仍然在攻坚阶段,并且制造成本极高,并没有得到大量推广和使用。
2) 电机及其驱动控制技术电机和驱动控制技术的先进与否直接决定了纯电动汽车的动力的优与差,一般情况下,考察一个他的动力性能的优差通常从以下几个方面入手:启动转矩、调速范围、最高转速、传动效率、制动能量回收率和加速最大转矩等。