教案 二次函数的应用(3)
- 格式:doc
- 大小:55.00 KB
- 文档页数:3
二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
九年级数学导学案班级姓名使用日期:201809 九年级数学导学案班级姓名使用日期:201809二次函数的应用之三(桥洞问题)1.会根据实际问题构建函数模型,把实际问题中的变量关系表示成二次函数关系;2.会运用二次函数的知识解决有关桥洞、隧道问题.【预习案】如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为多少米?【探究案】探究一桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A、C、B三点的抛物线,以桥面的水平线为x轴,经过抛物线的顶点C与x轴垂直的直线为y轴,建立平面直角坐标系,已知此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,FG=2米.(1)求经过A、B、C三点的抛物线的解析式.(2)求柱子AD的高度.探究二某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示.(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由.探究三一座拱桥的轮廓是抛物线型(图1),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.【训练案】1.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若CA=米,则水面的宽度DC为().A.160米B.170米C.180米D.190米第2题2.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.。
浙教版数学九年级上册2.4《二次函数的应用》教案一. 教材分析《二次函数的应用》是浙教版数学九年级上册第2.4节的内容,主要目的是让学生掌握二次函数在实际问题中的应用。
本节内容是在学生已经学习了二次函数的图象和性质的基础上进行的,通过本节内容的学习,使学生能够运用二次函数解决一些实际问题,提高他们的数学应用能力。
二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对二次函数的图象和性质有一定的了解。
但是,将二次函数应用于实际问题中,解决实际问题,对他们来说还是一个新的领域。
因此,在教学过程中,教师需要引导学生将已知的二次函数知识与实际问题相结合,通过解决实际问题,提高他们的数学应用能力。
三. 教学目标1.知识与技能:使学生能够理解二次函数在实际问题中的应用,能够将实际问题转化为二次函数问题,并通过二次函数解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力,提高他们的数学素养。
3.情感态度与价值观:使学生能够体验到数学在生活中的应用,增强他们对数学的兴趣和信心。
四. 教学重难点1.重点:使学生能够理解二次函数在实际问题中的应用。
2.难点:如何将实际问题转化为二次函数问题,并通过二次函数解决实际问题。
五. 教学方法采用问题驱动的教学法,通过解决实际问题,引导学生运用二次函数知识,提高他们的数学应用能力。
同时,采用小组合作学习的方式,培养学生的合作精神和团队意识。
六. 教学准备1.教师准备:教师需要准备一些实际问题,用于引导学生运用二次函数知识解决实际问题。
2.学生准备:学生需要复习二次函数的基本知识,对二次函数的图象和性质有一定的了解。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何利用二次函数知识解决这些问题。
2.呈现(10分钟)教师呈现一些实际问题,并与学生一起分析这些问题,将实际问题转化为二次函数问题。
3.操练(10分钟)教师引导学生运用二次函数知识解决呈现的实际问题,学生进行练习,巩固所学知识。
二次函数的应用教学设计二次函数的应用教学设计9篇教学设计需要注重教学环节的衔接,确保教学环节之间的内在逻辑性和衔接性。
需要注重教学方法的创新与多样化,充分利用现代信息技术及各种教学资源,运用多种教学策略。
现在随着小编一起往下看看二次函数的应用教学设计,希望你喜欢。
二次函数的应用教学设计(篇1)教学目标(一)教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、(二)能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神、2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想、3、通过学生共同观察和讨论,培养大家的合作交流意识、(三)情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性、2、具有初步的创新精神和实践能力、教学重点1、体会方程与函数之间的联系、2、理解何时方程有两个不等的实根,两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、教学难点1、探索方程与函数之间的联系的过程、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系、教学方法讨论探索法、教具准备投影片二张第一张:(记作§2、8、1A)第二张:(记作§2、8、1B)教学过程Ⅰ、创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系、当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解、二次函数的应用教学设计(篇2)教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根、2、进一步发展估算能力、(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验、2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想、(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力、教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、能够利用二次函数的图象求一元二次方程的近似根、教学难点利用二次函数的图象求一元二次方程的近似根、教学方法学生合作交流学习法、教具准备投影片三张第一张:(记作§2、8、2A)第二张:(记作§2、8、2B)第三张:(记作§2、8、2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可、但是在图象上我们很难准确地求出方程的解,所以要进行估算、本节课我们将学习利用二次函数的图象估计一元二次方程的根、二次函数的应用教学设计(篇3)一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
Prevention is the best way to solve a crisis.精品模板助您成功!(页眉可删)二次函数教案(通用3篇)二次函数教案1一、教材分析1、教材的地位及作用函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。
本节内容的教学,在函数的教学中有着承上启下的作用。
它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。
2、教学目标(1)掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。
(2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。
(3)让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
3、教学的重、难点重点:二次函数的概念和解析式。
难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
4、学情分析①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。
②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与能力。
③初三学生程度参差不齐,两极分化已形成。
二、教法学法分析1、教法(关键词:情境、探究、分层)基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法为主进行教学。
让学生在开放的情境中,在教师的引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。
教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。
同时考虑到学生的.个体差异,在教学的各个环节中进行分层施教。
2、学法(关键词:类比、自主、合作)根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。
二次函数的应用【课时安排】2课时【第一课时】【教学目标】(一)教学知识点。
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值。
(二)能力训练要求。
1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力。
2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力。
(三)情感与价值观要求。
1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值。
2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格。
3.进一步体会数学与人类社会的密切联系,了解数学的价值。
增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力。
【教学重点】1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值。
2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题。
【教学难点】能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题。
【教学方法】教师指导学生自学法。
【教学过程】一、创设问题情境,引入新课师:本节课我们来学习用二次函数来解决实际问题。
解决这类问题的关键是要读懂题目,明确要解决的是什么,分析问题中各个量之间的关系,把问题表示为数学的形式,在此基础上,利用我们所学过的数学知识,就可以一步步地得到问题的解。
本节课我们将继续利用二次函数解决最大面积问题。
二、新课讲解(一)例题讲解展示例题:1.如下图,在一个直角三角形的内部作一个长方形ABCD 。
其中AB 和AD 分别在两直角边上。
(1)设长方形的一边AB =x m ,那么AD 边的长度如何表示?(2)设长方形的面积为y m 2当x 取何值时,y 的值最大?最大值是多少?2.师:分析:(1)要求AD 边的长度,即求BC 边的长度,而BC 是△EBC 中的一边,因此可以用三角形相似求出BC .由△EBC ∽△EAF ,得304040BC x AF BC EA EB =-=即所以AD=BC=43(40-x )。
二次函数的应用(3)
教学目标:(1)会运用一元二次方程求二次函数的图象与x 轴或平行于x 轴的直线的交点坐标,并用来解决相关的实际问题。
(2)会用二次函数的图象求一元二次方程的解或近似解。
(3)进一步体验在问题解决的过程中函数与方程两种数学模式经常需要相互转换。
教学重点和难点:
重点:问题解决过程中二次函数与一元二次方程两种数学模型的转换。
难点:例4涉及较多的“科学”知识,解题思路不易形成,是本节教学的难点。
教学过程:
一、复习引入:
1.利用函数解决实际问题的基本思想方法?解题步骤?
2.几个物理问题:
(1) 直线等加速运动
我们知道,在匀速直线运动中,物体运动的距离等于速度与时间的乘积,用字母表示为S=vt,而在直线等加速运动(即通常所说的加速度)中,速度的数值是时刻在改变的,我们仍用S表示距离(米),用v0表示初始速度(米/秒),用t表示时间(秒),用a表示每秒增加的速度(米/秒)。
那么直线等加速运动位移的公式是:
S=v0t+12
at2 就是说,再出是速度和每秒增加的速度一定时,距离是时间的函数,但不再是正比例函数,而是二次函数。
我们来看一个例子:v0=1米/秒,a=1米/秒,下面我们列表看一下S和t的关
S ≥0。
下面我们来看看它的图象:
(2) 自由落体位移
我们知道,自由落体位移是直线等加速运动的特殊情况,它的初始速度为0,而每秒增加的速度为9.8米/秒,我们用g表示,但这个g不是9.8牛顿/千克。
自由落体位移的公式为:S=12
gt2 (3) 动能 t
现在我们来看另一方面的问题。
我们知道,物体在运动中具有的能量叫做动能,动能与物体的质量和速度有关。
比如说,以个人走过来不小心撞上你,或许没什么,但如果他是跑步时撞上你,说不定会倒退几步,而假如你站在百米终点线上,想不被撞倒都不容易。
这是因为对方具有的动能随速度的增大而增大。
我们用E表示物体具有的动能(焦耳),m表示物体的质量(千克),用v表示物体的速度
(米/秒),那么计算物体动能的公式就是:E=12
mv2
区别。
通过上面几个问题的研究,我们认为二次函数在物理方面的实际应用中的特点,在于物理学上对取值范围的要求大部分都是要求该数值大于等于0,所以图象大部分是二次函数图象的一半,除原点外,图象都在第一象限。
还有,物理学上用到的公式,一般很少有常数项。
现在我们反过来研究:物体运动某一路程或物体自由下落到某一高度所需的时间?
二、例题讲评
例4:一个球从地面上竖直向上弹起时的速度为10m/s ,经过t(s)时求的高度为h(m)。
已
知物体竖直上抛运动中,h =v 0t -12
gt 2(v 0表示物体运动上弹开始时的速度,g 表示重力系数,取g =10m/s 2
)。
问球从弹起至回到地面需多少时间?经多少时间球的高度达到3.75m?
分析:根据已知条件,易求出函数解析式和画出函数图象。
从图象可以看到图象与x 轴交点横坐标0和2分别就是球从地面弹起后回到地面的时间,此时h =0,所以也是一元二
次方程10t -5t 2=0的两个根。
这两个时间差即为所求。
同样,我们只要取h =3.75m ,的一元二次方程10t -5t 2=3.75,求出它的根,就得到
球达到3.75m 高度时所经过的时间。
结论:从上例我们看到,可以利用解一元二次方程求二次函数的图象与横轴(或平行于横轴的直线)的交点坐标。
反过来,也可以利用二次函数的图象求一元二次方程的解。
例5利用二次函数的图象求方程x 2+x -1=0的近似解。
分析:设y =x 2+x -1,则方程的解就是该函数图象与x 轴交点的横坐标。
可以画出草
图,求出近似解。
结论:我们知道,二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴的交点的横坐标x 1,x 2
就是一元二次方程ax 2+bx +c =0(a ≠0)的两个根。
因此我们可以通过解方程ax 2+bx +c =0
来求抛物线y =ax 2+bx +c 与x 轴交点的坐标;反过来,也可以由y =ax 2+bx +c 的图象来
求一元二次方程ax 2+bx +c =0的解。
两种方法:上述是一种方法;也可以求抛物线y =ax 2与直线y =-bx -c 的交点横坐标.
练习:P50课内练习、探究活动
补充练习:
1.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件)。
在跳某个规定动
作时,正常情况下,该运动员在空中的最高处距水面1023
米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。
(1)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)
中的抛物线,且运动员在空中调整好人水姿势时,距池边
的水平距离为335
米,问此次跳水会不会失误?并通过计算说明理由
分析:挖掘已知条件,由已知条件和图形可以知道抛物线
过(0,0)(2,-10),顶点的纵坐标为23。
解:(1)如图,在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=ax 2+bx+c ,由题意知,O 、B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23。
∴ ∴
∵抛物线对称轴在y 轴右侧,∴-b 2a
>0, 又∵抛物线开口向下,∴a<0, b>0, ∴a=-256,b=103
,c=0 ∴抛物线的解析式为:y=-256x 2+103
x (2)当运动员在空中距池边的水平距离为335时,即x=335-2=85
时, y=(-256)×(85)2+103×85=-163, ∴此时运动员距水面高为:10-163=143
<5, 因此,此次试跳会出现失误。
2(2006年宁波课改区).利用图象解一元二次方程x 2-2x -1=0时,我们采用的一种方法是:在直角坐标系中画出抛物线y =x 2和直线y =2x +1,两图象交点的横坐标就是该方程的解。
(1)请再给出一种利用图象求方程x 2-2x -1=0的解的方法。
(2)已知函数y =x 3的图象,求方程x 3-x -2=0的解。
(结果保留2个有效数字)。