教案 二次函数的应用(3)
- 格式:doc
- 大小:55.00 KB
- 文档页数:3
二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
九年级数学导学案班级姓名使用日期:201809 九年级数学导学案班级姓名使用日期:201809二次函数的应用之三(桥洞问题)1.会根据实际问题构建函数模型,把实际问题中的变量关系表示成二次函数关系;2.会运用二次函数的知识解决有关桥洞、隧道问题.【预习案】如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为多少米?【探究案】探究一桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A、C、B三点的抛物线,以桥面的水平线为x轴,经过抛物线的顶点C与x轴垂直的直线为y轴,建立平面直角坐标系,已知此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,FG=2米.(1)求经过A、B、C三点的抛物线的解析式.(2)求柱子AD的高度.探究二某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示.(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由.探究三一座拱桥的轮廓是抛物线型(图1),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.【训练案】1.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若CA=米,则水面的宽度DC为().A.160米B.170米C.180米D.190米第2题2.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.。
浙教版数学九年级上册2.4《二次函数的应用》教案一. 教材分析《二次函数的应用》是浙教版数学九年级上册第2.4节的内容,主要目的是让学生掌握二次函数在实际问题中的应用。
本节内容是在学生已经学习了二次函数的图象和性质的基础上进行的,通过本节内容的学习,使学生能够运用二次函数解决一些实际问题,提高他们的数学应用能力。
二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对二次函数的图象和性质有一定的了解。
但是,将二次函数应用于实际问题中,解决实际问题,对他们来说还是一个新的领域。
因此,在教学过程中,教师需要引导学生将已知的二次函数知识与实际问题相结合,通过解决实际问题,提高他们的数学应用能力。
三. 教学目标1.知识与技能:使学生能够理解二次函数在实际问题中的应用,能够将实际问题转化为二次函数问题,并通过二次函数解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力,提高他们的数学素养。
3.情感态度与价值观:使学生能够体验到数学在生活中的应用,增强他们对数学的兴趣和信心。
四. 教学重难点1.重点:使学生能够理解二次函数在实际问题中的应用。
2.难点:如何将实际问题转化为二次函数问题,并通过二次函数解决实际问题。
五. 教学方法采用问题驱动的教学法,通过解决实际问题,引导学生运用二次函数知识,提高他们的数学应用能力。
同时,采用小组合作学习的方式,培养学生的合作精神和团队意识。
六. 教学准备1.教师准备:教师需要准备一些实际问题,用于引导学生运用二次函数知识解决实际问题。
2.学生准备:学生需要复习二次函数的基本知识,对二次函数的图象和性质有一定的了解。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何利用二次函数知识解决这些问题。
2.呈现(10分钟)教师呈现一些实际问题,并与学生一起分析这些问题,将实际问题转化为二次函数问题。
3.操练(10分钟)教师引导学生运用二次函数知识解决呈现的实际问题,学生进行练习,巩固所学知识。
二次函数的应用教学设计二次函数的应用教学设计9篇教学设计需要注重教学环节的衔接,确保教学环节之间的内在逻辑性和衔接性。
需要注重教学方法的创新与多样化,充分利用现代信息技术及各种教学资源,运用多种教学策略。
现在随着小编一起往下看看二次函数的应用教学设计,希望你喜欢。
二次函数的应用教学设计(篇1)教学目标(一)教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、(二)能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神、2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想、3、通过学生共同观察和讨论,培养大家的合作交流意识、(三)情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性、2、具有初步的创新精神和实践能力、教学重点1、体会方程与函数之间的联系、2、理解何时方程有两个不等的实根,两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、教学难点1、探索方程与函数之间的联系的过程、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系、教学方法讨论探索法、教具准备投影片二张第一张:(记作§2、8、1A)第二张:(记作§2、8、1B)教学过程Ⅰ、创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系、当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解、二次函数的应用教学设计(篇2)教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根、2、进一步发展估算能力、(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验、2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想、(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力、教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、能够利用二次函数的图象求一元二次方程的近似根、教学难点利用二次函数的图象求一元二次方程的近似根、教学方法学生合作交流学习法、教具准备投影片三张第一张:(记作§2、8、2A)第二张:(记作§2、8、2B)第三张:(记作§2、8、2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可、但是在图象上我们很难准确地求出方程的解,所以要进行估算、本节课我们将学习利用二次函数的图象估计一元二次方程的根、二次函数的应用教学设计(篇3)一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
Prevention is the best way to solve a crisis.精品模板助您成功!(页眉可删)二次函数教案(通用3篇)二次函数教案1一、教材分析1、教材的地位及作用函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。
本节内容的教学,在函数的教学中有着承上启下的作用。
它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。
2、教学目标(1)掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。
(2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。
(3)让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
3、教学的重、难点重点:二次函数的概念和解析式。
难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
4、学情分析①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。
②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与能力。
③初三学生程度参差不齐,两极分化已形成。
二、教法学法分析1、教法(关键词:情境、探究、分层)基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法为主进行教学。
让学生在开放的情境中,在教师的引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。
教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。
同时考虑到学生的.个体差异,在教学的各个环节中进行分层施教。
2、学法(关键词:类比、自主、合作)根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。
二次函数的应用【课时安排】2课时【第一课时】【教学目标】(一)教学知识点。
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值。
(二)能力训练要求。
1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力。
2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力。
(三)情感与价值观要求。
1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值。
2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格。
3.进一步体会数学与人类社会的密切联系,了解数学的价值。
增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力。
【教学重点】1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值。
2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题。
【教学难点】能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题。
【教学方法】教师指导学生自学法。
【教学过程】一、创设问题情境,引入新课师:本节课我们来学习用二次函数来解决实际问题。
解决这类问题的关键是要读懂题目,明确要解决的是什么,分析问题中各个量之间的关系,把问题表示为数学的形式,在此基础上,利用我们所学过的数学知识,就可以一步步地得到问题的解。
本节课我们将继续利用二次函数解决最大面积问题。
二、新课讲解(一)例题讲解展示例题:1.如下图,在一个直角三角形的内部作一个长方形ABCD 。
其中AB 和AD 分别在两直角边上。
(1)设长方形的一边AB =x m ,那么AD 边的长度如何表示?(2)设长方形的面积为y m 2当x 取何值时,y 的值最大?最大值是多少?2.师:分析:(1)要求AD 边的长度,即求BC 边的长度,而BC 是△EBC 中的一边,因此可以用三角形相似求出BC .由△EBC ∽△EAF ,得304040BC x AF BC EA EB =-=即所以AD=BC=43(40-x )。
《二次函数的应用》教学设计一、教学背景分析:1.教学内容分析:二次函数的知识是七到九年级数学学习的重要内容之一,它的应用是本章的教学重点也是难点。
因为它是从生活实际问题中抽象出的数学知识,又是在解决实际问题时广泛应用的数学工具,因此这部分的教学内容具有重要意义;同时学好二次函数的应用,可又为高中进一步学习各类初等函数作好准备。
而经历从实际问题情景入手,抽象出解决问题的数学模型和相关知识的过程中不仅可以让学生体会数学的价值和建模的意义,更能提高学生应用数学知识解决问题的意识。
2.学生情况分析:本节课的授课对象是九年级的学生。
在此之前,学生已经掌握了求二次函数解析式的方法并理解图象上的点和图象的关系,并且学习了一元一次方程、一元一次不等式、一元二次方程、一次函数的应用,以及初步的二次函数的应用,经历了多次从实际问题抽象出数学知识再运用相关知识解决实际问题的过程;因此他们有解决简单实际问题的基础知识和基本能力。
但是,由于函数知识的抽象性,多数学生在学习时应用函数的意识并不强;同时,他们从实际问题中抽象出数学问题的能力以及利用已有的数学知识去解决的能力也是比较弱的。
二、教学重点:建立适当的坐标系解决实际问题.三、教学难点:正确理解实际问题中的量与坐标系中的点的对应关系.四、教学目标:1.能把实际问题归结为数学知识来解决,并能运用二次函数的知识解决实际问题.2.经历在具体情境中抽象出数学知识的过程,体验解决问题方法的多样性,体会建模思想,渗透转化思想、数形结合思想,提高数学知识的应用意识.3.在运用数学知识解决问题的过程中,体会数学的价值、感受数学的简捷美,并勇于表达自己的看法.五、教学方式:引导发现、合作探究六、教学手段:多媒体、学案七、教学过程:教学环节师生活动设计意图一、情境引入教师用多媒体展示颐和园图片:同学们知道这是哪儿吗?颐和园是目前中国最大、现存最完整的皇家园林。
在颐和园的湖区景点中,有一座非常著名的桥就是——十七孔桥,它是乾隆年间修建的,全长150米,宽8米,全长150米,宽8米;因有十七个桥洞而得名,是圆内最大的一座石桥。
北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。
这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。
但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。
因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。
四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。
如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。
请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。
例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。
3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。
例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。
4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。
二次函数的应用教学教案第一章:二次函数的图像与性质1.1 教学目标了解二次函数的图像特征,如开口方向、顶点坐标等。
掌握二次函数的增减性和对称性。
能够分析实际问题中的二次函数图像和性质。
1.2 教学内容二次函数的标准形式:y = ax^2 + bx + c二次函数的图像:开口方向、顶点坐标、对称轴二次函数的增减性:a的正负与开口方向的关系二次函数的对称性:对称轴和顶点的性质1.3 教学活动引入二次函数图像的实例,让学生观察和描述。
引导学生通过变换二次函数的系数来分析开口方向、顶点坐标等。
运用实际问题,让学生应用二次函数的增减性和对称性解决问题。
1.4 教学资源二次函数图像的示例图片实际问题情境的案例1.5 教学评估通过练习题让学生绘制二次函数的图像,并分析其性质。
提供实际问题,让学生应用二次函数的性质解决问题,并进行评估。
第二章:二次函数的顶点公式2.1 教学目标掌握二次函数的顶点公式:y = a(x h)^2 + k能够通过顶点公式求解二次函数的顶点和对称轴。
2.2 教学内容二次函数的顶点公式及其意义顶点公式与标准形式的关系通过顶点公式求解二次函数的顶点和对称轴2.3 教学活动引导学生通过实际问题情境,发现二次函数的顶点公式。
解释顶点公式与标准形式的关系,并引导学生如何使用。
通过练习题,让学生应用顶点公式求解二次函数的顶点和对称轴。
2.4 教学资源实际问题情境的案例二次函数的顶点公式的示例图片2.5 教学评估提供练习题,让学生应用顶点公式求解二次函数的顶点和对称轴,并进行评估。
第三章:二次函数的根与解析式3.1 教学目标了解二次函数的根与解析式的关系。
能够通过解析式求解二次函数的根。
3.2 教学内容二次函数的根的定义和性质二次函数的解析式与根的关系通过解析式求解二次函数的根3.3 教学活动引入二次函数的根的概念,并通过实际例子解释其性质。
引导学生通过解析式来求解二次函数的根。
提供练习题,让学生应用解析式求解二次函数的根。
2024北师大版数学九年级下册2.4.2《二次函数的应用》教案一. 教材分析《二次函数的应用》是北师大版数学九年级下册第2章《二次函数》的第4节内容。
本节课主要让学生掌握二次函数在实际生活中的应用,培养学生的实际问题解决能力。
教材通过生活实例引入二次函数的应用,使学生感受到数学与生活的紧密联系。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有了初步了解。
但学生在应用二次函数解决实际问题时,往往会因为不能很好地将实际问题转化为数学模型而感到困难。
因此,在教学过程中,教师需要引导学生正确地将实际问题转化为二次函数模型,并运用二次函数的知识解决问题。
三. 教学目标1.让学生掌握二次函数在实际生活中的应用。
2.培养学生将实际问题转化为数学模型并解决的能力。
3.提高学生对数学与生活紧密联系的认识。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:将实际问题转化为二次函数模型,并运用二次函数的知识解决问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、合作交流,提高学生解决实际问题的能力。
六. 教学准备1.准备相关的生活实例和案例分析。
2.准备教学课件和板书设计。
七. 教学过程1.导入(5分钟)通过一个生活实例引入二次函数的应用,让学生感受到数学与生活的紧密联系。
例如,假设某商场举行打折活动,商品的原价为100元,打折力度为x(0≤x≤1),求打折后的价格。
2.呈现(10分钟)呈现教材中的案例分析,引导学生将实际问题转化为二次函数模型。
例如,某工厂生产一批产品,生产成本为c元,生产数量为x(x≥0),求总成本。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,尝试将其转化为二次函数模型,并运用二次函数的知识解决问题。
教师巡回指导,为学生提供帮助。
4.巩固(10分钟)选取几组学生解决的实际问题,让学生分享自己的解题过程和心得。
B A O二次函数应用导学案一、情景创设例 1 如图所示,桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O 恰在水面中心,OA=1.25m.由柱子顶端A 处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA 距离为1m 处达到距水面最大高度2.25m.(1)如果不计其它因素,那么水池的半径至少要多少m,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少m(精确到0.1m)?例 2 一场篮球赛中,球员甲跳起投篮如图所示,已知球出手时离地面920m ,与篮筐中心的水平距离是7m,当球运行的水平距离是4m 时,达到最大高度4m 。
设篮球运行的路线为抛物线,篮筐距地面3m 。
⑴问此球能否投中?⑵此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m ,他如何做才能盖帽成功?巩固练习1、如图是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下。
建立如图所示的坐标系,如果喷头所在处A (0,1.25),水流路线最高处B (1,2.25),则该抛物线的表达式为 。
如果不考虑其他因素,那么水池的半径至少要____米,才能使喷出的水流不致落到池外。
2、小明是学校田径队的运动员,根据测试资料分析,他掷铅球的出手高度(铅球脱手时离地面的高度)为2m 。
如果出手后铅球在空中飞行的水平距离x(m)与高度y (m )之间的关系为二次函数y=a(x -4)2+3,那么小明掷铅球的出手点与铅球落地点之间的水平距离是多少(精确到0.1m )?六、课堂作业1、在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛出,在不计空阻力的情况下,其上升高度s(m)与抛出时间t(s)满足s= v 0t -21gt 2(其中g 是常数,通常取10m/s 2),若v 0=10m/s ,则该物体在运动至最高点时距离地面 m.2、如图所示,小明在今年的校运动会跳远比赛中跳出院满意的成绩,函数h=3.51-4.9t 2+0.5(t 的单位:s ,h 的单位:m)可以描述他跳远时重心高度的变化,则他起跳后到重心最高所用的时间大约是A .0.71sB .0.70sC .0.63sD .0.6s3、某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个装饰柱OA ,O恰在水面中心,柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,形状如图①。
二次函数的应用(3)
教学目标:(1)会运用一元二次方程求二次函数的图象与x 轴或平行于x 轴的直线的交点坐标,并用来解决相关的实际问题。
(2)会用二次函数的图象求一元二次方程的解或近似解。
(3)进一步体验在问题解决的过程中函数与方程两种数学模式经常需要相互转换。
教学重点和难点:
重点:问题解决过程中二次函数与一元二次方程两种数学模型的转换。
难点:例4涉及较多的“科学”知识,解题思路不易形成,是本节教学的难点。
教学过程:
一、复习引入:
1.利用函数解决实际问题的基本思想方法?解题步骤?
2.几个物理问题:
(1) 直线等加速运动
我们知道,在匀速直线运动中,物体运动的距离等于速度与时间的乘积,用字母表示为S=vt,而在直线等加速运动(即通常所说的加速度)中,速度的数值是时刻在改变的,我们仍用S表示距离(米),用v0表示初始速度(米/秒),用t表示时间(秒),用a表示每秒增加的速度(米/秒)。
那么直线等加速运动位移的公式是:
S=v0t+12
at2 就是说,再出是速度和每秒增加的速度一定时,距离是时间的函数,但不再是正比例函数,而是二次函数。
我们来看一个例子:v0=1米/秒,a=1米/秒,下面我们列表看一下S和t的关
S ≥0。
下面我们来看看它的图象:
(2) 自由落体位移
我们知道,自由落体位移是直线等加速运动的特殊情况,它的初始速度为0,而每秒增加的速度为9.8米/秒,我们用g表示,但这个g不是9.8牛顿/千克。
自由落体位移的公式为:S=12
gt2 (3) 动能 t
现在我们来看另一方面的问题。
我们知道,物体在运动中具有的能量叫做动能,动能与物体的质量和速度有关。
比如说,以个人走过来不小心撞上你,或许没什么,但如果他是跑步时撞上你,说不定会倒退几步,而假如你站在百米终点线上,想不被撞倒都不容易。
这是因为对方具有的动能随速度的增大而增大。
我们用E表示物体具有的动能(焦耳),m表示物体的质量(千克),用v表示物体的速度
(米/秒),那么计算物体动能的公式就是:E=12
mv2
区别。
通过上面几个问题的研究,我们认为二次函数在物理方面的实际应用中的特点,在于物理学上对取值范围的要求大部分都是要求该数值大于等于0,所以图象大部分是二次函数图象的一半,除原点外,图象都在第一象限。
还有,物理学上用到的公式,一般很少有常数项。
现在我们反过来研究:物体运动某一路程或物体自由下落到某一高度所需的时间?
二、例题讲评
例4:一个球从地面上竖直向上弹起时的速度为10m/s ,经过t(s)时求的高度为h(m)。
已
知物体竖直上抛运动中,h =v 0t -12
gt 2(v 0表示物体运动上弹开始时的速度,g 表示重力系数,取g =10m/s 2
)。
问球从弹起至回到地面需多少时间?经多少时间球的高度达到3.75m?
分析:根据已知条件,易求出函数解析式和画出函数图象。
从图象可以看到图象与x 轴交点横坐标0和2分别就是球从地面弹起后回到地面的时间,此时h =0,所以也是一元二
次方程10t -5t 2=0的两个根。
这两个时间差即为所求。
同样,我们只要取h =3.75m ,的一元二次方程10t -5t 2=3.75,求出它的根,就得到
球达到3.75m 高度时所经过的时间。
结论:从上例我们看到,可以利用解一元二次方程求二次函数的图象与横轴(或平行于横轴的直线)的交点坐标。
反过来,也可以利用二次函数的图象求一元二次方程的解。
例5利用二次函数的图象求方程x 2+x -1=0的近似解。
分析:设y =x 2+x -1,则方程的解就是该函数图象与x 轴交点的横坐标。
可以画出草
图,求出近似解。
结论:我们知道,二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴的交点的横坐标x 1,x 2
就是一元二次方程ax 2+bx +c =0(a ≠0)的两个根。
因此我们可以通过解方程ax 2+bx +c =0
来求抛物线y =ax 2+bx +c 与x 轴交点的坐标;反过来,也可以由y =ax 2+bx +c 的图象来
求一元二次方程ax 2+bx +c =0的解。
两种方法:上述是一种方法;也可以求抛物线y =ax 2与直线y =-bx -c 的交点横坐标.
练习:P50课内练习、探究活动
补充练习:
1.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件)。
在跳某个规定动
作时,正常情况下,该运动员在空中的最高处距水面1023
米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。
(1)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)
中的抛物线,且运动员在空中调整好人水姿势时,距池边
的水平距离为335
米,问此次跳水会不会失误?并通过计算说明理由
分析:挖掘已知条件,由已知条件和图形可以知道抛物线
过(0,0)(2,-10),顶点的纵坐标为23。
解:(1)如图,在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=ax 2+bx+c ,由题意知,O 、B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23。
∴ ∴
∵抛物线对称轴在y 轴右侧,∴-b 2a
>0, 又∵抛物线开口向下,∴a<0, b>0, ∴a=-256,b=103
,c=0 ∴抛物线的解析式为:y=-256x 2+103
x (2)当运动员在空中距池边的水平距离为335时,即x=335-2=85
时, y=(-256)×(85)2+103×85=-163, ∴此时运动员距水面高为:10-163=143
<5, 因此,此次试跳会出现失误。
2(2006年宁波课改区).利用图象解一元二次方程x 2-2x -1=0时,我们采用的一种方法是:在直角坐标系中画出抛物线y =x 2和直线y =2x +1,两图象交点的横坐标就是该方程的解。
(1)请再给出一种利用图象求方程x 2-2x -1=0的解的方法。
(2)已知函数y =x 3的图象,求方程x 3-x -2=0的解。
(结果保留2个有效数字)。