空间几何体的表面积和体积经典例题教师讲义打印一份
- 格式:doc
- 大小:2.14 MB
- 文档页数:18
【思维导图】 表面积与体积旋转体多面体考点24:空间几何体的表面积和体积名称他面枳(*) 全面积(S.) 体积(,)枝 柱棱柱 汽戳面周长X ,X •…・口 •/直棱柱 ch检傩 梭隹 各便面职之和沁•卜正枝锥 32粳台粳什 各例面面积之和 ,坳一%;A (S —正校台:(…川】中s 表示面机.,"分别&示上、下虱曲网呆,h h z 泉示a 高,।泉示例幢长.名称 圆柱 阚锥 国台球5副 2E xris 金 2zr(/+r) m. + rjV /h (即+J)3* + T)3分割求和法 不规则的题型分割成规则图形再进行体积求和等体积法 又名换顶点,一般多用于求三棱钳的体积或者点到面的距禺体积常见方法正四面体补成正方体/对枝相等的三棱钱、三条侧棱相互垂直的三棱卷补成长方体 补形法J---------------- - -------------- —二^工三棱镇补成三棱柱或平行六面体台体补成椎体【常见考法】考法一:体积1.(等体积法之换顶点)如图,在四棱锥P —ABCD中,底面48CD是平行四边形,AD = BD = ^AB = 2,2平而R4OL底面ABC。
,且PA = PD = 0, E,尸分别为PC, 8。
的中点.(1)求证:环〃平面A4O:(2)求证:平面24。
_1_平面尸30:(3)求三棱锥4一28的体积.2【答案】(D证明见解析(2)证明见解析(3〉j【解析】(1)如图,连接AC.因为底而A8CD是平行四边形,旦尸是30的中点,所以厂也是AC的中点.又因E是尸C的中点,所以瓦7/A4.因为P4u平而PAO, EFC平面PAO,所以七尸〃平而PAQ(2)在中,因为AO = 8O =走A8 = 2, 2所以4。
2+3。
2=8 = 48'则BDLAD.又因为侧而皿JJL底而ABCD,父线为AD,而BDu平面ABCD,所以8。
L平面PAD.因为u平而尸3D,所以平面24。
第1讲 空间几何体【要点提炼】考点一 表面积与体积1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr(r +l)(r 为底面半径,l 为母线长).(2)S 圆锥侧=πrl ,S 圆锥表=πr(r +l)(r 为底面半径,l 为母线长).(3)S 球表=4πR 2(R 为球的半径).2.空间几何体的体积公式V 柱=Sh(S 为底面面积,h 为高);V 锥=13Sh(S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径). 【热点突破】【典例】1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.【答案】 402π【解析】 因为母线SA 与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直角三角形.设底面圆的半径为r ,则母线长l =2r.在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158. 因为△SAB 的面积为515,即12SA ·SBsin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.【答案】 233 【解析】 如图,取BC 的中点O ,连接AO.∵正三棱柱ABC -A 1B 1C 1的各棱长均为2,∴AC =2,OC =1,则AO = 3.∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3.又11BB C S =12×2×2=2, ∴11D BB C V =13×2×3=233. 易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算).(2)一些不规则几何体的体积不会采用分割法或补形思想转化求解.(3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.【拓展训练】1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π【答案】 B【解析】 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.【答案】 327 【解析】 设CD =DE =x(0<x<1),则四边形ABDE 的面积S =12(1+x)(1-x)=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝ ⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 【要点提炼】考点二 多面体与球解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.【典例】2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________.【答案】 64π【解析】 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上,即球心就是△PAB 的外心,根据正弦定理AB sin ∠APB=2R ,解得R =4, 所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【答案】 23π 【解析】 圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π. 规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心.(3)多面体的内切球可利用等积法求半径.【拓展训练】2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】 C【解析】 如图所示,设球O 的半径为R ,因为∠AOB =90°,所以S △AOB =12R 2,因为V O -ABC =V C -AOB ,而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36, 故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.【答案】 20π【解析】 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3,∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1,则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21, 可得PA 2=R 21-r 21=102,∴PA =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10,∴r 2=102,∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题训练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形【答案】 A【解析】 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12 【答案】 C【解析】 设正四棱锥的底面正方形的边长为a ,高为h ,侧面三角形底边上的高(斜高)为h ′,则由已知得h 2=12ah ′. 如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22, ∴h ′2=12ah ′+14a 2, ∴⎝ ⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( ) A.12 B.13 C.14 D.18【答案】 C【解析】 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形,设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元【答案】 B【解析】 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】 B【解析】 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h(h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B.4π3 C.5π3 D .2π 【答案】 C【解析】 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3. 7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】 A【解析】 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a.由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3 B .3π C.4π3 D .8π【答案】 A【解析】 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3, ∴2r =AB sin ∠ACB =112=2, 即O 1A =1,O 1O =12AA 1=3, ∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A. 9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27 C .81πD .128π【答案】 B 【解析】 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h(0<h<5),底面半径为r(0<r<5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h<5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h<53时,V ′>0,V 单调递增;当53<h<5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝ ⎛⎭⎪⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( )A.36B.12C.13D.32【答案】 C【解析】 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O ,∵球O 的半径为1, ∴正方体的边长为233,即PA =PB =PC =233, 球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △PAB ×PC =13× 12×⎝ ⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形, S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13. 二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值【答案】 AD【解析】 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确. 12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π【答案】 AD【解析】 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE.由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.【答案】 1【解析】 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r ·l =2.由于侧面展开图为半圆,可知12πl 2=2π, 可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.【答案】 2 600π【解析】 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2 600π(cm 2). 15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________.【答案】 823π 【解析】 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π. 16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2π2【解析】 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形,则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ. 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1,同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点,∴∠PEQ =π2, 知PQ 的长为π2×2=2π2,即交线长为2π2.。
专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。
[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。
[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。
[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。
[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。
空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测2016年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。
2.旋转体的面积和体积公式表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π。
考点24:空间几何体的表面积和体积【思维导图】【常见考法】考法一:体积1.(等体积法之换顶点)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,222AD BD AB ===,平面PAD ⊥底面ABCD ,且PA PD ==E ,F 分别为PC ,BD 的中点.(1)求证://EF 平面PAD ;(2)求证:平面PAD ⊥平面PBD ;(3)求三棱锥B PCD -的体积.【答案】(1)证明见解析(2)证明见解析(3)23【解析】(1)如图,连接AC .因为底面ABCD 是平行四边形,且F 是BD 的中点,所以F 也是AC 的中点.又因E 是PC 的中点,所以//EF PA .因为PA ⊂平面PAD ,EF ⊄平面PAD ,所以//EF 平面PAD .(2)在ABD △中,因为222AD BD AB ===,所以2228AD BD AB +==,则BD AD ⊥.又因为侧面PAD ⊥底面ABCD ,交线为AD ,而BD ⊂平面ABCD ,所以BD ⊥平面PAD .因为BD ⊂平面PBD ,所以平面PAD ⊥平面PBD .(3)取AD 中点为O ,连接PO .因为PA PD =,O 为AD 的中点,所以PO AD ⊥,又因为侧面PAD ⊥底面ABCD ,交线为AD ,所以PO ⊥平面ABCD .因为PA PD ==2AD =,所以2224PA PD AD +==,所以PA PD ⊥.所以1PO =,所以三棱锥B PCD -的体积11122213323B PCD P BCD BCD V V S PO --==⨯⨯=⨯⨯⨯⨯=△.2.(等体积法之点面距)已知三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D 为PB 的中点,且PMB ∆为正三角形.(1)求证:BC ⊥平面APC ;(2)若310BC AB ==,,求点B 到平面DCM 的距离.【答案】(1)证明见解析;(2)125.【解析】(1)证明:如图,∵PMB ∆为正三角形,且D 为PB 的中点,∴MD PB ⊥.又∵M 为AB 的中点,D 为PB 的中点,∴//MD AP ,∴AP PB ⊥.又已知AP PC ⊥,∴AP ⊥平面PBC ,∴⊥AP BC .又∵,AC BC AC AP A ⊥⋂=,∴BC ⊥平面APC .(2)解:法一:记点B 到平面MDC 的距离为h ,则有M BCD B MDCV V --=∵10AB =∴5MB PB ==,又3BC BC PC =⊥,,∴4PC =,∴11324BDC PBC S S PC BC ∆∆==⋅=,又532=MD ,∴15332M BCD BDC V MD S -∆=⋅=,在PBC ∆中,1522CD PB ==,又∵MD DC ⊥,∴125328MDC S MD DC ∆=⋅=,∴11255333382B MDC MDC V h S h -∆=⋅==,∴125h =即点B 到平面MDC 的距离为125.法二:∵平面DCM ⊥平面PBC 且交线为DC ,过B 作BH DC ⊥,则BH ⊥平面DCM ,BH 的长为点B 到平面DCM 的距离;∵10AB =,∴5MB PB ==,又3,BC BC PC =⊥,∴4PC =,∴11324BDC PBC S S PC BC ∆∆==⋅=.又1522CD PB ==,∴15324BCD S CD BH BH ∆=⋅==,∴125BH =,即点B 到平面MDC 的距离为125.3.(补形法)将棱长为2的正方体1111ABCD A B C D -截去三棱锥1D ACD -后得到如图所示几何体,O 为11A C 的中点.(1)求证://OB 平面1ACD ;(2)求几何体111ACB A D 的体积.【答案】(1)见解析;(2)4.【解析】(1)取AC 中点为1O ,连接1OO 、11B D 、11O D .在正方形1111D C B A 中,O 为11A C 的中点,O ∴为11B D 的中点.在正方体1111ABCD A B C D -中,11//AA CC 且11AA CC =,∴四边形11AA C C 为平行四边形,11//AC A C ∴且11AC A C =,O 、1O 分别为11A C 、AC 的中点,11//AO A O ∴且11AO A O =,所以,四边形11AA OO 为平行四边形,11//OO AA ∴且11OO AA =,11//AA BB 且11AA BB =,11//OO BB ∴且11OO BB =,所以,四边形11OO BB 为平行四边形,11//O B OB ∴且11O B OB =,O 为11B D 的中点,11//OD O B ∴且11OD O B =,则四边形11O BOD 为平行四边形,11//OB O D ∴,又BO ⊄平面1ACD ,11O D ⊂平面1ACD ,因此,//OB 平面1ACD ;(2)∵正方体1111ABCD A B C D -的棱长为2,1111328ABCD A B C D V -∴==,1112223243D ACD V -=⨯⨯⨯⨯=.又11111111111ACB A D ABC C D A B A BCB C B C D V V V V ---=--,且111111111420833ABC C D A B ABCD A B C D D ACD V V V ---=-=-=,而111143A BCB C B C D V V --==,1112042433ACB A D V ∴=-⨯=.4.(分割法)如图,矩形ABCD 中,3AB =,1BC =,E 、F 是边DC 的三等分点.现将DAE ∆、CBF ∆分别沿AE 、BF 折起,使得平面DAE 、平面CBF 均与平面ABFE 垂直.(1)若G 为线段AB 上一点,且1AG =,求证:DG 平面CBF ;(2)求多面体CDABFE 的体积.【答案】(1)见证明(2)2【解析】(1)分别取AE ,BF 的中点M ,N ,连接DM ,CN ,MG ,MN ,因为1AD DE ==,90ADE ︒∠=,所以DM AE ⊥,且22DM =.因为1BC CF ==,90BCF ∠= ,所以CN BF ⊥,且2CN =.因为面DAE 、面CBF 均与面ABFE 垂直,所以DM ⊥面ABFE ,CN ⊥面ABFE ,所以DM CN ,且DM CN =.因为cos45AM AG ︒=,所以90AMG ︒∠=,所以AMG ∆是以AG 为斜边的等腰直角三角形,故45MGA ︒∠=,而45FBA ︒∠=,则MG FB ,故面DMG 面CBF ,则DG 面CBF .(2)如图,连接BE ,DF ,由(1)可知,DM CN ,且DM CN =,则四边形DMNC 为平行四边形,故22EF AB DC MN +===.因为D ABE B EFCD V V V --=+33D ABE B DEF D ABE D BEF V V V V ----=+=+,所以1131322V ⎛⎫=⨯⨯⨯⨯+ ⎪⎝⎭113113222⎛⎫⨯⨯⨯⨯⨯= ⎪⎝⎭.考法二:表面积1.如图,在四棱锥P ABCD -中,2AD =,1AB BC CD ===,//BC AD ,90PAD ∠=︒.PBA ∠为锐角,平面PAB ⊥平面PBD.(Ⅰ)证明:PA ⊥平面ABCD ;(Ⅱ)AD 与平面PBD 所成角的正弦值为24,求三棱锥P ABD -的表面积.【答案】(Ⅰ)证明见解析;(Ⅱ)3362+.【解析】(Ⅰ)如图所示:作AM PB ⊥于M ,因为平面PAB ⊥平面PBD所以AM ⊥平面PBD .所以AM BD⊥取AD 中点为Q ,则=BC QD ,且//BC QD所以1====BQ CD QD QA所以90ABD ∠=︒,BD AB⊥又PBA ∠为锐角,∴点M 与点B 不重合.所以DB ⊥平面PAB DB PA ⇒⊥.又PA AD ⊥,DB 与AD 为平面ABCD 内两条相交直线,故PA ⊥平面ABCD .(Ⅱ)由(Ⅰ)知:AM ⊥平面PBD ,故ADM ∠即为AD 与平面PBD 所成角,2242AM AM AD =⇒=.在Rt PAB 中,2452AM PBA =⇒∠=︒,故1PA =,12PAB S =△,1PAD S =△,322ABD AB BD S ⋅==△.而90PBD ∠=︒,所以236222△⋅===PBD PB BD S故所求表面积为:136********+++++=.2.如图,在直三棱柱111ABC A B C -中,AB BC ⊥,1222AA AB BC ===,M ,N ,D 分别为AB ,1BB ,1CC 的中点,E 为线段MN 上的动点.(1)证明://CE 平面1ADB ;(2)若将直三棱柱111ABC A B C -沿平面1ADB 截开,求四棱锥1A BCDB -的表面积.【答案】(1)证明见解析;(2)2632++.【解析】(1)证明:连接CM ,CN ,因为N ,D 分别为1BB ,1CC 中点,所以1112NB BB =,1112C D CC =,又因为11//BB CC ,11BB CC =,所以1//NB CD ,1NB CD =,所以四边形1NCDB 为平行四边形,所以1//NC DB ,又M 为AB 中点,所以1//MN AB ,又CM CN C ⋂=,111AB DB B ⋂=,所以平面//MCN 平面1ADB ,又CE ⊂平面MCN ,所以//CE 平面1ADB .(2)连接BD ,因为AB BC ⊥,1B B AB ⊥,1BC BB B = ,BC ⊂平面11BCC B ,1BB ⊂平面11BCC B ,所以AB ⊥平面11BCC B ,所以AB BD ⊥,11122ABC S ⨯==△,12112ABB S ⨯==△,12222ACD S ==△,1(12)1322BCDB S +⨯==梯形,在1ADB ∆中,3AD =,15AB =12DB =,所以22211AD DB AB +=,所以1AD DB ⊥,123622ADB S ==△,所以四棱锥1A BCDB -的表面积1236261322222S +=++++=+.3.如图,四棱锥P ABCD -中,底面ABCD 是菱形,PA ⊥平面ABCD ,3ABC π∠=,M 是PC 上一动点.(1)求证:平面PAC ⊥平面MBD ;(2)若PB PD ⊥,三棱锥P ABD -的体积为624,求四棱锥P ABCD -的侧面积.【答案】(1)证明见解析(2【解析】(1) PA ⊥平面ABCD ,BD ⊂平面ABCD ,PA BD ∴⊥.底面ABCD 是菱形BD AC ∴⊥.又PA AC A =Q I ,PA ⊂平面PAC ,AC ⊂平面PAC ,BD ∴⊥平面PAC .又 BD ⊂平面MBD ,∴平面PAC ⊥平面MBD .(2)设菱形ABCD 的边长为x ,3ABC π∠=Q ,23BAD π∴∠=.在ABD ∆中,22222212cos 22()32BD AD AB AD AB BAD x x x =+-⋅∠=-⋅-=BD ∴=.又 PA ⊥平面ABCD ,AB AD =,PB PD ⊥,PB PD ∴==,故22PA x =.又22112sin sin 223ABD S AB AD BAD x π∆=⋅⋅∠=⋅=,2-11326=334224ABD P ABD V S PA x ∆∴=⋅⋅=⋅⋅三棱锥,解得:1x =,2PA PB PD ∴===,3ABC π∠= 1AC AB ∴==又 PA ⊥平面ABCD ,2PC PB ∴==,∴四棱锥P ABCD -的侧面积为:11222(11)2222PAB PBC S S ∆∆+=⨯+=.考法三:求参数1.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,面ABCD 是等腰梯形,//AB CD ,面ABFE 是矩形,平面ABFE ⊥平面ABCD ,BC CD AE a ===,60DAB ∠= .(1)求证:平面⊥BDF 平面ADE ;(2)若三棱锥B DCF -的体积为312,求a 的值.【答案】(1)证明见解析;(2)1.【解析】(1)因为四边形ABFE 是矩形,故EA AB ⊥,又平面ABFE ⊥平面ABCD ,平面ABFE 平面ABCD AB =,AE ⊂平面ABFE ,所以AE ⊥平面ABCD ,又BD ⊂面ABCD ,所以AE BD ⊥,在等腰梯形ABCD 中,60DAB ∠= ,120ADC BCD ︒∴∠=∠=,因BC CD =,故30BDC ∠=o ,1203090ADB ∠=-= ,即AD BD ⊥,又AE AD A = ,故BD ⊥平面ADE ,BD ⊂Q 平面BDF ,所以平面⊥BDF 平面ADE ;(2)BCD 的面积为2213sin12024BCD S a a == ,//AE FB ,AE ⊥平面ABCD ,所以,BF ⊥平面ABCD ,231333341212D BCF F BCD V V a a a --∴==⋅⋅==,故1a =.2.如图,在四棱锥P ABCD -中,PAD ∆是等边三角形,O 是AD 上一点,平面PAD ⊥平面,ABCD //,,1,2,3AB CD AB AD AB CD BC ⊥===.(1)若O 是AD 的中点,求证:OB ⊥平面POC ;(2)设=OD OAλ=,当λ取何值时,三棱锥B POC -【答案】(1)证明见解析;(2)1λ=.【解析】(1)因为//,,1,2,3AB CD AB AD AB CD BC ⊥===,所以AD ==.因为O 是AD 的中点,所以OA OD ==223,6OB OC ==,所以222OB OC BC +=,所以OB OC ⊥.又因为平面PAD ⊥平面,ABCD 所以PO ⊥平面,ABCD 所以PO ⊥,0OB PO OC ⋂=,所以OB ⊥平面POC .(2)设OD OAλ=,所以0OD A λ=,因为PAD ∆是等边三角形,平面PAD ⊥平面,ABCD点P 到平面ABCD 的距离,即为四棱锥P ABCD -的高,且h =因为13B POC P BOC POC V V S h --∆===所以()111322222BOC S AB CD AD AB OA AD OD ∆=+⨯-⨯-⨯=整理得:()12OA λ+=又因为OD OA OA OA λ+=+=解得1λ=考法四:求最值1.如图,在直三棱柱111ABC A B C -中,1AB =,2BC =,13,90,BB ABC =∠=点D 为侧棱1BB 上一个动点(1)求此直三棱柱111ABC A B C -的表面积;(2)当1AD DC +最小时,求三棱锥1D ABC -的体积.【答案】(1)11+2)13【解析】(1)1111112ABB A ACC A BCC B ABCS S S S S ∆=+++表113233212112=⨯+⨯++⨯⨯⨯=+(2)将三棱柱展开成矩形11ACC A ,连接1AC ,交1BB 于点D ,则此时1AD DC +最小.1BD AB CC AC = ,1313BD ∴=⨯=.11111222ABD S AB BD ∆∴=⨯=⨯⨯=.1BB ⊥ 平面111A B C ,且11B C ⊂平面111A B C ,1BB ∴⊥11B C ,又11B C ⊥11A B 且11A B 11BB B ⋂=,11A B ,1BB ⊂平面11ABB A ,11B C ∴⊥平面11ABB A 11B C ∴为1C 到平面11ABB A 的距离,1111111123323D ABC C ABD ABD V V S B C --∴==⋅=⨯⨯=.2.如图1,在矩形ABCD 中,2AB =,3BC =,点E 在线段BC 上,2BE EC =.把BAE ∆沿AE 翻折至1B AE ∆的位置,1B ∉平面AECD ,连结1B D ,点F 在线段1DB 上,12DF FB =,如图2.(1)证明://CF 平面1B AE ;(2)当三棱锥1B ADE -的体积最大时,求二面角1B DE C --的余弦值.【答案】(1)证明见解析;(2)31919-.【解析】(1)依题意得,在矩形ABCD 中,2AB =,3BC =,2BE EC =,所以3AD =,1EC =.在线段1B A 上取一点M ,满足12AM MB =,又因为12DF FB =,所以11B M B F MA FD=,故//FM AD ,又因为//EC AD ,所以//EC FM ,因为113FM AD ==,所以EC FM =,所以四边形FMEC 为平行四边形,所以//CF EM ,又因为CF ⊄平面1B AE ,EM ⊂平面1B AE ,所以//CF 平面1B AE .(2)设1B 到平面AECD 的距离为h ,113B AED AED V S h -∆=⋅⋅,又3AED S ∆=,所以1B AED V h -=,故要使三棱锥1B AED -的体积取到最大值,仅需h 取到最大值.取AE 的中点O ,连结1B O ,依题意得1B O AE ⊥,则1h B O ≤=,因为平面1B AE 平面AECD AE =,1B O AE ⊥,1B O ⊂平面1B AE ,故当平面1B AE ⊥平面AECD 时,1B O ⊥平面AECD ,1h B O =.即当且仅当平面1B AE ⊥平面AECD 时,1B AED V -取得最大值,此时h =如图,以D 为坐标原点,DA ,DC的方向分别为x 轴,y 轴的正方向建立空间直角坐标系D xyz -,得(0,0,0)D ,(1,2,0)E ,1B ,1DB = ,(1,2,0)DE = ,设(,,)n x y z = 是平面1B ED 的一个法向量,则10,0,n DB n DE ⎧⋅=⎨⋅=⎩得20,20,x y x y ⎧++=⎪⎨+=⎪⎩令1y =,解得n ⎛=- ⎝ ,又因为平面CDE 的一个法向量为(0,0,1)m = ,所以319cos 19||||m n m n m n ⋅⋅===⋅ ,因为1B DE C --为钝角,所以其余弦值等于31919-3.如图1,在边长为4的正方形ABCD 中,E 是AD 的中点,F 是CD 的中点,现将三角形DEF 沿EF 翻折成如图2所示的五棱锥P ABCFE -.(1)求证:AC 平面PEF ;(2)求五棱锥P ABCFE -的体积最大时PAC ∆的面积.【答案】(1)见证明;(2)【解析】证明:(1)在图1中,连接AC .又E ,F 分别为AD ,CD 中点,所以//EF AC .即图2中有//EF AC .又EF ⊂平面PEF ,AC ⊄平面PEF ,所以//AC 平面PEF .解:(2)在翻折的过程中,当平面PEF ⊥平面ABCFE 时,五棱锥P ABCFE -的体积最大.在图1中,取EF 的中点M ,DE 的中点N .由正方形ABCD 的性质知,//MN DF ,MN AD ⊥,1MN NE ==,2AE DF ==,AM ===.在图2中,取EF 的中点H ,分别连接PH ,AH ,取AC 中点O ,连接PO .由正方形ABCD 的性质知,PH EF ⊥.又平面PEF ⊥平面ABCFE ,所以PH ⊥平面ABCFE ,则PH AH ⊥.由4AB =,有2PF AE PE ===,EH PH HF ===AC =,PA ==.同理可知PC =.又O 为AC 中点,所以OP AC ⊥,所以2OP ==,所以11222PAC S OP AC ∆=⨯⨯=⨯⨯=4.如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ;(Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =,点E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;(Ⅲ)262.【解析】(Ⅰ)在C ∆AO 中,因为C OA =O ,D 为C A 的中点,所以C D A ⊥O .又PO 垂直于圆O 所在的平面,所以C PO ⊥A .因为D O PO =O ,所以C A ⊥平面D P O .(Ⅱ)因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1.又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=.又因为三棱锥C P -AB 的高1PO =,故三棱锥C P -AB 体积的最大值为111133⨯⨯=.(Ⅲ)在∆POB 中,1PO =OB =,90∠POB = ,所以PB ==.同理C P =C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C B 'P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值.又因为OP =OB ,C C 'P ='B ,所以C O '垂直平分PB ,即E 为PB 中点.从而2626222C C O '=OE +E '=+=,亦即C E +OE 的最小值为2+.。
第2节空间几何体的表面积和体积最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式.知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l3.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=S底h锥体(棱锥和圆锥)S表面积=S侧+S底V=13S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR3[微点提醒]1.正方体与球的切、接常用结论正方体的棱长为a,球的半径为R,(1)若球为正方体的外接球,则2R=3a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=2a.2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.3.正四面体的外接球与内切球的半径之比为3∶1.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)锥体的体积等于底面面积与高之积.()(2)两个球的体积之比等于它们的半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)×(2)×(3)√(4)√2.(必修2P27练习1改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cmB.2 cmC.3 cmD.32cm解析由题意,得S表=πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm).答案 B3.(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V球∶V柱为()A.1∶2B.2∶3C.3∶4D.1∶3解析设球的半径为R,则V球V柱=43πR3πR2×2R=23.答案B4.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323π C.8π D.4π解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3 a,即R= 3.所以球的表面积S=4πR2=12π.答案 A5.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4 C.π2 D.π4解析如图画出圆柱的轴截面ABCD,O为球心.球半径R=OA=1,球心到底面圆的距离为OM=1 2.∴底面圆半径r=OA2-OM2=32,故圆柱体积V=π·r2·h=π·⎝⎛⎭⎪⎫322×1=3π4.答案 B6.(2018·浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)为________.解析 由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6. 答案 6考点一 空间几何体的表面积【例1】 (1)(2019·南昌模拟)一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是( )A.4 3B.4 5C.4(5+1)D.8(2)(2018·洛阳模拟)某几何体的三视图如图所示,则其表面积为( )A.17π2B.9πC.19π2D.10π解析 (1)因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图.由题意知底面正方形的边长为2,正四棱锥的高为2,则正四棱锥的斜高PE=22+12= 5.所以该四棱锥的侧面积S=4×12×2×5=4 5.故选B.(2)由三视图可知该几何体由一个圆柱与四分之一个球组合而成. 圆柱的底面半径为1,高为3,球的半径为1,所以几何体的表面积为π×12+2π×1×3+4π×12×14+12π×12+12π×12=9π.故选B.答案(1)B(2)B规律方法 1.由几何体的三视图求其表面积:(1)关键是分析三视图确定几何体中各元素之间的位置关系及度量大小.(2)还原几何体的直观图,套用相应的面积公式.2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(2)旋转体的表面积问题注意其侧面展开图的应用.【训练1】(1)(2019·西安模拟)如图,网格纸上正方形小格的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π(2)(2018·烟台二模)某几何体的三视图如图所示,其中俯视图右侧曲线为半圆弧,则几何体的表面积为( )A.3π+42-2B.3π+22-2C.3π2+22-2D.3π2+22+2解析 (1)由三视图知,该几何体由一圆锥和一个圆柱构成的组合体, ∵S 圆锥侧=π×3×32+42=15π,S 圆柱侧=2π×1×2=4π,S 圆锥底=π×32=9π.故几何体的表面积S =15π+4π+9π=28π.(2)由三视图,该几何体是一个半圆柱挖去一直三棱柱,由对称性,几何体的底面面积S 底=π×12-(2)2=π-2.∴几何体表面积S =2(2×2)+12(2π×1×2)+S 底 =42+2π+π-2=3π+42-2. 答案 (1)C (2)A考点二 空间几何体的体积多维探究角度1 以三视图为背景的几何体的体积【例2-1】 (2019·河北衡水中学调研)某几何体的三视图如图所示,则该几何体的体积为( )A.6B.4C.223D.203解析 由三视图知该几何体是边长为2的正方体挖去一个三棱柱(如图),且挖去的三棱柱的高为1,底面是等腰直角三角形,等腰直角三角形的直角边长为2.故几何体体积V =23-12×2×2×1=6.答案 A角度2 简单几何体的体积【例2-2】 (2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.解析 连接AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,所以EH ∥AC ,EH =12AC .因为F ,G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =12AC .所以EH ∥FG ,EH =FG ,所以四边形EHGF 为平行四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形.又点M 到平面EHGF 的距离为12,所以四棱锥M -EFGH 的体积为13×⎝ ⎛⎭⎪⎫222×12=112.答案 112角度3 不规则几何体的体积【例2-3】 如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B.33C.43D.32解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12, AG =GD =BH =HC =32,取AD 的中点O ,连接GO ,易得GO =22, ∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V 三棱锥E -ADG +V 三棱锥F -BCH +V 三棱柱AGD -BHC =2V 三棱锥E -ADG +V 三棱柱AGD -BHC =13×24×12×2+24×1=23.故选A. 答案 A规律方法 1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解.2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.【训练2】 (1)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )A.3B.32C.1D.32(2)某几何体的三视图如图所示,则该几何体的体积为( )A.8π-163B.4π-163C.8π-4D.4π+83解析(1)如题图,在正△ABC中,D为BC中点,则有AD=32AB=3,又∵平面BB1C1C⊥平面ABC,平面BB1C1∩平面ABC=BC,AD⊥BC,AD⊂平面ABC,由面面垂直的性质定理可得AD⊥平面BB1C1C,即AD为三棱锥A-B1DC1的底面B1DC1上的高,∴V A-B1DC1=13S△B1DC1·AD=13×12×2×3×3=1.(2)该几何体为一个半圆柱中间挖去一个四面体,∴体积V=12π×22×4-13×12×2×4×4=8π-163.答案(1)C(2)A考点三多面体与球的切、接问题典例迁移【例3】(经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2 C.6π D.32π3解析由AB⊥BC,AB=6,BC=8,得AC=10.要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.则12×6×8=12×(6+8+10)·r,所以r=2.2r=4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R最大.由2R=3,即R=3 2.故球的最大体积V=43πR3=92π.答案 B【迁移探究1】 若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积. 解 将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1,则球O 是长方体ABEC -A 1B 1E 1C 1的外接球.∴体对角线BC 1的长为球O 的直径.因此2R =32+42+122=13.故S 球=4πR 2=169π.【迁移探究2】 若将题目的条件变为“如图所示是一个几何体的三视图”,试求该几何体外接球的表面积.解 设外接球的半径为R ,由三视图可知该几何体是两个正四棱锥的组合体(底面重合),上、下两顶点之间的距离为2R ,正四棱锥的底面是边长为2R 的正方形,由R 2+⎝ ⎛⎭⎪⎫22R 2=32解得R 2=6,故该球的表面积S =4πR 2=24π. 规律方法 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【训练3】 (2019·广州模拟)三棱锥P -ABC 中,平面PAC ⊥平面ABC ,AB ⊥AC ,PA =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( )A.23πB.234πC.64πD.643π解析如图,设O′为正△PAC的中心,D为Rt△ABC斜边的中点,H为AC中点.由平面PAC⊥平面ABC.则O′H⊥平面ABC.作O′O∥HD,OD∥O′H,则交点O为三棱锥外接球的球心,连接OP,又O′P=23PH=23×32×2=233,OO′=DH=12AB=2.∴R2=OP2=O′P2+O′O2=43+4=163.故几何体外接球的表面积S=4πR2=64 3π.答案 D[思维升华]1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.[易错防范]1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.直观想象——简单几何体的外接球与内切球问题1.直观想象主要表现为利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物,解决与球有关的问题对该素养有较高的要求.2.简单几何体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径长或确定球心O的位置问题,其中球心的确定是关键.类型1外接球的问题1.必备知识:(1)简单多面体外接球的球心的结论.结论1:正方体或长方体的外接球的球心是其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.(2)构造正方体或长方体确定球心.(3)利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.2.方法技巧:几何体补成正方体或长方体.【例1-1】某几何体的三视图如图所示,则该几何体的外接球的表面积为()A.25πB.26πC.32πD.36π解析由三视图可知,该几何体是以俯视图的图形为底面,一条侧棱与底面垂直的三棱锥.如图,三棱锥A-BCD即为该几何体,且AB=BD=4,CD=2,BC=23,则BD2=BC2+CD2,即∠BCD=90°,故底面外接圆的直径2r=BD=4.易知AD 为三棱锥A -BCD 的外接球的直径.设球的半径为R ,则由勾股定理得4R 2=AB 2+4r 2=32,故该几何体的外接球的表面积为4πR 2=32π.答案 C【例1-2】 (2019·东北三省四市模拟)已知边长为2的等边三角形ABC ,D 为BC的中点,沿AD 进行折叠,使折叠后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( )A.3πB.4πC.5πD.6π解析 连接BC ,由题知几何体ABCD 为三棱锥,BD =CD =1,AD =3,BD ⊥AD ,CD ⊥AD ,BD ⊥CD ,将折叠后的图形补成一个长、宽、高分别是3,1,1的长方体,其体对角线长为1+1+3=5,故该三棱锥外接球的半径是52,其表面积为5π.答案 C【例1-3】 (2019·广州二测)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,PA ⊥平面ABC ,PA =2,∠ABC =120°,则球O 的体积的最小值为( ) A.773πB.2873πC.19193π D.76193π 解析 设AB =c ,BC =a ,AC =b ,由题可得3=13×S △ABC ×2,解得S △ABC =332.因为∠ABC =120°,S △ABC =332=12ac sin 120°,所以ac =6,由余弦定理可得b 2=a 2+c 2-2ac cos 120°=a 2+c 2+ac ≥2ac +ac =3ac =18,当且仅当a =c 时取等号,此时b min=3 2.设△ABC外接圆的半径为r,则bsin 120°=2r(b最小,则外接圆半径最小),故3232=2r min,所以r min= 6.如图,设O1为△ABC外接圆的圆心,D为PA的中点,R为球的半径,连接O1A,O1O,OA,OD,PO,易得OO1=1,R2=r2+OO21=r2+1,当r min=6时,R2min=6+1=7,R min=7,故球O体积的最小值为43πR3min=43π×(7)3=287π3.答案 B类型2内切球问题1.必备知识:(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(2)正多面体的内切球和外接球的球心重合.(3)正棱锥的内切球和外接球球心都在高线上,但不一定重合.2.方法技巧:体积分割是求内切球半径的通用做法.【例2】体积为4π3的球与正三棱柱的所有面均相切,则该棱柱的体积为________. 解析设球的半径为R,由4π3R3=4π3,得R=1,所以正三棱柱的高h=2.设底面边长为a,则13×32a=1,所以a=2 3.所以V=34×(23)2×2=6 3.答案6 3基础巩固题组(建议用时:40分钟)一、选择题1.一个球的表面积是16π,那么这个球的体积为( )A.163πB.323πC.16πD.24π解析 设球的半径为R ,则S =4πR 2=16π,解得R =2,则球的体积V =43πR 3=323π.答案 B2.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛解析 设米堆的底面半径为r 尺,则π2r =8,所以r =16π.所以米堆的体积为V =14×13π·r 2·5=π12·⎝ ⎛⎭⎪⎫16π2·5≈3209(立方尺). 故堆放的米约有3209÷1.62≈22(斛).答案 B3.(2018·茂名模拟)一个几何体的三视图如图所示,则该几何体的体积是( )A.7B.152C.233D.476解析 由三视图可知,该几何体是正方体去掉一个三棱锥,正方体的棱长为2,三棱锥的三个侧棱长为1,则该几何体的体积V =23-13×12×1×1×1=8-16=476.答案 D4.(2019·安徽皖南八校二联)榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部位相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.图中网格纸上小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积与表面积分别为( )A.24+52π,34+52πB.24+52π,36+54πC.24+54π,36+54πD.24+54π,34+52π解析 由三视图可知,这榫卯构件中的榫由一个长方体和一个圆柱拼接而成,故其体积V =4×2×3+π×32×6=24+54π,表面积S =2×π×32+2×π×3×6+4×3×2+2×2×3=54π+36.答案 C5.(2019·商丘模拟)一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10 cm的正方形,将该材料切削、打磨,加工成球,则能得到的最大球的半径最接近()A.3 cmB.4 cmC.5 cmD.6 cm解析由题意,知该硬质材料为三棱柱(底面为等腰直角三角形),所以最大球的半径等于侧视图直角三角形内切圆的半径,设为r cm,则10-r+10-r=10 2. ∴r=10-52≈3(cm).答案 A二、填空题6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析设新的底面半径为r,由题意得13πr2·4+πr2·8=13π×52×4+π×22×8,解得r=7.答案77.如图,三棱柱ABC-A1B1C1的体积为1,P为侧棱B1B上的一点,则四棱锥P-ACC1A1的体积为________.解析 设点P 到平面ABC 、平面A 1B 1C 1的距离分别为h 1,h 2,则棱柱的高为h =h 1+h 2,又记S =S △ABC =S △A 1B 1C 1,则三棱柱的体积为V =Sh =1.而从三棱柱中去掉四棱锥P -ACC 1A 1的剩余体积为V ′=V P -ABC +VP -A 1B 1C 1=13Sh 1+13Sh 2=13S (h 1+h 2)=13,从而VP -ACC 1A 1=V -V ′=1-13=23.答案 238.(2018·广州调研)如图是一个几何体的三视图,其中正视图和侧视图均是高为2,底边长为22的等腰三角形,俯视图是边长为2的正方形,则该几何体的外接球的体积是________.解析 如图所示,由三视图可得该几何体是三棱锥A -BCD ,其中点A ,B ,C ,D 均是该三棱锥所在长方体的棱的中点,AB =CD =22,长方体的高为2,易得该三棱锥的外接球的半径R =12+(2)2=3,因此该三棱锥的外接球的体积为4πR 33=43π.答案 43π三、解答题9.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解 由PO 1=2 m ,知O 1O =4PO 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).故仓库的容积是312 m 3.10.如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.解 (1)交线围成的正方形EHGF 如图所示.(2)如图,作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,AH =10,HB =6.故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. 能力提升题组(建议用时:20分钟)11.(2018·德阳模拟)已知一个简单几何体的三视图如图所示,则该几何体的体积为( )A.3π+6B.6π+6C.3π+12D.12解析 由三视图还原几何体如图,该几何体为组合体,左半部分是四分之一圆锥,右半部分是三棱锥,则其体积V =14×13×π×32×4+13×12×3×3×4=3π+6.故选A.答案 A12.用长度分别为2,3,5,6,9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为()A.258 cm2B.414 cm2C.416 cm2D.418 cm2解析设长方体从同一顶点出发的三条棱的长分别为a,b,c,则长方体的表面积S=2(ab+bc+ac)≤12[(a+b)2+(b+c)2+(a+c)2],当且仅当a=b=c时上式“=”成立.由题意可知,a,b,c,不可能相等,故当a,b,c的大小最接近时,长方体的表面积最大,此时从同一顶点出发的三条棱的长为8,8,9,用长度为2,6的木棒连接,长度为3,5的木棒连接各为一条棱,长度为9的木棒为第三条棱,组成长方体,此时能够得到的长方体的最大表面积为2×(8×8+8×9+8×9)=416(cm2).答案 C13.(2019·合肥一检)如图,已知平面四边形ABCD满足AB=AD=2,∠A=60°,∠C=90°,将△ABD沿对角线BD翻折,使平面ABD⊥平面CBD,则四面体ABCD外接球的体积为________.解析在四面体ABCD中,∵AB=AD=2,∠A=60°,∴△ABD为正三角形.设BD的中点为M,连接AM,则AM⊥BD,又平面ABD⊥平面CBD,平面ABD∩平面CBD=BD,∴AM⊥平面CBD.∵△CBD为直角三角形,∴其外接圆的圆心是斜边BD的中点M,由球的性质知,四面体ABCD外接球的球心必在线段AM上.又△ABD为正三角形,∴球心是△ABD的中心,则外接球的半径为23×32×2=233,∴四面体ABCD外接球的体积为43×π×⎝⎛⎭⎪⎫2333=323π27.答案323π2714.(2018·沈阳质检)在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.(1)证明:A1O⊥平面ABC;(2)求三棱锥C1-ABC的体积.(1)证明因为AA1=A1C,且O为AC的中点,所以A1O⊥AC,又平面AA1C1C⊥平面ABC,平面AA1C1C∩平面ABC=AC,且A1O⊂平面AA1C1C,∴A1O⊥平面ABC.(2)解∵A1C1∥AC,A1C1⊄平面ABC,AC⊂平面ABC,∴A1C1∥平面ABC,即C1到平面ABC的距离等于A1到平面ABC的距离.由(1)知A1O⊥平面ABC且A1O=AA21-AO2=3,∴V C1-ABC =V A1-ABC=13S△ABC·A1O=13×12×2×3×3=1.。
第1讲空间几何体及其表面积与体积知识梳理1.多面体的结构特征(1)棱柱:一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱;棱柱两个底面是全等多边形,且对应边互相平行,侧面都是平行四边形.(2)棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥;棱锥底面是多边形,侧面是有一个公共顶点的三角形.(3)棱台:棱锥被平行于底面的一个平面所截后,截面和底面之间的部分叫做棱台.2.旋转体的结构特征(1)将矩形、直角三角形、直角梯形分别绕它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台;这条直线叫做轴,垂直于轴的边旋转而成的圆面叫做底面.不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做母线.(2)球:半圆绕着它的直径所在的直线旋转一周所成的曲面叫做球面,球面围成的几何体叫做球体,简称球.3.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrh V=Sh=πr2h圆锥S侧=πrlV=13Sh=13πr2h=13πr2l2-r2圆台S侧=π(r1+r2)lV=13(S上+S下+S上S下)h=13π(r21+r22+r1r2)h直棱柱S侧=Ch V=Sh正棱锥S侧=12Ch′V=13Sh续表4.(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.辨析感悟1.柱体、锥体、台体与球的面积(1)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.(×)(2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3πa2.(×)2.柱体、锥体、台体的体积(3)(教材练习改编)若一个球的体积为43π,则它的表面积为12π.(√)(4)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所形成的几何体的体积为9π.(×)3.柱体、锥体、台体的展开与折叠(5)将圆心角为2π3,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.(√)(6)(2014·青州模拟改编)将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为312a3.(×)[感悟·提升]两点注意一是求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.二是几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.考点一空间几何体的结构特征【例1】给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱②侧面都是等腰三角形的棱锥是正棱锥③侧面都是矩形的直四棱柱是长方体④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱其中不正确的命题为________.解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④正确.答案①②③规律方法解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【训练1】设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析命题①符合平行六面体的定义,故命题①是正确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的.因为直四棱柱的底面不一定是平行四边形,故命题③是错误的.命题④由棱台的定义知是正确的. 答案 ①④考点二 几何体的表面积与体积【例2】 如图所示,四棱锥P -ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,∠ABD =60°,∠BDC =45°, △ADP ∽△BAD . (1)求线段PD 的长;(2)若PC =11R ,求三棱锥P -ABC 的体积. 解 (1)∵BD 是圆的直径,∴∠BAD =90°, 又∵△ADP ∽△BAD ,∴AD BA =DP AD , ∠PDA =∠BAD =90°, DP =AD 2BA =(BD sin 60°)2BD sin 30°=4R 2×342R ×12=3R . ∴DP 的长为3R .(2)在Rt △BCD 中,BC =CD =BD cos 45°=2R , ∵PD 2+CD 2=9R 2+2R 2=11R 2=PC 2,∴PD ⊥CD , 又∠PDA =90°,AD ∩CD =D ,∴PD ⊥底面ABCD , 则S △ABC =12AB ·BC sin(60°+45°) =12R ·2R ⎝ ⎛⎭⎪⎫32×22+12×22=3+14R 2.所以三棱锥P -ABC 的体积为V P -ABC =13·S △ABC ·PD =13·3+14R 2·3R =3+14R 3.规律方法 求几何体的体积问题,可以多角度、全方位地考虑问题,常采用的方法有“换底法”、“分割法”、“补体法”等,尤其是“等积转化”的数学思想方法应高度重视.【训练2】 (2014·苏州模拟)一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32 cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积. 解(1)设O 1、O 分别为正三棱台ABC -A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32, 因O 1D 1=36×3=32,OD =36×6=3,则DE =OD -O 1D 1=3-32=32.在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322=3(cm). (2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732(cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2).故三棱台斜高为 3 cm ,侧面积为2732 cm 2,表面积为9934 cm 2.考点三 球与空间几何体的接、切问题【例3】 (1)(2013·新课标全国Ⅱ卷)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.(2)(2013·辽宁卷改编)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.审题路线 (1)根据正四棱锥的体积求高⇒求底面正方形的对角线长⇒由勾股定理求OA ⇒由球的表面积公式求解.(2)BC 为过底面ABC 的截面圆的直径⇒取BC 中点D ,则球心在BC 的垂直平分线上,再由对称性求解. 解析 (1)设正四棱锥的高为h , 则13×(3)2×h =322,解得h =322. 又底面正方形的对角线长为2×3= 6. 所以OA =⎝ ⎛⎭⎪⎫3222+⎝ ⎛⎭⎪⎫622= 6. 故球的表面积为S 球=4π×(6)2=24π.(2)因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球的直径,所以2r =122+52=13,即r =132.答案 (1)24π (2)132规律方法 解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【训练3】(2012·辽宁卷)已知点P,A,B,C,D是球O表面上的点,P A⊥平面ABCD,四边形ABCD是边长为23的正方形.若P A=26,则△OAB的面积为________.解析根据球的内接四棱锥的性质求解.如图所示,线段PC就是球的直径,设球的半径为R,因为AB=BC=23,所以AC=2 6.又P A=26,所以PC2=P A2+AC2=24+24=48,所以PC=43,所以OA=OB=23,所以△AOB是正三角形,所以S=12×23×23×32=3 3.答案3 3考点四几何体的展开与折叠问题【例4】(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.(2)如图所示,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC=CC1=3.P是BC1上一动点,沿棱柱表面使CP+P A1最小,则最小值为________.解析 (1)折叠后的四面体如图所示.OA ,OC ,OD 两两相互垂直,且OA =OC =OD =22,体积V =13 S △OCD ·OA =13×12×(22)3=823.(2)由题意知,A 1P 在几何体内部,把面BB 1C 1C 沿BB 1展开与面AA 1B 1B 在一个平面上,如图所示,连接A 1C 即可. 则A 1、P 、C 三点共线时,CP +P A 1最小, ∵∠ACB =90°,AC =4,BC =C 1C =3,∴A 1B 1=AB =42+32=5,∴A 1C 1=5+3=8,∴A 1C =82+32=73.故CP +P A 1的最小值为73.答案 (1)823 (2)73规律方法 (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练4】如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q共线,点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.解析由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P-ABCD(如图所示),其中PD⊥平面ABCD,因此该四棱锥的体积V=13×6×6×6=72,而棱长为6=3个这样的几何体,才能拼成的正方体的体积V=6×6×6=216,故需要21672一个棱长为6的正方体.答案 31.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.方法优化5——特殊点在求解几何体的体积中的应用【典例】 (2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以VF -DD 1E =13×12×1=16. [优美解法] E 点移到A 点,F 点移到C 点,则VD 1-EDF =VD 1-ADC =13×12×1×1×1=16. [答案] 16[反思感悟] (1)一般解法利用了转化思想,把三棱锥D 1-EDF 的体积转化为三棱锥F -DD 1E 的体积,但这种解法还是难度稍大,不如采用特殊点的解法易理解、也简单易求.(2)在求几何体体积时还经常用到等积法、割补法. 【自主体验】 如图,在三棱柱ABC-A1B1C1中,侧棱AA1与侧面BCC1B1的距离为2,侧面BCC1B1的面积为4,此三棱柱ABC-A1B1C1的体积为________.解析补形法将三棱柱补成四棱柱,如图所示.记A1到平面BCC1B1的距离为d,则d=2.则V三棱柱=12V四棱柱=12S四边形BCC1B1·d=12×4×2=4.答案 4基础巩固题组(建议用时:40分钟)一、填空题1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数是________.解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②题,因这条腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案 12.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的四个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析①显然可能;②不可能;③取一个顶点处的三条棱,连接各棱端点构成的四面体;④取正方体中对面上的两条异面对角线的四个端点构成的几何体;⑤正方体ABCD-A1B1C1D1中,三棱锥D1-DBC满足条件.答案①③④⑤3.在三棱锥S-ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S-ABC的表面积是________.解析设侧棱长为a,则2a=2,a=2,侧面积为3×12×a2=3,底面积为34×22=3,表面积为3+ 3.答案3+ 34.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为________.解析 设圆锥的底面圆半径为r ,高为h ,母线长为l ,则⎩⎪⎨⎪⎧ πrl =2π,πr 2=π,∴⎩⎪⎨⎪⎧r =1,l =2.∴h =l 2-r 2=22-12= 3.∴圆锥的体积V =13π·12·3=33π. 答案 33π5.(2012·新课标全国卷改编)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为________. 解析如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1,∴OM =(2)2+1=3,即球的半径为3,∴V =43π(3)3=43π.答案 43π 6.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案 267.(2013·天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析 设正方体的棱长为a ,外接球的半径为R ,由题意知43πR 3=9π2,∴R 3=278,而R =32.由于3a 2=4R 2,∴a 2=43R 2=43×⎝ ⎛⎭⎪⎫322=3,∴a = 3.答案 38.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23. 答案 23 二、解答题 9.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .(1)求证:PC ⊥AB ;(2)求点C 到平面APB 的距离. (1)证明 取AB 中点D ,连接PD ,CD .因为AP =BP ,所以PD ⊥AB , 因为AC =BC ,所以CD ⊥AB .因为PD ∩CD =D ,所以AB ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥AB . (2)解 设C 到平面APB 的距离为h ,则由题意,得AP =PB =AB =AC 2+BC 2=22, 所以PC =AP 2-AC 2=2.因为CD =12AB =2,PD =32PB =6, 所以PC 2+CD 2=PD 2,所以PC ⊥CD .由(1)得AB ⊥平面PCD ,于是由V C -APB =V A -PDC +V B -PDC , 得13·h ·S △APB =13AB ·S △PDC ,所以h =AB ·S △PDCS △APB=22×12×2×234×(22)2=233.故点C 到平面APB 的距离为233.10.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解 如图所示,作出轴截面,因轴截面是正三角形,根据切线性质知当球在容器内时,水的深度为3r ,水面半径BC 的长为3r ,则容器内水的体积为 V =V 圆锥-V 球=13π(3r )2·3r - 43πr 3=53πr 3,将球取出后,设容器中水的深度为h , 则水面圆的半径为33h ,从而容器内水的体积为 V ′=13π⎝ ⎛⎭⎪⎫33h 2h =19πh 3,由V =V ′,得h =315r .能力提升题组 (建议用时:25分钟)一、填空题1.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为________.解析 由题意知,如图所示,在棱锥S -ABC 中,△SAC ,△SBC 都是有一个角为30°的直角三角形,其中AB =3,SC =4,所以SA =SB =23,AC =BC =2,作BD ⊥SC 于D 点,连接AD ,易证SC ⊥平面ABD ,因此V S -ABC =13×34×(3)2×4= 3. 答案 32.(2014·南京模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段B 1B 上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.解析 如图,当AM +MC 1最小时,BM =1,所以AM 2=2,C 1M 2=8,AC 21=14,于是由余弦定理,得cos ∠AMC 1=AM 2+MC 21-AC 212AM ·MC 1=-12,所以sin ∠AMC 1=32,S △AMC 1=12×2×22×32= 3. 答案 33.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm 、高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm. 解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 cm.答案 13 二、解答题4.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体D -ABC 的体积.(1)证明 在图中,可得AC =BC =22, 从而AC 2+BC 2=AB 2, 故AC ⊥BC ,又平面ADC ⊥平面ABC , 平面ADC ∩平面ABC =AC , BC ⊂平面ABC , ∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥B -ACD 的高,BC =22,S △ACD =2,∴V B -ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D -ABC 的体积为423.。
空间几何体的表面积和体积计算棱柱【例1】 将一个边长为a 的正方体,切成27个全等的小正方体,则表面积增加了 ( )A .26aB .212aC .218aD .224a【考点】空间几何体的表面积和体积 【难度】1星 【题型】选择 【关键字】无 【解析】B . 【答案】B .【例2】 长方体的全面积为11,12条棱长度之和为24,则长方体的一条对角线长为( )A. BC .5D .6【考点】空间几何体的表面积和体积 【难度】2星 【题型】选择 【关键字】无 【解析】B设长方体的棱长分别为,,a b c ,则2()11ab bc ac ++=,4()24a b c ++=,对角线长为d =222222()2()116a b c a b c ab bc ac d ++=+++++=+=,解得:5d =.【答案】B .【例3】线长为_____.典例分析板块三.空间几何体的表面积和体积【考点】空间几何体的表面积和体积【难度】1星【题型】填空【关键字】无【解析】设长方体三边长分别为a,b,c则有222123ab aac bcbc⎧=⎧=⎪⎪⎪=⇒=⎨⎨⎪⎪==⎩⎪⎩,.【例4】正三棱柱侧面的一条对角线长为2,且与底边的夹角为45︒角,则此三棱柱的体积为()AB.CD.【考点】空间几何体的表面积和体积【难度】1星【题型】选择【关键字】无【解析】A;【答案】A;【例5】,则该正四棱柱的体积等于.【考点】空间几何体的表面积和体积【难度】2星【题型】填空【关键字】2008年,四川高考【解析】记正四棱柱的底面边长为a,高为h=,222)h=+,解得12a h==,.22V a h==.【答案】23;【例6】长方体中共点的三条棱长分别为a,b,c()a b c<<,分别过这三条棱中的一条及其对棱的对角面的面积分别记为a S ,b S ,c S ,则( )A .a b c S S S >>B .a c b S S S >>C .b c a S S S >>D .c b a S S S >>【考点】空间几何体的表面积和体积 【难度】2星 【题型】选择 【关键字】无 【解析】由题意知:ab c S S S ⎧=⎪⎪=⎨⎪=⎪⎩222222222222222a b c S a b a c S a b b c S a c b c ⎧=+⎪⇒=+⎨⎪=+⎩,由c b a >>知:c b a S S S >>.【答案】c b a S S S >>【例7】,则以该正方体各个面的中心为顶点的凸多面体的体积为( ) ABCD .23【考点】空间几何体的表面积和体积 【难度】2星 【题型】选择【关键字】2009年,陕西高考【解析】这个凸多面体是棱长为1的正八面体,可以看成两个正四棱锥,每个正四棱锥的体积为2113⋅=. 【答案】B ;【例8】 底面是菱形的直棱柱,它的对角线的长分别是9和15,高是5,求这个棱柱的侧面积.【考点】空间几何体的表面积和体积 【难度】2星 【题型】解答 【关键字】无【解析】设底面两条对角线的长分别为a b 、,则22222259515a b +=+=,,∴a b == ∴菱形的边长8x =,∴485160S =⨯⨯=.【答案】160.【例9】 若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60︒的菱形,则该棱柱的体积等于( )AB. C. D.【考点】空间几何体的表面积和体积 【难度】2星 【题型】选择【关键字】2008年,四川高考【解析】如图,ABCD 是正方形,取AF 中点H ,若60DAF ∠=︒,则连结DH ,H F EDCBA易知底面三角形是边长为2的正三角形,且DAF ∆为正三角形, 于是DH AF BH AF ⊥⊥,,且DH BH =BD =,不难算得DBH S ∆=1133D ABF F BDH A BDH BDH BDH V V V S FH S AH ---∆∆=+=⨯+⨯13BDH S AF ∆=⨯=因此3ABF DCE D ABF V V --==若60EFA ∠=︒,则连结EH ,此时有EH AF ⊥,可计算出E ABF V -=,同上可知三棱柱的体积为【答案】B ;【例10】 在体积为15的斜三棱柱111ABC A B C -中,S 是1C C 上的一点,S ABC -的体积为3,则三棱锥111S A B C -的体积为( ) A .1 B .32C .2D .3 【考点】空间几何体的表面积和体积 【难度】2星【题型】选择 【关键字】无【解析】如图所示,设斜三棱柱底面积为S ,高为h ,三棱锥S ABC -的高为h ',则15Sh =,133S ABCV Sh -'==,∴35h h '=,∴111131235S A B C V S h -⎛⎫=-= ⎪⎝⎭S CBA 1B 1C 1A【答案】C .【例11】 直三棱柱111ABC A B C -各侧棱和底面边长均为a ,点D 是1CC 上任意一点,连结1A B ,BD ,1A D ,AD ,则三棱锥1A A BD -的体积( )A .316aB3 C3 D .3112a DC 1B 1A 1CBA【考点】空间几何体的表面积和体积【难度】2星 【题型】选择 【关键字】无【解析】如图所示,三棱锥1A A BD -的体积即为1B AA D -,∴31132V a a ⎛⎫=⨯⋅= ⎪⎝⎭ 【答案】C .【例12】 如图,在三棱柱111ABC A B C -中,若E ,F 分别为AB ,AC 的中点,平面11EB C F将三棱柱分成体积为1V ,2V 的两部分,那么12:V V = .V 2V 1A 1B 1C 1F EC BA【考点】空间几何体的表面积和体积 【难度】2星 【题型】填空 【关键字】无【解析】设三棱柱的高为h ,111A B C ABC S S S ∆∆==,则14AEF S S ∆=,∴11173412V h S S Sh ⎛⎫=+= ⎪ ⎪⎝⎭,∴2751212V Sh Sh Sh =-= ∴12:7:5V V =【答案】12:7:5V V =【例13】 有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为3a 、4a 、5a ()0a >. 用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a 的取值范围是 .【考点】空间几何体的表面积和体积 【难度】3星 【题型】填空【关键字】2005年,上海春季高考【解析】 由图可知若拼成一个四棱柱,可能有把以3a 为底的侧面相接,以4a 为底的侧面相接和以5a 为底的侧面相接三种方案,相接的面积不在全面积中,故相接面的面积越大,得到的全面积越小. 上述三种方案中把以5a 为底的侧面相接时得到的四棱柱全面积最小,为()2122432432428S a a a a a a⨯=⨯⨯++=+;若拼成一个三棱柱,可以把底面相接,也可以把以3a 为底的侧面或以4a 为底的侧面相接,此时只要把一个三棱柱转180︒,使直角边连成一条线即可,上述三种方案中,后两种的全面积一定比四棱锥的最小全面积要大,所以若使全面积最小为四棱柱,只需底面相接的三棱柱全面大于1S ,即()121223423452S S a a a a a a<=⨯⨯⨯+⨯++,即2224281248a a +<+,解得0a <<.【答案】0a <<【例14】 平行六面体1111ABCD A B C D -中,在从B 点出发的三条棱上分别取其中点,,E F G ,则棱锥B EFG -的体积与平行六面体体积的比值为________.【考点】空间几何体的表面积和体积 【难度】3星 【题型】填空 【关键字】无【解析】棱锥底面三角形的面积是所在平行四边形的18,以此为底的高是平行六面体对应高的12,根据锥体的体积公式与柱体的体积公式知:棱锥B EFG -的体积与平行六面体体积的比值为111138248⋅⋅=.【答案】148【例15】 如图,在长方体1111ABCD A B C D -中,6AB =,4AD =,13AA =,分别过BC ,11A D 的两个平行截面将长方体分成三部分,其体积分别记为111AEA DFD V V -=,11112EBE A FCF D V V -=,11113B E BC F C V V -=,若123::V V V 1:4:1=,则截面11A EFD 的面积为 .E 1F 1FEDC BAA 1D 1B 1C 1【考点】空间几何体的表面积和体积 【难度】3星【题型】填空 【关键字】无【解析】由123::V V V 1:4:1=可知111111111266ABCD A B C D V V AB AA AD -==⋅⋅⋅=,又11A AE V S AD ∆=⋅1162A A AE AD AE =⋅⋅=解得:2AE =,在1Rt A AE ∆中,1A E =,∴11111A EFD S A E A D =⋅=【答案】棱锥【例16】 侧面都是直角三角形的正三棱锥,若底面边长为2,则三棱锥的全面积是多少? 【考点】空间几何体的表面积和体积 【难度】1星 【题型】解答 【关键字】无【解析】此正三棱锥可以当成边长为a 的正方体的一角,它的侧面是三个全等的等腰直角三角形,斜边长为2,底面是正三角形,边长为2,从而它的全面积132432S =⨯⨯+=【答案】3+【例17】 侧棱长与底面边长相等的正三棱锥称为正四面体,则棱长为1的正四面体的体积是________;【考点】空间几何体的表面积和体积 【难度】2星 【题型】填空 【关键字】无【解析】如图,O为底面正三角形的中心,23MC CO MC ===MOCSAB故在直角三角形SOC中,有SO =,112ABC S =⨯=故此正四面体的体积1312V ==.【答案】12【例18】 已知正三棱锥的侧面积为cm 2,高为3cm . 求它的体积.【考点】空间几何体的表面积和体积 【难度】2星 【题型】解答 【关键字】无【解析】设正三棱锥的斜高为h ',底面边长为a,则132a h ⎛⎫'⋅⋅= ⎪⎝⎭∴ah '=,即h '=, 由高为3,则2223h ⎫'=-⎪⎪⎝⎭,将①式代入,得:421081214430a a +-⨯⨯=,解得:236a =∴2133V =⨯=【答案】【例19】 已知正四棱锥底面正方形的边长为4,高与斜高的夹角为30︒,求正四棱锥的全面积与体积.【考点】空间几何体的表面积和体积 【难度】2星 【题型】解答【关键字】无【解析】如图所示,正棱锥的高,HODCBAP斜高与底面边心距组成一个直角POH ∆, 由题意得30HPO ∠=︒,2OH =,故cot 30PO OH =⋅︒=4sin30OHPH ==︒, 故它的全面积214444482S =+⨯⨯⨯=全,体积2143V =⨯⨯=【答案】48【例20】 正棱锥的高增为原来的n 倍,底面边长缩为原来的1n,那么体积( ) A .缩为原来的1nB .增为原来的n 倍C .没有变化D .以上结论都不对【考点】空间几何体的表面积和体积 【难度】2星 【题型】选择 【关键字】无【解析】由于棱锥的体积公式13V Sh =,而正多边形的边长与面积之间必然存在比例关系,设正多变形的边长为a ,则可设2S ka =.由于正棱锥的底面边长缩为原来的1n,∴变化之后的正棱锥的底面积为2211'()S k a S n n==∴变化后的正棱锥的体积为21111'''()()33V S h S nh V n n==⋅=【答案】A【例21】 正六棱锥-P ABCDEF 中,G 为PB 的中点,则三棱锥-D GAC 与三棱锥-P GAC体积之比为( )A .11∶B .12∶C .21∶D .32∶【考点】空间几何体的表面积和体积 【难度】2星 【题型】选择【关键字】2009年,辽宁高考【解析】记正六棱锥的底面边长为a ,高为h ,由PG BG =,结合草图(略)可知,2111222D GAC G ADC P ADC V V V a h ---===⋅⋅=,211112222P GAC G PAC B PAC P BAC V V V V a h ----====⋅⋅=,故其体积比为2:1.【答案】C ;棱台【例22】 正三棱台111ABC A B C -中,已知10AB =,棱台的侧面积为,1O O ,分别为上、下底面正三角形的中心,1D D 为棱台的斜高,160D DA ∠=︒,求上底面的边长.【考点】空间几何体的表面积和体积 【难度】2星 【题型】解答 【关键字】无【解析】 10AB =,故AD =13OD AD == H O 1D 1C 1B 1A 1ODCBA设上底面边长为a,则1113O D==,11DH OD O D =-,在直角三角形1D DH 中,11cos602DH DD DH DD ︒=⇒==,,1(10)2S a a⎫=⋅+⋅==⎪⎪⎭梯形故所求上底面的边长为【答案】【例23】已知三棱台111ABC A B C-中25ABCS∆=,111A B CS∆9=,高6h=.⑴求三棱锥1A ABC-的体积1A ABCV-⑵求三棱锥111B A B C-的体积111B A B CV-⑶求三棱锥11A BCC-的体积11A BCCV-CBAA1B1C1【考点】空间几何体的表面积和体积【难度】2星【题型】解答【关键字】无【解析】⑶先求得三棱台的体积为98,再减去前两问中的三棱锥的体积.【答案】⑴50;⑵18;⑶30【例24】正四棱台的斜高为4,侧棱长为5,侧面积为64,求棱台上、下底的边长.【考点】空间几何体的表面积和体积【难度】2星【题型】解答【关键字】无【解析】设四棱台上下底面边长分别为()a b a b<,,结合右图知,在侧面的直角梯形中有:22245221()44642b a a b ⎧⎛⎫+-=⎪ ⎪⎪⎝⎭⎨⎪⋅+⋅⨯=⎪⎩,68b a b a ⇒-=+=, 解得18a b ==,.【答案】1,8。
空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测2016年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。
2.旋转体的面积和体积公式表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π。
(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。
图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。
作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。
由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。
∵∠A 1AM=∠A 1AN ,∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。
∴点O 在∠BAD 的平分线上。
(2)∵AM=AA 1cos3π=3×21=23∴AO=4cosπAM =223。
又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9-29=29, ∴A 1O=223,平行六面体的体积为22345⨯⨯=V 230=。
题型2:柱体的表面积、体积综合问题例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .23B .32C .6D .6解析:设长方体共一顶点的三边长分别为a =1,b =2,c =3,则对角线l 的长为l =6222=++c b a ;答案D 。
点评:解题思路是将三个面的面积转化为解棱柱面积、体积的几何要素—棱长。
例4.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。
解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。
∵E 、F 分别为AB 、AC 的中点,∴S △AEF =41S, V 1=31h(S+41S+41⋅S )=127ShV 2=Sh-V 1=125Sh , ∴V 1∶V 2=7∶5。
点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。
最后用统一的量建立比值得到结论即可。
题型3:锥体的体积和表面积(2015湖北卷3)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为B A.38πB. 328πC. π28D. 332π点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。
在能力方面主要考查空间想象能力。
例6.(2015北京,19). (本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC ==.(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积.(Ⅰ)证明:在ABD △中,由于4AD =,8BD =,45AB =,ABCM PD所以222AD BD AB +=.故AD BD ⊥.又平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,BD ⊂平面ABCD , 所以BD ⊥平面PAD , 又BD ⊂平面MBD ,故平面MBD ⊥平面PAD .(Ⅱ)解:过P 作PO AD ⊥交AD 于O , 由于平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .因此PO 为四棱锥P ABCD -的高, 又PAD △是边长为4的等边三角形.因此34232PO =⨯=. 在底面四边形ABCD 中,AB DC ∥,2AB DC =,所以四边形ABCD 是梯形,在Rt ADB △中,斜边AB 边上的高为8545=, 此即为梯形ABCD 的高, 所以四边形ABCD 的面积为2545852425S +=⨯=. 故124231633P ABCD V -=⨯⨯=. 点评:本题比较全面地考查了空间点、线、面的位置关系。
要求对图形必须具备一定的洞察力,并进行一定的逻辑推理。
题型4:锥体体积、表面积综合问题例7.ABCD 是边长为4的正方形,E 、F 分别是AB 、AD 的中点,GC 垂直于正方形ABCD 所在的平面,且GC =2,求点B 到平面EFG 的距离?解:如图,取EF 的中点O ,连接GB 、GO 、CD 、FB 构造三棱锥B -EFG 。
设点B 到平面EFG 的距离为h ,BD =42,EF =22,CO =344232×=。
GO CO GC =+=+=+=222232218422()。
而GC ⊥平面ABCD ,且GC =2。
ABCM PD O由V V B EFG G EFB --=,得16EF GO h ··=13S EFB △· 点评:该问题主要的求解思路是将点面的距离问题转化为体积问题来求解。
构造以点B为顶点,△EFG 为底面的三棱锥是解此题的关键,利用同一个三棱锥的体积的唯一性列方程是解这类题的方法,从而简化了运算。
例8.(2015江西理,12) 如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A .S 1<S 2 B .S 1>S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定 解:连OA 、OB 、OC 、OD ,则V A -BEFD =V O -ABD +V O -ABE +V O -BEFDV A -EFC =V O -ADC +V O -AEC +V O -EFC 又V A -BEFD =V A -EFC ,而每个三棱锥的高都是原四面体的内切球的半径,故S ABD +S ABE +S BEFD =S ADC +S AEC+S EFC 又面AEF 公共,故选C点评:该题通过复合平面图形的分割过程,增加了题目处理的难度,求解棱锥的体积、表面积首先要转化好平面图形与空间几何体之间元素间的对应关系。
题型5:棱台的体积、面积及其综合问题 例9.(2015四川理,19) .(本小题满分12分)如图,面ABEF ⊥面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD=∠FAB=90°,BC ∥12AD ,BE ∥12AF ,G 、H 分别是FA 、FD 的中点。
(Ⅰ)证明:四边形BCHG 是平行四边形; (Ⅱ)C 、D 、E 、F 四点是否共面?为什么? (Ⅲ)设AB=BE ,证明:平面ADE ⊥平面CDE.)解法一:(Ⅰ)由题设知,FG=GA,FH=HD. 所以GH 12AD , 又BC12AD ,故GH BC . 所以四边形BCHG 是平行四边形.DB OCEFGHF EDCBA(Ⅱ)C 、D 、F 、E 四点共面.理由如下: 由BE12AF ,G 是FA 的中点知,BE GF ,所以EF ∥BG . 由(Ⅰ)知BG ∥GH ,故FH 共面.又点D 在直线FH 上. 所以C 、D 、F 、E 四点共面.(Ⅲ)连结EG ,由AB =BE ,BE AG 及∠BAG =90°知ABEG 是正方形. 故BG ⊥EA .由题设知,FA 、AD 、AB 两两垂直,故AD ⊥平面FABE , 因此EA 是ED 在平面FABE 内的射影,根据三垂线定理,BG ⊥ED . 又ED ∩EA =E ,所以BG ⊥平面ADE .由(Ⅰ)知,CH ∥BG ,所以CH ⊥平面ADE .由(Ⅱ)知F ∈平面CDE .故CH ⊂平面CDE ,得平面ADE ⊥平面CDE . 解法二:由题设知,FA 、AB 、AD 两两互相垂直.如图,以A 为坐标原点,射线AB 为x 轴正方向建立直角坐标系A -xyz. (Ⅰ)设AB=a,BC=b,BE=c ,则由题设得A (0,0,0),B (a ,0,0),C (a ,b,0),D (0,2b ,0),E (a ,0,c ),G (0,0,c ),H (0,b,c ). 所以,(0,,0),(0,,0).GH b BC b == 于是.GH BC = 又点G 不在直线BC 上. 所以四边形BCHG 是平行四边形. (Ⅱ)C 、D 、F 、E 四点共面.理由如下: 由题设知,F (0,0,2c ),所以(,0,),(,0,),,EF a c CH a c EF CH =-=-=.C EF H FD C D F E ∉∈又,,故、、、四点共面(Ⅲ)由AB=BE ,得c=a ,所以(,0,),(,0,).CH a a AE a a =-= 又(0,2,0), 0,0.AD b CH AE CH AD ===因此 即 CH ⊥AE ,CH ⊥AD ,又 AD ∩AE =A ,所以CH ⊥平面ADE ,故由CH ⊂平面CDFE ,得平面ADE ⊥平面CDE .点评:该题背景较新颖,把求二面角的大小与证明线、面平行这一常规运算置于非规则几何体(拟柱体)中,能考查考生的应变能力和适应能力,而第三步研究拟柱体的近似计算公式与可精确计算体积的辛普生公式之间计算误差的问题,是极具实际意义的问题。