模式识别5-线性分类器-第二讲
- 格式:ppt
- 大小:2.29 MB
- 文档页数:48
第 1 页第二讲 线性分类器一、 判别函数1、 决策论方法在模式识别中,如果根据模式特征信息,按照决策论的思路,以一定的数量规则来采取不同的分类决策,将待识别的模式划分到不同的类别中去,就称为模式识别的决策论方法。
在决策论方法中,特征空间被划分成不同的区域,每个区域对应一个模式类,称为决策区域(Decision Region )。
当我们判定待识别的模式位于某个决策区域时,就判决它可以划归到对应的类别中。
图1 决策区域需要注意的是:决策区域包含模式类中样本的分布区域,但不等于模式类的真实分布范围。
2、 判别函数如果特征空间中的决策区域边界(Decision Boundary )可以用一组方程0)( x i G来表示,则将一个模式对应的特征向量x 代入边界方程中的)(x i G ,确定其正负符号,就可以确定该模式位于决策区域边界的哪一边,从而可以判别其应当属于的类别,)(x i G 称为判别函数(Discriminant Function )。
判别函数的形式可以是线性的(Linear )或非线性(Non-linear)的。
第 2 页例如图2就显示了一个非线性判别函数,当G (x )>0时,可判别模式x ∈ω1;当G (x )<0时,可判别x ∈ω2。
图2 非线性判别函数非线性判别函数的处理比较复杂,如果决策区域边界可以用线性方程来表达,则决策区域可以用超平面(Hyperplane )来划分,无论在分类器的学习还是分类决策时都比较方便。
例如图3中的特征空间可以用两个线性判别函数来进行分类决策:当G 21(x )>0且G 13(x )>0时,x ∈ω2; 当G 13(x )<0且G 21(x )<0时,x ∈ω3; 当G 21(x )<0 且 G 13(x )>0时,x ∈ω1;当G 21(x )>0且G 13(x )<0时,x 所属类别无法判别。
模式识别:线性分类器一、实验目的和要求目的:了解线性分类器,对分类器的参数做一定的了解,理解参数设置对算法的影响。
要求:1. 产生两类样本2. 采用线性分类器生成出两类样本的分类面3. 对比线性分类器的性能,对比参数设置的结果二、实验环境、内容和方法环境:windows 7,matlab R2010a内容:通过实验,对生成的实验数据样本进行分类。
三、实验基本原理感知器基本原理:1.感知器的学习过程是不断改变权向量的输入,更新结构中的可变参数,最后实现在有限次迭代之后的收敛。
感知器的基本模型结构如图1所示:图1 感知器基本模型其中,X输入,Xi表示的是第i个输入;Y表示输出;W表示权向量;w0是阈值,f是一个阶跃函数。
感知器实现样本的线性分类主要过程是:特征向量的元素x1,x2,……,xk是网络的输入元素,每一个元素与相应的权wi相乘。
,乘积相加后再与阈值w0相加,结果通过f函数执行激活功能,f为系统的激活函数。
因为f是一个阶跃函数,故当自变量小于0时,f= -1;当自变量大于0时,f= 1。
这样,根据输出信号Y,把相应的特征向量分到为两类。
然而,权向量w并不是一个已知的参数,故感知器算法很重要的一个步骤即是寻找一个合理的决策超平面。
故设这个超平面为w,满足:(1)引入一个代价函数,定义为:(2)其中,Y是权向量w定义的超平面错误分类的训练向量的子集。
变量定义为:当时,= -1;当时,= +1。
显然,J(w)≥0。
当代价函数J(w)达到最小值0时,所有的训练向量分类都全部正确。
为了计算代价函数的最小迭代值,可以采用梯度下降法设计迭代算法,即:(3)其中,w(n)是第n次迭代的权向量,有多种取值方法,在本设计中采用固定非负值。
由J(w)的定义,可以进一步简化(3)得到:(4)通过(4)来不断更新w,这种算法就称为感知器算法(perceptron algorithm)。
可以证明,这种算法在经过有限次迭代之后是收敛的,也就是说,根据(4)规则修正权向量w,可以让所有的特征向量都正确分类。
第五章 特征选择和提取特征选择和提取是模式识别中的一个关键问题前面讨论分类器设计的时候,一直假定已给出了特征向量维数确定的样本集,其中各样本的每一维都是该样本的一个特征;这些特征的选择是很重要的,它强烈地影响到分类器的设计及其性能;假若对不同的类别,这些特征的差别很大,则比较容易设计出具有较好性能的分类器。
特征选择和提取是构造模式识别系统时的一个重要课题在很多实际问题中,往往不容易找到那些最重要的特征,或受客观条件的限制,不能对它们进行有效的测量;因此在测量时,由于人们心理上的作用,只要条件许可总希望把特征取得多一些;另外,由于客观上的需要,为了突出某些有用信息,抑制无用信息,有意加上一些比值、指数或对数等组合计算特征;如果将数目很多的测量值不做分析,全部直接用作分类特征,不但耗时,而且会影响到分类的效果,产生“特征维数灾难”问题。
为了设计出效果好的分类器,通常需要对原始的测量值集合进行分析,经过选择或变换处理,组成有效的识别特征;在保证一定分类精度的前提下,减少特征维数,即进行“降维”处理,使分类器实现快速、准确和高效的分类。
为达到上述目的,关键是所提供的识别特征应具有很好的可分性,使分类器容易判别。
为此,需对特征进行选择。
应去掉模棱两可、不易判别的特征;所提供的特征不要重复,即去掉那些相关性强且没有增加更多分类信息的特征。
说明:实际上,特征选择和提取这一任务应在设计分类器之前进行;从通常的模式识别教学经验看,在讨论分类器设计之后讲述特征选择和提取,更有利于加深对该问题的理解。
所谓特征选择,就是从n 个度量值集合{x1, x2,…, xn}中,按某一准则选取出供分类用的子集,作为降维(m 维,m<n )的分类特征;所谓特征提取,就是使(x1, x2,…, xn)通过某种变换,产生m 个特征(y1, y2,…, ym) (m<n) ,作为新的分类特征(或称为二次特征);其目的都是为了在尽可能保留识别信息的前提下,降低特征空间的维数,已达到有效的分类。