矩形格构式基础计算书(品茗2014版计算书)
- 格式:doc
- 大小:256.50 KB
- 文档页数:17
矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20XX2、《混凝土结构设计规范》GB50010-20XX3、《建筑地基基础设计规范》GB50007-20XX一、塔机属性塔机型号TC5013B塔机独立状态的最大起吊高度H0(m) 40.8塔机独立状态的计算高度H(m) 50塔身桁架结构方钢管塔身桁架结构宽度B(m) 1.61、塔机自身荷载标准值k三、基础验算基础布置基础长l(m) 5 基础宽b(m) 5 基础高度h(m) 1基础参数基础混凝土强度等级C30 基础混凝土自重γc(kN/m3) 25 基础上部覆土厚度h’(m)0 基础上部覆土的重度γ’(kN/m3) 19 基础混凝土保护层厚度δ(mm)40地基参数地基承载力特征值f ak(kPa) 200 基础宽度的地基承载力修正系数ηb0.3 基础埋深的地基承载力修正系数ηd 1.3 基础底面以下的土的重度γ(kN/m3) 19G k=blhγc=5×5×1×25=625kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×625=750kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=37.4×22+3.8×11.5-19.8×6.3-89.4×11.8+0.9×(650+0.5×22.12×50/1.2)=686.59kN·mF vk''=F vk/1.2=22.12/1.2=18.43kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2)=1.2×37.4×22+3.8×11.5-19.8×6.3-89.4×11.8)+1.4×0.9×(650+0.5×22.12×50/1.2) =1023.86kN·mF v''=F v/1.2=30.97/1.2=25.81kN基础长宽比:l/b=5/5=1≤1.1,基础计算形式为方形基础。
矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性塔机竖向荷载简图1、塔机自身荷载标准值k矩形板式基础布置图Gk =blhγc=5×5×1.35×23.52=793.8kN基础及其上土的自重荷载设计值:G=1.2Gk=1.2×793.8=952.56kN 荷载效应标准组合时,平行基础边长方向受力:Mk ''=G1RG1-G3RG3-G4RG4+0.5Fvk'H/1.2=44.57×29-15.78×6.3-150.92×11.5+0.5×68.25×43/1.2 =680.35kN·mFvk ''=Fvk'/1.2=68.25/1.2=56.88kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1RG1-G3RG3-G4RG4)+1.4×0.5Fvk'H/1.2=1.2×(44.57×29-15.78×6.3-150.92×11.5)+1.4×0.5×68.25×43/1.2 =1060.98kN·mFv ''=Fv'/1.2=95.55/1.2=79.62kN基础长宽比:l/b=5/5=1≤1.1,基础计算形式为方形基础。
Wx=lb2/6=5×52/6=20.83m3Wy=bl2/6=5×52/6=20.83m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:Mkx =Mkb/(b2+l2)0.5=924.91×5/(52+52)0.5=654.01kN·mMky =Mkl/(b2+l2)0.5=924.91×5/(52+52)0.5=654.01kN·m1、偏心距验算(1)、偏心位置相应于荷载效应标准组合时,基础边缘的最小压力值:Pkmin =(Fk+Gk)/A-Mkx/Wx-Mky/Wy=(397.24+793.8)/25-654.01/20.83-654.01/20.83=-15.14<0 偏心荷载合力作用点在核心区外。
矩形板式桩基础计算书一、参数信息二、桩顶作用效应计算(图1)承台配筋图(图2)桩配筋图(图3)基础布置图承台及其上土的自重荷载标准值:Gk=bl(hγc+h'γ')=5×5×(1.35×25+0×50)=843.75kN承台及其上土的自重荷载设计值:G=1.35Gk=1.35×843.75=1139.063kN桩对角线距离:L=(ab2+al2)0.5=(3.62+3.62)0.5=5.091m1、荷载效应标准组合轴心竖向力作用下:Qk=(Gk1+Gk)/n=(330+843.75)/4=293.438kN荷载效应标准组合偏心竖向力作用下:Q kmax=(Gk1+G k)/n+(M k+F Vk h)/L=(330+843.75)/4+(1292+14.1×1.35)/5.091=550.94 9KNQ kmin=(Gk1+G k)/n-(M k+F Vk h)/L=(330+843.75)/4-(1292+14.1×1.35)/5.091=35.926K N2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G)/n+(M+F v h)/L=(366.2+1139.063)/4+(1.35×1292+14.1×1.35×1.35)/5.09 1=723.956kNQ min=(F+G)/n-(M+F v h)/L=(366.2+1139.063)/4-(1.35×1292+14.1×1.35×1.35)/5.091 =28.675kN三、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14159×0.5=1.571m桩端面积:A p=πd2/4=3.14159×0.5×0.5/4=0.196m2承载力计算深度:min(b/2,5)=2.5m承台底净面积:A c=(bl-nA p)/n=(5×5-4×0.196)/4=6.054m2复合桩基竖向承载力特征值:R a=ψuΣq sia·l i+q pa·A p+εc f ak A c=1×1.571×534.78+1651.568×0.196+0.1×6.054×120.09 2=1237.014kNQ k=293.438kN≤R a=1237.014kNQ kmax=550.949kN≤1.2R a=1.2×1237.014=1484.417kN满足要求2、桩基竖向抗拔承载力计算Q kmin= 35.926KN≥0 kN满足要求不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=10×3.14159×14/1000×14/1000/4=0.002m2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=723.956kN桩身结构竖向承载力设计值:R=1800kNQ=723.956kN<=R=1800kN满足要求(2)、轴心受拔桩桩身承载力Q kmin=35.926kN≥0 kN满足要求不需要进行轴心受拔桩桩身承载力计算!4、桩身构造配筋计算《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009,第6.2.2条:纵向钢筋的最小配筋率,对于灌注桩不宜小于0.2%~0.65%(小直径桩取最高值);对于预制桩不宜小于0.8%;对于预应力管桩不宜小于0.45%。
矩形格构式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-20115、《钢结构设计规范》GB50017-2003一、塔机属性塔机型号QTZ60(浙江建机)塔机独立状态的最大起吊高度H0(m) 40塔机独立状态的计算高度H(m) 43塔身桁架结构圆钢管塔身桁架结构宽度B(m) 1.6二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值2、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值三、桩顶作用效应计算基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=4.8×4.8×(1.2×25+0×19)=691.2kN承台及其上土的自重荷载设计值:G=1.2G k=1.2×691.2=829.44kN桩对角线距离:L=(a b2+a l2)0.5=(3.62+3.62)0.5=5.091m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k+G p2)/n=(461.4+691.2+20)/4=293.15kN 荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k+G p2)/n+(M k+F Vk h)/L=(461.4+691.2+20)/4+(637.738+17.049×1.2)/5.091=422.432kNQ kmin=(F k+G k+G p2)/n-(M k+F Vk h)/L=(461.4+691.2+20)/4-(637.738+17.049×1.2)/5.091=163.868kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G+1.35×G p2)/n+(M+F v h)/L=(565.68+829.44+1.35×20)/4+(955.465+23.869×1.2)/5.091=548.827kNQ min=(F+G+1.35×G p2)/n-(M+F v h)/L=(565.68+829.44+1.35×20)/4-(955.465+23.869×1.2)/5.091=162.233kN四、格构柱计算1、格构式钢柱换算长细比验算整个格构柱截面对X、Y轴惯性矩:I=4[I0+A0(a/2-Z0)2]=4×[236.53+26.26×(46.00/2-2.99)2]=43004.147cm4整个构件长细比:λx=λy=H0/(I/(4A0))0.5=1130/(43004.147/(4×26.26))0.5=55.847分肢长细比:λ1=l01/i y0=31.00/1.94=15.979分肢毛截面积之和:A=4A0=4×26.26×102=10504mm2格构式钢柱绕两主轴的换算长细比:λ0 max=(λx2+λ12)0.5=(55.8472+15.9792)0.5=58.088 λ0max=58.088≤[λ]=150满足要求!2、格构式钢柱分肢的长细比验算λ1=15.979≤min(0.5λ0max,40)=min(0.5×58.088,40)=29.044满足要求!3、格构式钢柱受压稳定性验算λ0max(f y/235)0.5=58.088×(215/235)0.5=55.561查表《钢结构设计规范》GB50017附录C:b类截面轴心受压构件的稳定系数:φ=0.828 Q max/(φA)=548.827×103/(0.828×10504)=63.103N/mm2≤f=215N/mm2满足要求!4、缀件验算缀件所受剪力:V=Af(f y/235)0.5/85=10504×215×10-3×(215/235)0.5/85=25.413kN格构柱相邻缀板轴线距离:l1=l01+30=31.00+30=61cm作用在一侧缀板上的弯矩:M0=Vl1/4=25.413×0.61/4=3.876kN·m分肢型钢形心轴之间距离:b1=a-2Z0=0.46-2×0.0299=0.4m作用在一侧缀板上的剪力:V0=Vl1/(2·b1)=25.413×0.61/(2×0.4)=19.368kNσ= M0/(bh2/6)=3.876×106/(20×3002/6)=12.918N/mm2≤f=215N/mm2满足要求!τ=3V0/(2bh)=3×19.368×103/(2×20×300)=4.842N/mm2≤τ=125N/mm2满足要求!角焊缝面积:A f=0.7h f l f=0.8×10×464=3248mm2角焊缝截面抵抗矩:W f=0.7h f l f2/6=0.7×10×4642/6=251179mm3垂直于角焊缝长度方向应力:σf=M0/W f=3.876×106/251179=15N/mm2平行于角焊缝长度方向剪应力:τf=V0/A f=19.368×103/3248=6N/mm2((σf /1.22)2+τf2)0.5=((15/1.22)2+62)0.5=14N/mm2≤f tw=160N/mm2满足要求!根据缀板的构造要求缀板高度:300mm≥2/3 b1=2/3×0.4×1000=267mm满足要求!缀板厚度:20mm≥max[1/40b1,6]= max[1/40×0.4×1000,6]=10mm满足要求!缀板间距:l1=610mm≤2b1=2×0.4×1000=800mm满足要求!线刚度:∑缀板/分肢=4×20×3003/(12×(460-2×29.9))/(236.53×104/610)=115.995≥6满足要求!五、桩承载力验算考虑基坑开挖后,格构柱段外露,不存在侧阻力,此时为最不利状态1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.8=2.513m桩端面积:A p=πd2/4=3.14×0.82/4=0.503m2R a=uΣq sia·l i+q pa·A p=2.513×(5.8×5+7.4×24+3.1×18)+200×0.503=760.014kNQ k=293.15kN≤R a=760.014kNQ kmax=422.432kN≤1.2R a=1.2×760.014=912.017kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=163.868kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=12×3.142×162/4=2413mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=548.827kNψc f c A p+0.9f y'A s'=(0.75×12×0.503×106 + 0.9×(300×2412.743))×10-3=5210.017kN Q=548.827kN≤ψc f c A p+0.9f y'A s'=5210.017kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin=163.868kN≥0不需要进行轴心受拔桩桩身承载力计算!4、桩身构造配筋计算A s/A p×100%=(2412.743/(0.503×106))×100%=0.48%≥0.45%满足要求!六、承台计算1、荷载计算承台有效高度:h0=1200-50-25/2=1138mmM=(Q max+Q min)L/2=(548.827+(162.233))×5.091/2=1810.063kN·mX方向:M x=Ma b/L=1810.063×3.6/5.091=1279.908kN·mY方向:M y=Ma l/L=1810.063×3.6/5.091=1279.908kN·m2、受剪切计算V=F/n+M/L=565.68/4 + 955.465/5.091=329.091kN受剪切承载力截面高度影响系数:βhs=(800/1138)1/4=0.916塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(3.6-1.6-0.8)/2=0.6ma1l=(a l-B-d)/2=(3.6-1.6-0.8)/2=0.6m剪跨比:λb'=a1b/h0=600/1138=0.527,取λb=0.527;λl'= a1l/h0=600/1138=0.527,取λl=0.527;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.527+1)=1.146αl=1.75/(λl+1)=1.75/(0.527+1)=1.146βhsαb f t bh0=0.916×1.146×1.27×103×4.8×1.138=7278.715kNβhsαl f t lh0=0.916×1.146×1.27×103×4.8×1.138=7278.715kNV=329.091kN≤min(βhsαb f t bh0,βhsαl f t lh0)=7278.715kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.6+2×1.138=3.876ma b=3.6m≤B+2h0=3.876m,a l=3.6m≤B+2h0=3.876m角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=1279.908×106/(1.05×11.9×4800×11382)=0.016ζ1=1-(1-2αS1)0.5=1-(1-2×0.016)0.5=0.017γS1=1-ζ1/2=1-0.017/2=0.992A S1=M y/(γS1h0f y1)=1279.908×106/(0.992×1138×360)=3151mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.27/360)=max(0.2,0.159)=0.2%梁底需要配筋:A1=max(A S1, ρbh0)=max(3151,0.002×4800×1138)=10925mm2 承台底长向实际配筋:A S1'=12272mm2≥A1=10925mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=1279.908×106/(1.05×11.9×4800×11382)=0.016ζ2=1-(1-2αS2)0.5=1-(1-2×0.016)0.5=0.017γS2=1-ζ2/2=1-0.017/2=0.992A S2=M x/(γS2h0f y1)=1279.908×106/(0.992×1138×360)=3151mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.27/360)=max(0.2,0.159)=0.2% 梁底需要配筋:A2=max(9674, ρlh0)=max(9674,0.002×4800×1138)=10925mm2 承台底短向实际配筋:A S2'=12272mm2≥A2=10925mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=6362mm2≥0.5A S1'=0.5×12272=6136mm2满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=6362mm2≥0.5A S2'=0.5×12272=6136mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。
品茗计算板模板是一个比较复杂的计算过程,需要考虑到很多因素,比如板厚、板长、板宽、支撑类型、混凝土强度等级、木材的种类和密度等等。
下面我将根据一般情况,简单描述一下品茗计算板模板的过程,希望能够为您提供一些参考。
首先,我们需要明确板模板的计算公式:模板面积= (板长+ 板宽) ×2 ×(板厚/木方宽度) + 板宽×板长。
其中,板厚是您需要确定的一个重要参数,需要根据实际工程需要进行选择。
接下来,我们需要对各种因素进行综合考虑。
比如,如果采用的是碗扣式支撑,那么需要考虑碗扣的搭接方式和扣件的数量,这会直接影响模板的受力情况。
此外,混凝土强度等级也会影响模板的设计和选材,如果混凝土强度较高,那么就需要选择更加坚固的模板材料。
在品茗软件中,这些因素都可以通过输入相应的参数来体现。
比如在品茗软件的模板计算模块中,我们可以输入板长、板宽、板厚、支撑类型、混凝土强度等级等参数,软件就会自动进行计算并输出结果。
在具体操作过程中,我们需要根据实际情况进行选择和调整。
比如,如果板长和板宽较大,那么就需要考虑支撑的稳定性,可能需要采用双层支撑或者增加木方的密度等措施。
同时,在选择模板材料时,也需要考虑到材料的耐久性和成本等因素。
此外,品茗软件还有一些其他的辅助功能,比如模板配模分析和结果输出等。
这些功能可以帮助我们更好地进行模板设计,提高施工效率和质量。
总之,品茗计算板模板需要综合考虑各种因素,包括支撑类型、混凝土强度等级、木材的种类和密度等。
在具体操作过程中,我们需要根据实际情况进行选择和调整,充分利用品茗软件提供的辅助功能,提高施工效率和质量。
希望这个回答能对您有所帮助!如有其他问题,请随时提问。
矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性1、塔机传递至基础荷载标准值基础布置图G k=blhγc=6×6×1.35×25=1215kN基础及其上土的自重荷载设计值:G=1.35G k=1.35×1215=1640.25kN 荷载效应标准组合时,平行基础边长方向受力:M k''=1552kN·mF vk''=F vk'/1.2=73.9/1.2=61.583kN荷载效应基本组合时,平行基础边长方向受力:M''=2095.2kN·mF v''=F v'/1.2=99.765/1.2=83.138kN基础长宽比:l/b=6/6=1≤1.1,基础计算形式为方形基础。
W x=lb2/6=6×62/6=36m3W y=bl2/6=6×62/6=36m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=1552×6/(62+62)0.5=1097.43kN·mM ky=M k l/(b2+l2)0.5=1552×6/(62+62)0.5=1097.43kN·m1、偏心距验算(1)、偏心位置相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y=(514+1215)/36-1097.43/36-1097.43/36=-12.941<0偏心荷载合力作用点在核心区外。
(2)、偏心距验算偏心距:e=(M k+F Vk h)/(F k+G k)=(1552+73.9×1.35)/(514+1215)=0.955m合力作用点至基础底面最大压力边缘的距离:a=(62+62)0.5/2-0.955=3.287m偏心距在x方向投影长度:e b=eb/(b2+l2)0.5=0.955×6/(62+62)0.5=0.676m偏心距在y方向投影长度:e l=el/(b2+l2)0.5=0.955×6/(62+62)0.5=0.676m偏心荷载合力作用点至e b一侧x方向基础边缘的距离:b'=b/2-e b=6/2-0.676=2.324m偏心荷载合力作用点至e l一侧y方向基础边缘的距离:l'=l/2-e l=6/2-0.676=2.324m b'l'=2.324×2.324=5.403m2≥0.125bl=0.125×6×6=4.5m2满足要求!2、基础底面压力计算荷载效应标准组合时,基础底面边缘压力值P kmin=-12.941kPaP kmax=(F k+G k)/3b'l'=(514+1215)/(3×2.324×2.324)=106.665kPa3、基础轴心荷载作用应力P k=(F k+G k)/(lb)=(514+1215)/(6×6)=48.028kN/m24、基础底面压力验算(1)、修正后地基承载力特征值f a=f ak+εbγ(b-3)+εdγm(d-0.5)=130.00+0.30×19.00×(6.00-3)+1.60×19.00×(1.35-0.5)=172.94kPa(2)、轴心作用时地基承载力验算P k=48.028kPa≤f a=172.94kPa满足要求!(3)、偏心作用时地基承载力验算P kmax=106.665kPa≤1.2f a=1.2×172.94=207.528kPa满足要求!5、基础抗剪验算基础有效高度:h0=h-δ=1350-(50+20/2)=1290mmX轴方向净反力:P xmin=γ(F k/A-(M k''+F vk''h)/W x)=1.35×(514.000/36.000-(1552.000+61.583×1.350)/36.000) =-42.043kPaP xmax=γ(F k/A+(M k''+F vk''h)/W x)=1.35×(514.000/36.000+(1552.000+61.583×1.350)/36.00 0)=80.593kPa假设P xmin=0,偏心安全,得P1x=((b+B)/2)P xmax/b=((6.000+1.600)/2)×80.593/6.000=51.042kPaY轴方向净反力:P ymin=γ(F k/A-(M k''+F vk''h)/W y)=1.35×(514.000/36.000-(1552.000+61.583×1.350)/36.000) =-42.043kPaP ymax=γ(F k/A+(M k''+F vk''h)/W y)=1.35×(514.000/36.000+(1552.000+61.583×1.350)/36.00 0)=80.593kPa假设P ymin=0,偏心安全,得P1y=((l+B)/2)P ymax/l=((6.000+1.600)/2)×80.593/6.000=51.042kPa基底平均压力设计值:p x=(P xmax+P1x)/2=(80.593+51.042)/2=65.817kPap y=(P ymax+P1y)/2=(80.593+51.042)/2=65.817kPa基础所受剪力:V x=|p x|(b-B)l/2=65.817×(6-1.6)×6/2=868.789kNV y=|p y|(l-B)b/2=65.817×(6-1.6)×6/2=868.789kNX轴方向抗剪:h0/l=1290/6000=0.215≤40.25βc f c lh0=0.25×1×16.7×6000×1290=32314.5kN≥V x=868.789kN满足要求!Y轴方向抗剪:h0/b=1290/6000=0.215≤40.25βc f c bh0=0.25×1×16.7×6000×1290=32314.5kN≥V y=868.789kN满足要求!作用在软弱下卧层顶面处总压力:p z+p cz=0+0=0kPa≤f az=324.94kPa满足要求!四、基础配筋验算基础X向弯矩:MⅠ=(b-B)2p x l/8=(6-1.6)2×65.817×6/8=955.668kN·m基础Y向弯矩:MⅡ=(l-B)2p y b/8=(6-1.6)2×65.817×6/8=955.668kN·m2、基础配筋计算(1)、底面长向配筋面积αS1=|MⅡ|/(α1f c bh02)=955.668×106/(1×16.7×6000×12902)=0.006δ1=1-(1-2αS1)0.5=1-(1-2×0.006)0.5=0.006γS1=1-δ1/2=1-0.006/2=0.997A S1=|MⅡ|/(γS1h0f y1)=955.668×106/(0.997×1290×300)=2477mm2基础底需要配筋:A1=max(2477,ρbh0)=max(2477,0.0015×6000×1290)=11610mm2基础底长向实际配筋:A s1'=12874mm2≥A1=11610mm2满足要求!(2)、底面短向配筋面积αS2=|MⅠ|/(α1f c lh02)=955.668×106/(1×16.7×6000×12902)=0.006δ2=1-(1-2αS2)0.5=1-(1-2×0.006)0.5=0.006γS2=1-δ2/2=1-0.006/2=0.997A S2=|MⅠ|/(γS2h0f y2)=955.668×106/(0.997×1290×300)=2477mm2基础底需要配筋:A2=max(2477,ρlh0)=max(2477,0.0015×6000×1290)=11610mm2 基础底短向实际配筋:A S2'=12874mm2≥A2=11610mm2满足要求!(3)、顶面长向配筋面积基础顶长向实际配筋:A S3'=7884.54mm2≥0.5A S1'=0.5×12874=6437mm2满足要求!(4)、顶面短向配筋面积基础顶短向实际配筋:A S4'=7884.54mm2≥0.5A S2'=0.5×12874=6437mm2 满足要求!(5)、基础竖向连接筋配筋面积基础竖向连接筋为双向Φ10@500。
矩形板式基础计算书工程信息:工程名称:某工程;方案编制人:张三;编制日期:2021/4/1。
施工单位:某施工单位;结构类型:框架;计算依据:依据《塔式起重机混凝土基础工程技术规程》(JGJ/T187-2009)、《塔式起重机设计规范》(GB/T13752-2017)、《混凝土结构设计规范》(GB50010-2010)、《建筑地基基础设计规范》(GB50007-2011)、《建筑结构荷载规范》(GB50009-2012)编制。
一、参数信息1)塔吊基本参数塔吊型号:QTZ63,塔吊最大起吊高度H0=40m,塔身宽度B=1.6m;2)塔机自重参数塔身自重G0=251kN,起重臂自重G1=37.4kN,小车和吊钩自重G2=3.8kN,平衡臂自重G3=19.8kN,平衡块自重G4=89.4kN,最大起重荷载Q max=60kN,最小起重荷载Q max=10kN;3)塔机尺寸参数起重臂重心到塔身中心的距离R G1=22m,小车和吊钩重心到塔身中心的距离R G2=11.5m,平衡臂重心到塔身中心的距离R G3=6.3m,平衡块重心到塔身中心的距离R G4=11.8m,最大起重荷载到塔身中心的距离R Qmax=11.5m,最小起重荷载到塔身中心的距离R Qmin=50m;4)塔吊承台参数承台长度b=4.8m,承台宽度l=4.8m,承台高度h=1.25m,承台混凝土强度等级:C35,承台混凝土自重=25kN/m3,承台上部覆土厚度d=1.5m,承台上部覆土重度=17kN/m3;5)塔吊基础参数地基承载力特征值f a=150kN/m2,基础宽度地基承载力修正系数ηb=0.3,基础埋深地基承载力修正系数ηd=1.6,基础埋深地基承载力修正系数γ=25kN/m3,基础底面以上的土的加权平均重度γm=25kN/m3,承台埋置深度D=1.5m,修正后的地基承载力特征值f a=203.5kN/m2;6)风荷载参数塔身桁架杆件类型为:型钢或方钢管,地面粗糙度类型为:B类城市郊区,塔机计算高度h=43m,塔身前后片桁架平均充实率α0=0.35,塔身风向系数α=1.2,基本风压W0=0.45kN/m2(工程所在地:北京,取50年一遇),风荷载高度变化系数μz=1.32,风荷载体型系数μs=1.95,风荷载风振系数βz=1.65;7)承台配筋参数承台底面长向配筋:使用HPB235钢筋,直径为20mm,间距为160mm;承台底面短向配筋:使用HPB235钢筋,直径为20mm,间距为160mm;二、荷载计算1、自重荷载及起重荷载1)塔机自重标准值F k1=251+37.4+3.8+19.8+89.4=401.4kN;2)基础自重标准值G k=4.8×4.8×(1.25×25+1.5×17)=1307.52kN;3)起重荷载标准值F qk=60kN;2、风荷载计算计算公式如下:1)工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值工作状态下ω0=0.2kN/m2μz=1.32μs=1.95βz=1.59α0=0.35α=1.2计算结果:ωk=0.65kN/m2q sk=0.44kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=18.92kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=406.78kN·m2)非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值非工作状态下ω0=0.45kN/m2(北京,取50年一遇)μz=1.32μs=1.95βz=1.65α0=0.35α=1.2计算结果:ωk=1.53kN/m2q'sk=1.03kN/mb. 塔机所受风荷载水平合力标准值F'vk=q'sk×H=44.29kNc. 基础顶面风荷载产生的力矩标准值M'sk=0.5F'vk×H=952.24kN·m3、塔机的倾覆力矩塔机自身产生的倾覆力矩,向前(起重臂方向)为正,向后为负。
品茗施工安全设施计算软件下载地址:&p=mm_21128503_0_0品茗资料软件教程品茗施工安全设施计算软件◎●《品茗施工安全设施计算软件》是针对施工过程中如脚手架、模板、塔吊等有关施工现场安全设施的专项方案编制和审核专用软件产品,本软件主要依据国家相关技术规范、行业标准和计算手册研制而成,是国内首家通过中国建设部权威鉴定、并被列为“全国建设行业科技推广项目”向全国推广的安全计算软件,自2004年上市以来,目前全国用户已经突破1万家。
该软件独创了将计算书、专项方案和审核表系统集成技术,极大的提高了施工技术人员在安全专项方案的计算、编制和审核过程中的准确性、规范性和节约性。
◎●目前软件涵盖施工现场脚手架、模板、临时用水用电、塔吊、混凝土、钢筋支架、结构吊装、降排水、浅基坑等9大专业模块。
权威规范保安全◎●软件研发过程中参照了39本规范、标准、计算手册和专业文章,由2名博士撰写需求并控制质量,由18名特一级企业总工担任顾问反馈意见,经过196个不同项目部现场体验试用,安全可靠性达到领先水平。
三位一体做方案◎●计算书、安全专项方案书、报审表三位一体,软件可同步生成。
计算书图文并茂,安全专项方案书内容丰富,报审表简洁明了。
软件功能从群众中来,到群众中去,真的很实用。
软件操作零门槛◎●软件人性化设计,傻瓜式操作,只需输入基本参数,轻轻点击鼠标,各种结论瞬间可看可得,摒弃操作门槛,不懂电脑也好用,无需手工计算,无需手工配图,无需查阅规范,软件轻轻松松帮您一切搞定。
计算结果已评判◎●在方案的计算过程中结果是否符合规范是最头疼的,软件通过“红绿字”智能评判:符合规范用“绿字”显示,不符合规范用“红字”显示,软件不仅告诉您错了,而且告诉您错在哪里,甚至告诉您如何修改。
方案优化很简单◎●高水平的的技术人员在编方案的时侯不仅要考虑安全与否,同时要兼顾方案的合,反复优化方案在手工编方案时是有心无力,品茗软件2秒种即可完成一次优化,真是不要太简单。
矩形格构式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-20115、《钢结构设计规范》GB50017-2003一、塔机属性二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值2、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值三、桩顶作用效应计算基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=4.8×4.8×(1.2×25+0×19)=691.2kN承台及其上土的自重荷载设计值:G=1.2G k=1.2×691.2=829.44kN桩对角线距离:L=(a b2+a l2)0.5=(3.62+3.62)0.5=5.091m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k+G p2)/n=(461.4+691.2+20)/4=293.15kN 荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k+G p2)/n+(M k+F Vk h)/L=(461.4+691.2+20)/4+(637.738+17.049×1.2)/5.091=422.432kNQ kmin=(F k+G k+G p2)/n-(M k+F Vk h)/L=(461.4+691.2+20)/4-(637.738+17.049×1.2)/5.091=163.868kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G+1.35×G p2)/n+(M+F v h)/L=(565.68+829.44+1.35×20)/4+(955.465+23.869×1.2)/5.091=548.827kNQ min=(F+G+1.35×G p2)/n-(M+F v h)/L=(565.68+829.44+1.35×20)/4-(955.465+23.869×1.2)/5.091=162.233kN四、格构柱计算1、格构式钢柱换算长细比验算整个格构柱截面对X、Y轴惯性矩:I=4[I0+A0(a/2-Z0)2]=4×[236.53+26.26×(46.00/2-2.99)2]=43004.147cm4整个构件长细比:λx=λy=H0/(I/(4A0))0.5=1130/(43004.147/(4×26.26))0.5=55.847 分肢长细比:λ1=l01/i y0=31.00/1.94=15.979分肢毛截面积之和:A=4A0=4×26.26×102=10504mm2格构式钢柱绕两主轴的换算长细比:λ0 max=(λx2+λ12)0.5=(55.8472+15.9792)0.5=58.088 λ0max=58.088≤[λ]=150满足要求!2、格构式钢柱分肢的长细比验算λ1=15.979≤min(0.5λ0max,40)=min(0.5×58.088,40)=29.044满足要求!3、格构式钢柱受压稳定性验算λ0max(f y/235)0.5=58.088×(215/235)0.5=55.561查表《钢结构设计规范》GB50017附录C:b类截面轴心受压构件的稳定系数:υ=0.828 Q max/(υA)=548.827×103/(0.828×10504)=63.103N/mm2≤f=215N/mm2满足要求!4、缀件验算缀件所受剪力:V=Af(f y/235)0.5/85=10504×215×10-3×(215/235)0.5/85=25.413kN格构柱相邻缀板轴线距离:l1=l01+30=31.00+30=61cm作用在一侧缀板上的弯矩:M0=Vl1/4=25.413×0.61/4=3.876kN·m分肢型钢形心轴之间距离:b1=a-2Z0=0.46-2×0.0299=0.4m作用在一侧缀板上的剪力:V0=Vl1/(2·b1)=25.413×0.61/(2×0.4)=19.368kNσ= M0/(bh2/6)=3.876×106/(20×3002/6)=12.918N/mm2≤f=215N/mm2满足要求!τ=3V0/(2bh)=3×19.368×103/(2×20×300)=4.842N/mm2≤τ=125N/mm2满足要求!角焊缝面积:A f=0.7h f l f=0.8×10×464=3248mm2角焊缝截面抵抗矩:W f=0.7h f l f2/6=0.7×10×4642/6=251179mm3垂直于角焊缝长度方向应力:σf=M0/W f=3.876×106/251179=15N/mm2平行于角焊缝长度方向剪应力:τf=V0/A f=19.368×103/3248=6N/mm2((σf /1.22)2+τf2)0.5=((15/1.22)2+62)0.5=14N/mm2≤f tw=160N/mm2满足要求!根据缀板的构造要求缀板高度:300mm≥2/3 b1=2/3×0.4×1000=267mm满足要求!缀板厚度:20mm≥max[1/40b1,6]= max[1/40×0.4×1000,6]=10mm满足要求!缀板间距:l1=610mm≤2b1=2×0.4×1000=800mm满足要求!线刚度:∑缀板/分肢=4×20×3003/(12×(460-2×29.9))/(236.53×104/610)=115.995≥6满足要求!五、桩承载力验算考虑基坑开挖后,格构柱段外露,不存在侧阻力,此时为最不利状态1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.8=2.513m桩端面积:A p=πd2/4=3.14×0.82/4=0.503m2R a=uΣq sia·l i+q pa·A p=2.513×(5.8×5+7.4×24+3.1×18)+200×0.503=760.014kNQ k=293.15kN≤R a=760.014kNQ kmax=422.432kN≤1.2R a=1.2×760.014=912.017kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=163.868kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=12×3.142×162/4=2413mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=548.827kNψc f c A p+0.9f y'A s'=(0.75×12×0.503×106 + 0.9×(300×2412.743))×10-3=5210.017kN Q=548.827kN≤ψc f c A p+0.9f y'A s'=5210.017kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin=163.868kN≥0不需要进行轴心受拔桩桩身承载力计算!4、桩身构造配筋计算A s/A p×100%=(2412.743/(0.503×106))×100%=0.48%≥0.45%满足要求!六、承台计算1、荷载计算承台有效高度:h0=1200-50-25/2=1138mmM=(Q max+Q min)L/2=(548.827+(162.233))×5.091/2=1810.063kN·mX方向:M x=Ma b/L=1810.063×3.6/5.091=1279.908kN·mY方向:M y=Ma l/L=1810.063×3.6/5.091=1279.908kN·m2、受剪切计算V=F/n+M/L=565.68/4 + 955.465/5.091=329.091kN受剪切承载力截面高度影响系数:βhs=(800/1138)1/4=0.916塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(3.6-1.6-0.8)/2=0.6ma1l=(a l-B-d)/2=(3.6-1.6-0.8)/2=0.6m剪跨比:λb'=a1b/h0=600/1138=0.527,取λb=0.527;λl'= a1l/h0=600/1138=0.527,取λl=0.527;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.527+1)=1.146αl=1.75/(λl+1)=1.75/(0.527+1)=1.146βhsαb f t bh0=0.916×1.146×1.27×103×4.8×1.138=7278.715kNβhsαl f t lh0=0.916×1.146×1.27×103×4.8×1.138=7278.715kNV=329.091kN≤min(βhsαb f t bh0,βhsαl f t lh0)=7278.715kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.6+2×1.138=3.876ma b=3.6m≤B+2h0=3.876m,a l=3.6m≤B+2h0=3.876m角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=1279.908×106/(1.05×11.9×4800×11382)=0.016δ1=1-(1-2αS1)0.5=1-(1-2×0.016)0.5=0.017γS1=1-δ1/2=1-0.017/2=0.992A S1=M y/(γS1h0f y1)=1279.908×106/(0.992×1138×360)=3151mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.27/360)=max(0.2,0.159)=0.2% 梁底需要配筋:A1=max(A S1, ρbh0)=max(3151,0.002×4800×1138)=10925mm2承台底长向实际配筋:A S1'=12272mm2≥A1=10925mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=1279.908×106/(1.05×11.9×4800×11382)=0.016δ2=1-(1-2αS2)0.5=1-(1-2×0.016)0.5=0.017γS2=1-δ2/2=1-0.017/2=0.992A S2=M x/(γS2h0f y1)=1279.908×106/(0.992×1138×360)=3151mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.27/360)=max(0.2,0.159)=0.2% 梁底需要配筋:A2=max(9674, ρlh0)=max(9674,0.002×4800×1138)=10925mm2 承台底短向实际配筋:A S2'=12272mm2≥A2=10925mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=6362mm2≥0.5A S1'=0.5×12272=6136mm2满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=6362mm2≥0.5A S2'=0.5×12272=6136mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。