力、位移和应变完全由KⅠ决定。 A. KⅠ定义:裂纹尖端应力应变强度因子。其大小取 决于机件受力大小,裂纹开关和大小。
B. KⅠ=Yσ√a Y:几何系数,单位[应力][长度]1/2 MPa.m1/2
或Kgf.mm-3/2
注:无限大平板内中心含穿透裂纹Y=√π,
KⅠ=σ√πa C.几种常见裂纹的应力强度因子表达式 P84
2. 断裂判据的应用
断裂失稳扩展条件:KⅠ≥KⅠC,此时对应的临界: σc= KⅠC/√πa(a一定), ac= KⅠC/σ2π(σ一定)
某应力作用下,a>ac失效,a<ac裂纹不扩展。
同理:Ⅱ、Ⅲ类裂纹失稳扩展条件:
KⅡ=Yτ√a≥KⅡC
KⅢ=Yτ√a≥KⅢC
四.裂纹尖端塑性区及KI的修正
1.裂纹前塑性区
σs的区域增大到R0 R0=(1/π)×(KⅠ/σs)2
(平面应力)
R0=(1/2π√2)× (KⅠ/σs)2 (平面应变)
3. K裂I的纹修尖正端的弹性应力超过 材料屈服强度之后, 便产生应 力松驰,使塑性区增长 ,改变 了裂纹前的应力分布,不适用 于线弹性条件。
裂纹虚拟向前扩展ry,此时 虚拟裂纹尖端0’前端弹性区的 应力分布GEF,基本上与线弹性 条件下的σy相重合,对应的裂纹长度为a+ry,称为等效裂
KⅠ≥KⅠC判据 ,只适用于线弹性体.但事实上,金属 材料在扩展前,其尖端附近总是先出现一个或大的较大
的塑性变形区(存在塑性区或屈服区).试验表明如果裂
纹前塑性尺寸较裂纹尺寸a小很多(小一个数量级以上),
只要对KⅠ进行适当的修正,仍适用于线弹性条件. 根据材料力学,已知机件内过P点的截面应力分布,则
弹塑性断裂力学主要解决两方面的问题: